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Summary. In recent years, much attention has been given to domain decomposition
methods for solving linear elliptic problems that are based on a partitioning of the
domain of the physical problem. More recently, a new class of Schwarz methods
known as optimized Schwarz methods was introduced to improve the performance
of the classical Schwarz methods. In this paper, we investigate the performance of
this new class of methods for solving the model equation (η − ∆)u = f , where
η > 0, on spherical geometry. This equation arises in a global weather model as
a consequence of an implicit (or semi-implicit) time discretization. We show that
the Schwarz methods improved by a non-local transmission condition converges in
a finite number of steps. A local approximation permits the use of the new method
on a new overset grid system on the sphere called the Yin-Yang grid.

1 Introduction

Meteorological operational centers are using increasingly parallel computers
systems and need efficient strategies for their real-time data assimilation and
forecasts systems. This motivates the present study, where parallelism based
on domain decomposition methods is analyzed for a new overset grid system
on the sphere introduced by Kageyama and Sato [2004] and called the Yin-
Yang grid.

In this paper we investigate domain decomposition methods for solving
(η − ∆)u = f , where η > 0, in spherical geometry. The key idea underlying
the optimal Schwarz method has been introduced in Hagstrom et al. [1988] in
the context of non-linear problems. A new class of Schwarz methods based on
this idea was then introduced in Charton et al. [1991] and further analyzed in
Nataf and Rogier [1995] and Japhet [1998] for convection diffusion problems.
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For the case of the Poisson equation, see Gander et al. [2001], where also
the terms optimal and optimized Schwarz were introduced. Optimal Schwarz
methods have non-local transmission conditions at the interfaces between sub-
domains, and are therefore not as easy to use as classical Schwarz methods.
Optimized Schwarz methods use local approximation of the optimal, non-local
transmission conditions of optimal Schwarz at the interfaces and are therefore
as easy to use as classical Schwarz, but have a greatly enhanced performance.

In Section 2, we introduce the model problem on the sphere and the tools
of Fourier analysis, we also recall briefly some proprieties of the associated
Legendre functions, which we will need in our analysis. In Section 3, we present
the Schwarz algorithm for the model problem on the sphere with a possible
overlap. We show that asymptotic convergence is very poor in particular for
small modes. In Section 4, we present the optimal Schwarz algorithm for
the same configuration. We prove convergence in two iterations for the two
subdomain decomposition with non-local convolution transmission conditions,
we introduce a local approximation which permits the use of the new method
on a new overset grid system on the sphere called the Yin-Yang grid which is
pole-free. In Section 5 we illustrate our findings with numerical experiments.

2 The problem setting on the sphere

Throughout this paper we consider a model problem governed by the following
equation

L(u) = (η − ∆)(u) = f, in S ⊂ R
3, (1)

where S is the unit sphere centered at the origin. Using spherical coordinates,
equation (1) can be rewritten in the form

L(u) =
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(u) = f,

(2)
where φ stands for the colatitude, with 0 being the north pole and π being
the south pole, and θ is the longitude. For our case on the surface of the unit
sphere, we consider solutions independent of r, e.g., r = 1, which simplifies
(2) to

L(u) =

(

η − 1

sin2 φ

∂2

∂θ2
− 1

sin φ

∂

∂φ
(sin φ

∂
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)

(u) = f. (3)

Our results are based on Fourier analysis. Because u is periodic in θ, it can
be expanded in a Fourier series,

u(φ, θ) =

∞
∑

m=−∞

û(φ, m)eimθ , û(φ, m) =
1

2π

∫ 2π

0

e−imθu(φ, θ)dθ.

With the expanded u, equation (3) becomes a family of ordinary differential
equations. For any positive or negative integer m, we have
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−∂2û(φ, m)

∂φ2
− cosφ

sinφ

∂û(φ, m)

∂φ
+ (η +

m2

sin2 φ
)û(φ, m) = f̂(φ, m). (4)

By linearity, it suffices to consider only the homogeneous problem, f̂(φ, m) =
0, and analyze convergence to the zero solution. Thus, for m fixed, the homo-
geneous problem in (4), can be written in the following form

∂2û(φ, m)

∂φ2
+

cosφ

sinφ

∂û(φ, m)

∂φ
+ (ν(ν + 1) − m2

sin2 φ
)û(φ, m) = 0, (5)

where ν = −1/2 ± 1/2
√

1 − 4η. Note that the solution of equation (5) is
independent of the sign of m, thus for simplicity only, in the sequel we assume
that m is a positive integer. The equation (5) is known by the associated
Legendre equation and admits two linearly independent solutions with real
values, namely Pm

ν (cos φ) and Pm
ν (− cosφ), see e.g., Gradshteyn and Ryzhik

[1981], where Pm
ν (cosφ) is called the conical function of the first kind.

Remark 1. The associated Legendre function can be expressed in terms of the
hypergeometric function and one can show that the function Pm

ν (cosφ) has
a singularity at φ = π and is monotonically increasing in the interval [0, π].
Furthermore, the derivative of the function Pµ

ν (z) with respect to the variable
z, is given by

∂Pm
ν (z)

∂z
=

1

1 − z2

(

−mzPm
ν (z) −

√

1 − z2Pm+1
ν (z)

)

. (6)

3 The classical Schwarz algorithm on the sphere

We decompose the sphere into two overlapping domains as shown in Fig. 1
on the left. The Schwarz method for two subdomains and model problem (1)
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Fig. 1. Left: Two overlapping subdomains. Right: The Yin-Yang grid system.

is then given by
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Lun
1 = f, in Ω1, un

1 (b, θ) = un−1
2 (b, θ),

Lun
2 = f, in Ω2, un

2 (a, θ) = un−1
1 (a, θ),

(7)

and we require the iterates to be bounded at the poles of the sphere. By
linearity it suffices to consider only the case f = 0 and analyze convergence
to the zero solution.
Taking a Fourier series expansion of the Schwarz algorithm (7), and using the
condition on the iterates at the poles, we can express both solutions using the
transmission conditions as follows

ûn
1 (φ, m)= ûn−1

2 (b, m)
Pm

ν (cosφ)

Pm
ν (cos b)

, ûn
2 (φ, m)= ûn−1

1 (a, m)
Pm

ν (− cosφ)

Pm
ν (− cos a)

. (8)

Evaluating the second equation at φ = b for iteration index n−1 and inserting
it into the first equation, evaluating this latter at φ = a, we get over a double
step the following relation

ûn
1 (a, m)=

Pm
ν (− cos b)Pm

ν (cos a)

Pm
ν (− cosa)Pm

ν (cos b)
ûn−2

1 (a, m). (9)

Therefore for each m the convergence factor ρ(m, η, a, b) of the classical
Schwarz algorithm is given by

ρcla = ρcla(m, η, a, b) :=
Pm

ν (− cos b)Pm
ν (cos a)

Pm
ν (− cos a)Pm

ν (cos b)
. (10)

A similar result also holds for the second subdomain and we find by induction

û2n
1 (a, m) = ρn

claû0
1(a, m), û2n

2 (b, m) = ρn
claû0

2(b, m). (11)

Because of Remark 1, the fractions are less than one and this process is a
contraction and hence convergent. We have proved the following

Proposition 1. For each m, the Schwarz iteration on the sphere partitioned
along two colatitudes a < b converges linearly with the convergence factor

ρcla = ρcla(m, η, a, b) :=
Pm

ν (− cos b)Pm
ν (cos a)

Pm
ν (− cos a)Pm

ν (cos b)
≤ 1.

The convergence factor depends on the problem parameters η, the size of the
overlap L = b − a and on the frequency parameter m. Fig. 2 on the left,
shows the dependance of the convergence factor on the frequency m for an
overlap L = b− a = 1

100 and η = 2. This shows that for small values of m the
rate of convergence is very poor, but the Schwarz algorithm can damp high
frequencies very effectively.
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Fig. 2. Left: Behavior of the convergence factor ρcla. Right: Comparison between
ρcla (top curve), ρT0 (2nd curve), ρT2 (3th curve) and ρO0 (bottom curve). In both
plots a = π − L/2 and the overlap is L = b − a = 1

100
and η = 2.

4 The Optimal Schwarz algorithm

Following the approach in Gander et al. [2001], we now introduce the following
modified algorithm by imposing new transmission conditions

L(un
1 ) = f, in Ω1, (S1 + ∂φ)(un

1 )(b, θ) = (S1 + ∂φ)(un−1
2 )(b, θ),

L(un
2 ) = f, in Ω2, (S2 + ∂φ)(un

2 )(a, θ) = (S2 + ∂φ)(un−1
1 )(a, θ),

(12)

where Sj , j = 1, 2, are operators along the interface in the θ direction. As for
the classical Schwarz method, it suffices by linearity to consider the homoge-
neous problem only, f = 0, and to analyze convergence to the zero solution.
Taking a Fourier series expansion of the new algorithm (12) in the θ direction,
we obtain

(σ1(m) + ∂φ)(ûn
1 )(b, m) = (σ1(m) + ∂φ)(ûn−1

2 )(b, m),
(σ2(m) + ∂φ)(ûn

2 )(a, m) = (σ2(m) + ∂φ)(ûn−1
1 )(a, m),

(13)

where σj , j = 1, 2, denotes the symbol of the operators Sj , j = 1, 2, respec-
tively. To simplify the notation, we introduce the following function:

qν,m(x) =
Pm+1

ν (cosx)

Pm
ν (cosx)

.

As in the case of the classical Schwarz method, we have to choose Pm
ν (cosφ)

as solution in the first subdomain and Pm
ν (− cosφ) as solution in the sec-

ond subdomain. Using the transmission conditions and the definition of the
derivative of the Legendre function in (6), we find the subdomain solutions in
Fourier space to be

ûn
1 (φ, m) =

σ1(m) + m cot b − qν,m(π − b)

σ1(m) + m cot b + qν,m(b)

Pm
ν (cosφ)

Pm
ν (cos b)

ûn−1
2 (b, m),

ûn
2 (φ, m) =

σ2(m) + m cota + qν,m(a)

σ2(m) + m cota − qν,m(π − a)

Pm
ν (− cosφ)

Pm
ν (− cos a)

ûn−1
1 (a, m).

(14)
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Evaluating the second equation at φ = b for iteration index n−1 and inserting
it into the first equation, we get after evaluation at φ = a,

ûn
1 (a, m) = ρopt(m, a, b, η, σ1, σ2)û

n−2
1 (a, m), (15)

Where the new convergence factor ρopt is given by

ρopt :=
σ1(m) + m cot b − qν,m(π − b)

σ1(m) + m cot b + qν,m(b)

σ2(m) + m cota + qν,m(a)

σ2(m) + m cota − qν,m(π − a)
ρcla.

(16)
As in the classical case, we can prove the following

Proposition 2. The optimal Schwarz algorithm (12) on the sphere parti-
tioned along two colatitudes a < b converges in two iterations provided that
σ1 and σ2 satisfy

σ1(m) = −m cot b + qν,m(π − b) and σ2(m) = −m cota − qν,m(a). (17)

This is an optimal result, since convergence in less than two iterations is im-
possible, due to the need to exchange information between the subdomains.
In practice one needs to inverse transform the transmissions conditions in-
volving σ1(m) and σ2(m) from Fourier space into physical space to obtain the
transmissions operators S1 and S2, and hence we need

S1(u
n
1 ) = F−1

m (σ1(û
n
1 )), S2(u

n
2 ) = F−1

m (σ2(û
n
2 )).

Due to the fact that σj contains the associated Legendre function, the operator
Sj are non-local operators. To have local operators we need to approximate the
symbols σj with polynomials in im. Inspired by the results for elliptic problems
in two-dimensional Cartesian space, we introduce the following ansatz

qν,m(φ) ≈ sin(φ)
√

η + m2

1 + cos(φ)
. (18)

Based on this ansatz we can expand the symbols σj(m) in (17) in a Taylor
series,

σ1(m) =
sin(b)

√
η

− cos(b)+1 + sin(b)m2

2(− cos(b)+1)
√

η
+ O(m4),

σ2(m) = − sin(a)
√

η

cos(a)+1 − sin(a)m2

2(cos(a)+1)
√

η
+ O(m4).

A zeroth order Taylor approximation T 0 is obtained by using only the first
terms in the Taylor expansion of σj , while a second order T 2 is obtained by
using both terms from the expansion. In Fig. 2 on the right, we compare the
convergence factor ρcla of the classical Schwarz method with the convergence
factor ρT0 of the zeroth order Taylor method and the convergence factor
ρT2 of the second order Taylor method. Numerically, we find the optimized
Robin conditions, namely σ1 ≈ 1.4 and σ2 ≈ −1.4, and we compare the
corresponding convergence factor ρO0 to other methods.
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5 Numerical experiments

We perform two sets of numerical experiments. In the first set we consider our
model problem on the sphere using a longitudinal co-latitudinal grid, where
we adopt a decomposition with two overlapping subdomains as shown in Fig.
1 on the left. In this case we combine a spectral method in the θ-direction
with a finite difference method in the φ-direction. We use a discretization
with 6000 points in φ, including the poles, and spectral modes from −10 to
10. The decomposition is done at the middle and the overlap is chosen to be
[0.49π, 0.51π], see Fig. 3, where the curves with (circle) and without (square)
overlap of optimal Schwarz are on top of each other. In the second experiment
we solve the model problem on the Yin-Yang grid. This is a kind of overset
grid, which covers the surface of the sphere by two component grids with
partial overlapping on their borders. The two component grids are identical
and they are a part of the usual spherical coordinates, see Fig. 1 on the right.
The Ying-Yang grid system is free from the problem of singularity at the
poles, in contrast to the ordinary spherical coordinate system. In Fig. 3 on
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Fig. 3. Left: Convergence behavior for the methods analyzed for the two subdomain
case. Right: Screenshots of solutions and the error in the Yin-Yang grid system.

Classical Schwarz Taylor 0 method Taylor 2 method Optimized 0 method

h L = 1/50 L = h L = 1/50 L = h L = 1/50 L = h L = 1/50 L = h

1/50 184 184 22 22 16 16 12 12
1/100 184 284 22 27 16 19 12 16
1/150 183 389 21 31 15 21 11 19
1/200 184 497 22 36 16 24 12 22

Table 1. Number of iterations of the classical Schwarz method compared to opti-
mized Schwarz methods in the Yin-Yang grid system.

the right we show some screenshots of the exact and numerical solutions in
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the Yin-Yang grid using optimized Robin with σ1 = −1.4 and σ2 = 1.4. In
Table 1 we compare the classical Schwarz method to the optimized methods
in the Yin-Yang grid system.

Conclusion

In this work we show that numerical algorithms already validated for a global
latitude/longitude grid can be implemented, with minor changes, for the Yin-
Yang grid system. In the future we will implement optimized second order
interface conditions in order to improve the convergence of the elliptic solver.
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