
On a Parallel Time-domain Method for theNonlinear Blak-Sholes EquationChoi-Hong Lai1, Diane Crane2, and Alan Davies21 Shool of Computing and Mathematial Sienes, University of Greenwih, OldRoyal Naval College, Greenwih, London SE10 9LS, UK.C.H.Lai�gre.a.uk2 Department of Physis, Astronomy, and Mathematis, University ofHertfordshire, Hat�eld Campus, Herts AL10 9AB, UK.fD.Crann,A.J.Daviesg�herts.a.uk1 IntrodutionA parallel time-domain algorithm is desribed of the time-dependent nonlinearBlak-Sholes equation, whih may be used to build �nanial analysis toolsto help traders making rapid and systemati evaluation of buy/sell ontrats.The algorithm is partiularly suitable for problems that do not require �nedetails at eah intermediate time step, and hene the method applies well forthe present problem.The method relies on a Laplae transform tehnique applied to the Blak-Sholes equation and generates subproblems that an be exeuted in a par-allel/distributed omputing environment. These subproblems are thus solvedindependently without subproblem ommuniation. Early studies of the sal-ability of the algorithm for linear Blak-Sholes equation may be found in[Cra96℄ and [CDL98℄. This paper extends the previous work to nonlinearBlak-Sholes equation. Two linearization methods, one based on the updat-ing of nonlinear oeÆients within an iterative loop and the other based ona Newton's method. A numerial inverse [Ste70, Wid46℄ of the approximatesolution is used to retrieve the �nal solution of the nonlinear Blak-Sholesequation. Numerial tests are performed to demonstrate the viability of thealgorithm. EÆieny of the algorithm is also studied.This paper onludes with a disussion on an extension of the presentLaplae transform tehnique to a parallel time-domain algorithm in order toobtain detials of physial quantities at intermediate �ner time steps.2 A Nonlinear Blak-Sholes ModelLet v(S; t) denote the value of an option, where S is the urrent value ofthe underlying asset and t is the time. The value of the option relates to the



2 Lai, Crane, Daviesurrent value of the underlying asset via the Blak-Sholes equation:�v�t + 12�2S2 �2v�S2 + rS � rv = 0 2 
+ � [T; 0) (1)where 
+ = fS : S � 0g. The stohasti bakground of the equation is notdisussed in this paper, and readers who are interested should onsult [Wil93℄.Only European options are onsidered in this paper. This means that theholder of the option may exeute at expiry a presribed asset, known as theunderlying asset, for a presribed amount, known as the strike prie. Thereare two di�erent types of option, namely the all option and the put option.At expiry, the holder of the all option has the right to buy the underlyingasset and the holder of the put option has the right to sell the underlyingasset. For a European put option with strike prie k and expiry date T , it issensible to impose the boundary ondition v(0; t) = ke�r(T�t); v(L; t) = 0,where L is usually a large value. At expiry, if S < k then one should exerisethe all option, i.e. handing over an amount k to obtain an asset with S.However, if S > k at expiry, then one should not exerise the option beauseof the loss k�S. Therefore the �nal ondition v(S; T ) = maxfk�S; 0g needsto be imposed. The solution v for t < T is required.Sine (1) is a bakward equation, it needs to be transformed to a forwardequation by using � = T � t, whih leads to,�V�� = 12�2S2 �2V�S2 + rS � rV 2 
+ � (0; T ℄ (2)subjet to initial ondition V (S; 0) = maxfk�S; 0g and boundary onditionsV (0; �) = ke�r� ; V (L; �) = 0. A �eld method, suh as the �nite volumemethod, is of more interest for two reasons. First, there are many examples inmulti-fator model suh that a redution of the time dependent or nonlinearoeÆient to a onstant oeÆient heat is impossible. Hene analyti form ofsolutions annot be found. Seond, �nanial modelling typially requires largenumber of simulations and solutions at intermediate time steps are usuallynot of interest. EÆieny of the numerial algorithm is very important inorder to make evaluation and deision before the agreement of a ontrat isreahed. Ideally one would like to use an algorithm whih an be ompletelydistributed onto a number of proessors with only minimal ommuniationsbetween proessors.Very often, over a short period of time the interest rate, r, is �xed whilethe volatility, �, is varying. The volatility may be a funtion of the transationosts [BarSon98℄, the seond derivative of the option value [ParAve94℄, or, insome ases, the solution of a nonlinear initial value problem [BarSon98℄. In or-der to develop the nonlinear solver in this setion, the volatility � = �0p1 + aproposed in [BoyVor73℄ is used, where a is the proportional transation ostsaled by �0 and the transation time. Very often the transation ost isrelated to the option value and follows a Gaussian distribution. In order to



Parallel Time-Domain Method 3demonstrate the time-domain parallel algorithm for nonlinear problems, a sinefuntion is used in the subsequent tests to produe the e�et of a pulse-likedistribution instead of a Gaussian distribution, i.e. a = sin(V �k ) where k isthe strike prie.3 Referene Solutions Using a Temporal IntegrationThe forward Blak-Sholes equation given by (2) is written as�V�� = A(V )�2V�S2 + rS � rV = 0 2 
+ � (0; T ℄ (3)where A(V ) = 12�(V )2S2. In order to obtain a referene solution for (3) alinearisation method ombined with a temporal integration may be applied.The oeÆient A is omputed by using an approximation �V , whih is updatedin every step of a nonlinear iterative update proess. Eah step of the nonlineariterative update proess involves a numerial solution to the equation�V�� = A( �V )�2V�S2 + rS � rV = 0 2 
+ � (ti; ti+1℄ (4)de�ned in the time interval � 2 (ti; ti+1℄. Let V (n)(S; ti+1) and V (n)(S; ti) bethe numerial solutions of (3) at � = ti+1 and � = ti respetively. The non-linear iterative update proess to obtain the numerial solution V (n)(S; ti+1),using V (n)(S; ti) as the initial approximation to �V , is desribed in the algo-rithm below.Algorithm R: Obtain a referene solution for (3).do i = 0,1,2,...ti = iÆ� ;Initial approximation:- V (0)(S; ti+1) := V (n)(S; ti); k := 0;Iteratek := k + 1;�V := V (k�1)(S; ti+1);Compute A( �V );V (k)(S; ti+1) := Apply Euler's method to (4);Until kV (k)(S; ti+1)� V (k�1)(S; ti+1)k < �n := k;end-do4 The Parallel Time-Domain MethodLet



4 Lai, Crane, Daviesl(V ) = Z 10 e���V (S; �)d� = U(�;S)be the Laplae transform of the funtion V (S:�). Appliation of the Laplaetransform [Wid46℄ to (4), now being de�ned in 
+ � (Ti; Ti+1℄, leads toA( �V )d2UdS2 + rsdUdS � (r + �)U = �V (S; Ti) 2 
+ (5)where U = U(�;S) de�ned in the Laplae spae. Here � 2 f�jg is a �nite setof transformation parameter de�ned by�j = j ln 2Ti+1 � Ti : j = 1; 2; :::;m (6)where m is required to be hosen as an even number [Ste70℄. Therefore theproblem de�ned in (4) is onverted to m independent parametri boundaryvalue problems as desribed by (5), and these problems may be distributedand solved independently in a distributed environment.In order to retrieve V (S; Ti+1), the approximate inverse Laplae transformdue to Stehfest [Ste70℄ given byV (S; Ti+1) � ln 2Ti+1 � Ti mXj=1wjU(�j ;S) (7)where wj = (�1)m=2+j min(j;m=2)Xk=(1+j)=2 km=2(2k)!(m=2� k)!k!(k � 1)!(j � k)!(2k � j)!is known as the weighting fator, is used. The authors selet Stehfest methodbeause of previous experiene with the method used for linear problems[Cra96, CDL98℄ and wish to investigate the appliation of the inverse methodto nonlinear problems.A nonlinear iterative update proess is required to update �V and to obtainthe numerial solution V (n)(S; Ti+1), using V (n)(S; Ti) as the initial approxi-mation to �V , and is desribed in the algorithm below.Algorithm P1: Parallel algorithm 1 for (3).do i = 0,1,2,...Ti = i�� ;Initial approximation:- V (0)(S; Ti+1) := V (n)(S; Ti); k := 0;Iteratek := k + 1; �V := V (k�1)(S; Ti+1); Compute A( �V );Parallel for j := 1 to m(i)Solve (5) for U(�j ;S);End parallel for



Parallel Time-Domain Method 5Compute V (k)(S; Ti+1) using inverse Laplae transform (7);Until kV (k)(S; Ti+1)� V (k�1)(S; Ti+1)k < �n := k;end-doHere m(i) is the number of transformation parameters and Ti = �� . In orderto solve (5) for U(�j ;S), one an employ the �nite volume tehnique as theone used in Setion 3. In essene the atual implementation does not requiredi�erent values ofm(i) for many problems, and the results shown in this paperuse the same number of transformation parameters, denoted as �m, for di�erentvalues of i during the outer iteration loop. Note that in this ase �� an behosen to be muh greater than Æ� beause the �ne details of V (S; �) at eahtime step of a temporal integration is not required in the present example.5 Newton's LinearisationAlternatively, a small perturbation may be applied to (2), de�ned in the timeinterval � 2 (Ti; Ti+1℄, whih leads tof ��� � (A0(V )�2V�S2 +A(V ) �2�S2 + rS ��S � r)gÆV= �f�V�� � (A(V )�2V�S2 + rS �V�S � rV )g (8)where ÆV is a small inremental hange of V . Appliation of the Laplaetransform to (8), de�ned in the interval � 2 (Ti; Ti+1℄, results tol(ÆV )� ÆV (S; Ti)� (A0(V )�2V�S2 +A(V ) �2�S2 + rS ��S � r)gl(ÆV )= �l(V )� V (S; Ti)� (A(V )�2V�S2 + rS �V�S � rV )g (9)The method requires the numerial solution l(ÆV (n)(S; Ti+1)) using V (n)(S; Ti)as the initial approximation to V (0)(S; Ti+1) and is desribed in the algorithmbelow.Algorithm P2: Parallel algorithm 2 for (3).do i = 0,1,2,...Ti = i�� ;Initial approximation:- V (0)(S; Ti+1) := V (n)(S; ti); k := 0;Iteratek := k + 1; �V := V (k�1)(S; Ti+1);Compute A( �V ); Compute A0( �V ); Compute A0( �V )�2 �V�S2 ;Compute �l( �V )� V (S; Ti)� (A( �V )�2 �V�S2 + rS � �V�S � r �V )g;



6 Lai, Crane, DaviesParallel for j := 1 to m(i)Solve (9) for l(ÆV (k)(S; Ti+1));End parallel forCompute ÆV (k)(S; Ti+1) using inverse Laplae transform (7);V (k)(S; Ti+1 := �V + ÆV (k)(S; Ti+1);Until kÆV (k)(S; Ti+1)k < �n := k;end-do6 Numerial ExamplesThe problem of European put option is solved upto the expiry date T = 0:25at the strike prie k = 100. The volatility � is hosen as the funtion desribedand the parameters �0 and r are hosen to be 0.4 and 0.5 respetively. A seondorder �nite volume method is applied to eah parametri equation as givenby (5) or (9). The mesh size is hosen to be h = 320=29.A sequential omputational environment is used in the tests. The approx-imations to V (S; T ) obtained by means of algorithms P1 and P2 are denotedas VP1 and VP2 respetively. Using �� = T10 , T20 , T30 , T40 , the number of outeriterations or time steps required for algorithms P1 and P2 are 10, 20, 40, and80 respetively.The above two parallel time-domain algorithms are ompared with thereferene solution obtained by means of algorithm R with Æ� = 1=365, i.e. 1day, in onjuntion with the seond order �nite volume sheme applied alongthe spatial axis S. The disretisation leads to a number of tri-diagonal systemsof equations due to the linearisation step at every time step, whih may besolved by a diret method. The numerial solution V (S; T ) obtained by thistemporal integration is denoted as VR. The stopping riterion used in thelinearization step is hosen as � = 10�5.In order to examine the eÆieny of the parallel time-domain algorithms,the omputational work required for solving a tri-diagonal system of equationsresults from a hosen mesh size is ounted as one work unit. The total sequen-tial work unit is obtained by multiplying the total number of work unit to �m,and the total parallel work unit is simply the total work unit plus overheadsdue to the alulation of inverse Laplae transform and ommuniation.Disrepanies in solutions, i.e. kVR � VP1k and kVR � VP2k using various�� , are presented in Fig. 1 and 2. In general the disrepany levels o� whenm � 8 , whih suggests that the use of more terms in the inverse Laplaetransform at a �xed value of �� has no e�et on the auray. On the otherhand smaller �� produes smaller disrepany at the expense of requiringmore work unit as reorded in Table 1. Furthermore the work unit requiredby using algorithm P2 is less than that of algorithm P1, and there is no suddeninrease of work when �m = 12.
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Fig. 1. Disrepanies of solutions: kVR � VP1k.
Fig. 2. Disrepanies of solutions: kVR � VP2k.Table 1. Work units omparison (VR requires 246 work units).�m 4 6 8 10 12�� Algorithm P19.125Æ� 58 58 58 58 1804.5626Æ� 103 103 103 103 1232.28125Æ� 177 177 177 177 1861.140625Æ� 326 326 326 326 327Algorithm P29.125Æ� 43 43 43 43 434.5626Æ� 83 70 71 71 712.28125Æ� 134 126 126 126 1261.140625Æ� 249 245 220 214 213



8 Lai, Crane, Davies7 ConlusionsTwo linearisation methods were used in onjuntion with the Laplae trans-form method for non-linear Blak-Sholes models. Work unit ounts of thenumerial experiments suggest that the present tehnique has advantages insolving nonlinear option priing problems using parallel or distributed om-puting environment. One suh advantage is the use of a larger time step,i.e. �� , when the �ne details at intermediate time steps of the time interval(Ti; Ti+1) are not required. Parallelisation is introdued by solving in paral-lel a number of parametri problems, eah of whih de�nes in the interval(Ti; Ti+1), i=1,2,..., T=Æ� , in the Laplae spae. Note that as �� approahesÆ� the tranform into Laplae spae does not show advantages as an be seenfrom the results in Table 1. Therefore �ne details on a �ne time step shouldnot be omputed by means of Laplae transform method. Instead �ne detailswithin the time interval (Ti; Ti+1), for all values of i, may be obtained in par-allel using a temporal integration method. E�etively the present algorithmprovides initial onditions for every interval (Ti; Ti+1), i=1,2,..., T=Æ� . As aresult �ne details of the time interval (Ti; Ti+1) are deoupled from other timeintervals and may be obtained independently with a smaller time-step, sayÆ� .Referenes[BarSon98℄ Barles, G. and Soner, H.M.: Option priing with transation osts anda nonlinear Blak-Sholes equation. Finane Stohast, 2, 369{397 (1998)[BoyVor73℄ Boyle, P. and Vorst, T.: Option repliation in disrete time with trans-ation osts. Journal of Finane, 47, 271{293 (1973)[Cra96℄ Crann, D.: The Laplae transform: Numerial inversion for omputationalmethods. Tehnial Report No. 21, University of Hertfordshire, UK (1996)[CDL98℄ Crann, D., Davies, A.J., Lai, C.-H., and Leong, S.W.: Time domain de-omposition for European options in �nanial modelling. In: Mandel, J., Farhat,C., and Cai, X.-C. (eds) Proeedings of the 10th International Conferene onDomain Deomposition Methods. Amerian Mathematial Soiety (1998)[ParAve94℄ Pars, A. and Avellaneda, M.: Dynami hedging portfolios for derivativeseurities in the presene of large transation osts. Appl. Math. Finane, 1,165{193 (1994)[Ste70℄ Stehfest, H.: Numerial inversion of Laplae transforms. Comm ACM, 13,47{49 (1970)[Wid46℄ Widder, D.V.: The Laplae Transform. Prineton University Press, Prine-ton (1946)[Wil93℄ Wilmott, P., Howison, S. and Dewynne, J.: The Mathematis of FinanialDerivatives. Press Syndiate of the University of Cambridge, New York (1993)


