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Summary. The Boundary Element Tearing and Interconnecting (BETI) meth-
ods have recently been introduced as boundary element counterparts of the well–
established Finite Element Tearing and Interconnecting (FETI) methods. In this
paper we present inexact data–sparse versions of the BETI methods which avoid
the elimination of the primal unknowns and dense matrices. The data–sparse ap-
proximation of the matrices and the preconditioners involved is fully based on Fast
Multipole Methods (FMM). This leads to robust solvers which are almost optimal
with respect to the asymptotic complexity estimates.

1 Introduction

Langer and Steinbach [2003] have recently introduced the BETI methods as
boundary element counterparts of the well–established FETI methods which
were proposed by Farhat and Roux [1991]. We refer the reader to the mono-
graph by Toselli and Widlund [2005] for more information and references to
FETI and FETI–DP methods. In particular, we mention the paper by Kla-
wonn and Widlund [2000] who introduced and investigated the inexact FETI
technique that avoids the elimination of the primal unknowns (displacements).

In this paper we introduce inexact BETI methods for solving the inho-
mogeneous Dirichlet boundary value problem (BVP) for the homogeneous
potential equation in 3D bounded domains, where all matrices and precon-
ditioners involved in the BETI solver are data-sparse via FMM represen-
tations. However, instead of symmetric and positive definite systems, we
finally have to solve two–fold saddle point problems. The proposed itera-
tive solver and preconditioner result in an almost optimal solver the com-
plexity of which is proportional to the numbers of unknowns on the skele-
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ton up to some polylogarithmical factor. More precisely, the solver requires
O((H/h)(d−1)(1 + log(H/h))4 log ε−1) arithmetical operations in a parallel
regime and O((H/h)(d−1)(1 + log(H/h))2) storage units per processor, where
d = 3 in the 3D case considered here, and ε ∈ (0, 1) is the relative accuracy
of the iteration error in a suitable norm. H and h denote the usual scalings
of the subdomains and the boundary elements, respectively. Moreover, the
solvers are robust with respect to large coefficient jumps. For the sake of sim-
plicity, we present here only the case where all subdomains are non-floating.
All results remain valid for the general case that is discussed together with
some other issues including other preconditioners in the forthcoming paper
by Langer et al. [2005] where the reader can also find the proofs in detail.

The rest of the paper is organized as follows. In Section 2, we introduce
the fast multipole boundary element domain decomposition (DD) method.
Section 3 is devoted to the inexact BETI method. In Section 4, we describe
the ingredients from which the preconditioner and the solver for the two–fold
saddle point problem that we finally have to solve is built. In Section 5, we
present and discuss the results of our numerical experiments. Finally, we draw
some conclusions.

2 Fast Multipole Boundary Element DD Methods

Let us consider the Dirichlet BVP for the potential equation

−div[a(x)∇û(x)] = 0 for x ∈ Ω ⊂ R
3, û(x) = g(x) for x ∈ Γ = ∂Ω, (1)

with given Dirichlet data g ∈ H1/2(Γ ) as a typical model problem, where
Ω is a bounded Lipschitz domain that is assumed to be decomposed into
p non–overlapping subdomains Ωi with Lipschitz boundaries Γi = ∂Ωi. We
further assume that the coefficient function a(·) in the potential equation (1)
is piecewise constant such that a(x) = ai > 0 for x ∈ Ωi, i = 1, . . . , p.

The solution û of (1) is obviously harmonic in all subdomainsΩi. Using the
representation formula and its normal derivative on Γi, we can reformulate the
BVP (1) as a DD boundary integral variational problem living on the skeleton
ΓS = ∪p

i=1Γi of the DD, see Costabel [1987] and Hsiao and Wendland [1991].
After homogenization of the Dirichlet boundary condition via the ansatz û =
ĝ+u with ĝ|Γ = g and u|Γ = 0, this DD boundary integral variational problem
can be written as mixed variational problem of form: find t = (t1, t2, . . . , tp) ∈
T = T1 × T2 × . . . × Tp = H−1/2(Γ1) × H−1/2(Γ2) × . . . × H−1/2(Γp) and
u ∈ U = {v|ΓS

: v ∈ H1
0 (Ω)} such that

ai

[
〈τi, Viti〉Γi

− 〈τi, (
1

2
I +Ki)u|Γi

〉Γi

]
= ai〈τi, (

1

2
I +Ki)ĝ|Γi

〉Γi
(2)

for all τi ∈ Ti, i = 1, 2, . . . , p, and
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p∑

i=1

ai

[
−〈(

1

2
I +K ′

i)ti, v|Γi
〉Γi

− 〈Diu|Γi
, v|Γi

〉Γi

]
=

p∑

i=1

ai〈Diĝ|Γi
, v|Γi

〉Γi

(3)
for all v ∈ U , where Vi, Ki, K

′
i, and Di denote the local single layer potential

operator, the local double layer potential operator, its adjoint, and the local
hypersingular boundary integral operator, respectively.

Let us now introduce the boundary element trial spaces Uh = S1
h(ΓS) =

span{ϕm}M
m=1 ⊂ U and Ti,h = S0

h(Γi) = span{ψi
k}

Ni

k=1 ⊂ Ti spanned by con-
tinuous piecewise linear basis functions ϕm and by piecewise constant basis
functions ψi

k with respect to a regular globally quasi–uniform boundary el-
ement mesh with the average mesh size h on ΓS and Γi, respectively. The
Galerkin discretization finally leads to a large–scale symmetric and indefinite
system of form




a1Ṽ1,h −a1K̃1,hR1,h

. . .
...

apṼp,h −apK̃p,hRp,h

−a1R
>
1,hK̃

>
1,h . . . −apR

>
p,hK̃

>
p,h −D̃h







t̃1
...

t̃p
ũ


 =




a1g̃1
...

apg̃p

f̃




(4)

for defining the coefficient vectors t̃i ∈ R
Ni and ũ ∈ R

M . The matrices Ṽi,h,

K̃i,h and D̃h are data–sparse FMM approximations to the originally dense
Galerkin matrices Vi,h, Ki,h and Dh =

∑p
i=1 aiR

>
i,hDi,hRi,h, respectively.

The use of the FMM is indicated by the “tilde” on the matrices and vectors.
The FMM approximation of these matrices reduces the quadratic complexity
with respect to the number of unknowns to an almost linear one, but with-
out disturbing the accuracy. The restriction operator Ri,h maps some global
coefficient vector v ∈ R

M to the local vector vi ∈ R
Mi containing those com-

ponents of v which correspond to Γi only, i = 1, 2, . . . , p. The matrices Ri,h

are Boolean matrices which are sometimes also called subdomain connectivity
matrices.

3 Inexact BETI Methods

Introducing the local unknowns ũi = Ri,hũ as individual variables and enforc-
ing again the global continuity of the potentials by the constraints

p∑

i=1

Biũi = 0, (5)

we immediately arrive at the two–fold saddle point problem



V K 0
K> −D B>

0 B 0






t
u
λ


 =



g
f
0


 (6)
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that is obviously equivalent to (4), where t = (t̃1, . . . , t̃p)
>, u = (ũ1, . . . , ũp)

>,

and λ ∈ R
L is the vector of the Lagrange multipliers. The matrices V =

diag(aiṼi,h), K = diag(−aiK̃i,h) and D = diag(aiD̃i,h) are block–diagonal
whereas B = (B1, . . . , Bp). As in the FETI method each row of the matrix B
is connected with a pair of matching nodes across the subdomain boundaries.
The entries of such a row are 1 and −1 for the indices corresponding to the
matching nodes on the interface (coupling boundaries) ΓC = ΓS \ Γ and 0
otherwise. We assume here that the number of constraints at some match-
ing node is equal to the number of matching subdomains minus one. This
method of a minimal number of constraints respectively multipliers is called
non–redundant (see, e.g., Toselli and Widlund [2005]). The matrices Ṽi,h are
symmetric and positive definite (SPD). For non–floating subdomains assumed

in this paper the matrices D̃i,h are SPD as well. In the more complicated case

of floating subdomains, the matrices D̃i,h must be modified due to the non-

trivial kernel ker(D̃i,h) = span{1i}, where {1i} = (1, . . . , 1)>, see Langer and
Steinbach [2003] or Langer et al. [2005].

4 Solvers and Preconditioners

Following Zulehner [2005], who extended the special conjugate gradient (CG)
method proposed by Bramble and Pasciak [1988] for solving one–fold saddle
point problems, to n–fold saddle point problems, we are able to construct
a very efficient saddle point conjugate gradient (SPCG) solver for our two–
fold saddle point problem (6) provided that appropriate precondtioners for

the single layer potential matrices Ṽi,h, the local boundary element Schur

complements S̃i,h = D̃i,h + K̃>
i,hṼ

−1
i,h K̃i,h and the BETI Schur complement

F̃ =
∑p

i=q+1 a
−1
i BiS̃

−1
i,hB

>
i are available. We propose the following data–

sparse preconditioners which are also used in our numerical experiments:

1. Data–sparse algebraic or geometric multigrid preconditoners Ṽi,h for the

matrices Ṽi,h: For the geometric multigrid method, Langer and Pusch
[2005] proved the spectral equivalence inequalities

cV Ṽi,h ≤ Ṽi,h ≤ cV Ṽi,h (7)

where the spectral equivalence constants cV and cV are positive and in-
dependent of h and H .

2. Data–sparse opposite order preconditioners S̃i,h for the local boundary el-

ement Schur complements S̃i,h: In order to construct efficient precondi-

tioners S̃i,h, we apply the concept of boundary integral operators of the
opposite order proposed by Steinbach and Wendland [1998]. Based on the
local trial space Ui,h = S1

h(Γi) of piecewise linear basis functions ϕi
m, as

used for the Galerkin discretization of the local hypersingular boundary
integral operators Di, we define the Galerkin matrices V̄i,h and M̄i,h by
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V̄i,h[n,m] = 〈ϕi
n, V ϕ

i
m〉Γi

, M̄i,h[n,m] = 〈ϕi
n, ϕ

i
m〉Γi

for m,n = 1, . . . ,Mi. The inverse preconditioners are now defined by

S̃−1
i,h = M̄−1

i,h
˜̄V i,hM̄

−1
i,h for i = 1, . . . , p, (8)

where the tilde on the top of ˜̄V i,h again indicates that the application of
the discrete single layer potential V̄i,h is realized by using the FMM. In
Langer et al. [2005] we prove the spectral equivalence inequalities

cS(1 + log(H/h))−2S̃i,h ≤ S̃i,h ≤ cSS̃i,h, (9)

where the spectral equivalence constants cS and cS are positive and in-
dependent of h and H . The log–term disappears in the case of floating
subdomains.

3. Data–sparse BETI preconditioner F̃ for the BETI Schur complements
F̃ : Following Langer and Steinbach [2003], we define the inverse BETI
preconditioner

F̃−1
i,h = (BC−1

a BT )−1

p∑

i=1

BiC
−1
α D̃i,hC

−1
a,iB

>
i (BC−1

a B>)−1. (10)

with the help of the local data–sparse discrete hypersingular operators
D̃i,h and the scaling matrix Ca = diag(Ca,i). The definition of the diagonal
matrices Ca,i can be found in Toselli and Widlund [2005]. In Langer et al.
[2005], the spectral equivalence inequalities

cF F̃ ≤ F̃ ≤ cF (1 + log(H/h))2F̃ (11)

were proved, where the spectral equivalence constants cS and cS are pos-
itive and independent of h, H and the ai’s (coefficients jumps). In the
general case where non–floating as well as floating subdomains are present
in the DD, the spectral equivalence inequalities (11) remain valid on an
appropriate subspace.

Combining these spectral equivalence estimates with the results obtained
by Zulehner [2005] and taking into account the complexity estimate for the
FMM, we can easily prove the following theorem.

Theorem 1. If the two–fold saddle point problem (6) is solved by the SPCG

method where the preconditioner is build from the block preconditioners Ṽi,h,

S̃i,h, and F̃ , then not more than I(ε) = O((1 + log(H/h))2 log ε−1) iterations
and ops(ε) = O((H/h)2(1 + log(H/h))4 log ε−1) arithmetical operations are
required in order to reduce the initial error by the factor ε ∈ (0, 1) in a parallel
regime. The number of iterations I(ε) is robust with respect to the jumps in
the coefficients. Moreover, not more than O((H/h)2(1 + log(H/h))2) storage
units are needed per processor.
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The results of the theorem remain valid also in the general case where also
floating subdomains are present in the domain decomposition (see Langer
et al. [2005]). The proposed SPCG solver is asymptotically almost optimal
with respect to the complexity in arithmetic and storage as well as very effi-
cient on a parallel computer with distributed memory.

Remark 1. If we would use optimal preconditioners S̃i,h for the local bound-

ary element Schur complements S̃i,h, then the number of iteration I(ε) of our
SPCG solver would behave like O((1 + log(H/h)) log ε−1), whereas the arith-
metical complexity would decrease from O((H/h)2(1 + log(H/h))4 log ε−1)
to O((H/h)2(1 + log(H/h))3 log ε−1). Such preconditioners are available. If
we convert the non–floating subdomains having a Dirichlet boundary part to
floating subdomains by including the Dirichlet boundary condition into the
constraints, then the data–sparse opposite order preconditioners S̃i,h given
above is optimal.

5 Numerical Results

Let us consider the unit cube which is subdivided into eight similar subdo-
mains. In order to check the behavior of the discretization error, we take the
Dirichlet data g = û|Γ as the trace of a regular solution û of the boundary
value problem (1) on the boundary Γ . We perform numerical experiments
for the Laplace equation (ai = 1 for all i = 1, . . . , 8) and for the potential
equation with large jumps in the coefficients (ai ∈ {1, 105}) (chequerboard
distribution).

Starting from the coarsest grid level L = 0 with 192 triangles on ∪∂Ωi,
we successively refine the mesh by subdividing each triangle into four smaller
similar triangles. N and M denote the total numbers of triangles and nodes,
respectively. Mc is the total number of coupling nodes. The numbers of lo-
cal triangles and nodes on ∂Ωi are given by Ni and Mi, respectively. If the
boundary mesh of one subdomain Ωi on level L = 6 with 98.304 triangles is
uniformly extended to the interior of the subdomain, then the corresponding
finite element mesh would consist of 4.448.731 tetrahedrals resulting in almost
36 millions tetrahedrals for the whole computational domain. In Table 1, to-
gether with the mesh features L,N,M,Mc, Ni and Mi, the time t1 [sec] for
generating the system (6) and for setting up the preconditioner, the time t2
[sec] spent by the SPCG solver, the number of iterations I(ε) and the absolute
L2(Γi) discretization error ‖û− ûh‖L2(Γi) are displayed. The relative accuracy
ε of the iteration error is chosen to be 10−8. The first line in each row for the
columns t1, t2, I(ε) and L2(Γi)–error corresponds to the Laplace case whereas
the second line corresponds to the case of jumping coefficients. Table 1 shows
that the growth in the number of iterations and in the CPU times is in good
agreement with the complexity estimates given in Theorem 1. The efficiency
of our SPCG solver is not affected by large jumps in the coefficients of the
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L N M Mc Ni Mi t1 t2 I(ε) L2-error

0 192 63 13 24 14 0 0 6 2,8527E–03
1 0 6 2,8527E–08

1 768 261 67 96 50 1 1 33 7,1318E–04
1 1 29 7,1318E–09

2 3072 1089 319 384 194 5 6 36 1,7830E–04
5 6 34 1,7830E–09

3 12288 4473 1399 1536 770 16 34 38 4,4574E–05
15 30 36 4,4577E–10

4 49152 18153 5863 6144 3074 81 186 41 1,1143E–05
79 172 38 1,1144E–10

5 196608 73161 24007 24576 12290 316 1469 46 2,7859E–06
310 1346 44 2,7859E–11

6 786432 293769 97159 98304 49154 1314 7250 55 6,9647E–07
1319 7034 49 6,9651E–12

Table 1. Numerical features for the SPCG solver.

potential equations (1). Moreover, the number of iterations are less than in
the Laplace case. In addition, the CPU time for the finest level L = 6 is half
of the time needed for a primal preconditioned Schur complement solver in
the case of jumping coefficients. All numerical experiments were performed
on standard PCs with 3.06 Mhz Intel processors and 1 GB of RAM.

6 Conclusions

Inexact data–sparse BETI methods introduced in this paper show an almost
optimal behavior with respect to the number of iterations, the arithmetical
costs and the memory consumption. Moreover, the methods are robust with
respect to large jumps in the coefficients of (1). These results were rigorously
proved and were also confirmed by our numerical experiments. The treatment
of the outer Dirichlet problem as well as other boundary conditions is straight-
forward. Inexact data–sparse BETI methods can naturally be generalized to
linear elasticity BVP including elasticity problems for almost incompressible
materials (cf. Steinbach [2003]). Combining the results of this paper with the
results on inexact FETI methods obtained by Klawonn and Widlund [2000],
we can develop inexact BETI–FETI solvers for coupled boundary and finite
element equations (cf. Langer and Steinbach [2004] for the exact version).

Acknowledgement. This work has been supported by the Austrian Science Fund
‘Fonds zur Förderung der wissenschaftlichen Forschung (FWF)’ under the grants
P14953 and SFB F013 ‘Numerical and Symbolic Scientific Computing’, and by the
German Research Foundation ‘Deutsche Forschungsgemeinschaft (DFG)’ under the
grant SFB 404 ‘Multifield Problems in Continuum Mechanics’.



8 Ulrich Langer, Günther Of, Olaf Steinbach, and Walter Zulehner

References

J. H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite
systems resulting from mixed approximations of elliptic problems. Math.
Comp., 50(181):1–17, 1988.

M. Costabel. Symmetric methods for the coupling of finite elements and
boundary elements. In C. A. Brebbia, W. L. Wendland, and G. Kuhn,
editors, Boundary Elements IX, pages 411–420, Berlin, Heidelberg, New
York, 1987. Springer.

C. Farhat and F.-X. Roux. A method of finite element tearing and intercon-
necting and its parallel solution algorithm. Int. J. Numer. Meth. Engrg.,
32:1205–1227, 1991.

G. C. Hsiao and W. L. Wendland. Domain decomposition in boundary ele-
ment methods. In Proceedings of the Fourth International Symposium on
Domain Decomposition Methods for Partial Differential Equations (ed. by
R. Glowinski and Y. A. Kuznetsov and G. Meurant and J. Périaux and O.
B. Widlund), Moscow, May 21–25, 1990, pages 41–49, Philadelphia, 1991.
SIAM.

A. Klawonn and O. B. Widlund. A domain decomposition method with La-
grange multipliers and inexact solvers for linear elasticity. SIAM J. Sci.
Comput., 22(4):1199–1219, 2000.

U. Langer, G. Of, O. Steinbach, and W. Zulehner. Inexact data–sparse bound-
ary element tearing and interconnecting methods. Technical Report, Jo-
hann Radon Institute for Computational and Applied Mathematics, Au-
trian Academy of Sciences, Linz, Austria, 2005.

U. Langer and D. Pusch. Convergence analysis of geometrical multigrid meth-
ods for solving data–sparse boundary element equations. SFB–Report, SFB
F013, Johannes Kepler University Linz, Austria, 2005.

U. Langer and O. Steinbach. Boundary element tearing and interconnecting
method. Computing, 71:205–228, 2003.

U. Langer and O. Steinbach. Coupled boundary and finite element tearing
and interconnecting methods. In Proceedings of the 15th Int. Conference
on Domain Decomposition (ed. by R. Kornhuber, R. Hoppe, J. Periaux,
O. Pironneau, O. Widlund and J. Xu), Lecture Notes in Computational
Sciences and Engineering, vol. 40, pages 83–97, Heidelberg, 2004. Springer.

O. Steinbach. A robust boundary element method for nearly incompressible
linear elasticity. Numer. Math., 95:553–562, 2003.

O. Steinbach and W. L. Wendland. The construction of some efficient precon-
ditioners in the boundary element method. Adv. Comput. Math., 9:191–216,
1998.

A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms
and Theory, volume 34 of Springer Series in Computational Mathematics.
Springer, Berlin, Heidelberg, 2005.

W. Zulehner. Uzawa–type methods for block–structured indefinite linear sys-
tems. SFB–Report 2005–5, SFB F013, University of Linz, Austria, 2005.




