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Summary. Non-conforming meshes are frequently employed in multi-component simula-
tions and adaptive refinement. In this work we develop a discontinuous Galerkin framework
capable of accommodating non-conforming meshes and apply our approach to analyzing the
transient heat conduction problem.

1 Introduction

Non-conforming meshes are frequently employed for adaptive solution or simula-
tion of multi-component systems. Even though non-conforming meshes are easy to
generate, they require the satisfaction of jump conditionsacross the non-conforming
mesh interface. Several techniques have been developed to enforce these conditions
such as mixed methods (Arbogast [1997]), local constraint equation methods (Guo
and Babŭska [1986], Demkowicz et al. [1989]) and mortar methods (Bernadi et al.
[1989], Wohlmuth [2002]).

In this work we present a Discontinuous Galerkin (DG) framework for accom-
modating non-conforming meshes. The DG method naturally accommodates jump
conditions and has been employed to solve hyperbolic, parabolic and elliptic prob-
lems (Cockburn et al. [2000]). For a historical review of DG methods and their ap-
plications to elliptic problems refer to Arnold et al. [2002]. Recently, DG schemes
have been applied to enforce jump conditions across non-conforming mesh interfaces
such as those encountered in adaptive refinement (Becker andHansbo [1999], Carmo
and Duarte [2000], Perugia and Schötzau [2001]). Here, we extend the formulation
of Becker and Hansbo [1999] to parabolic problems. A benefit of the DG scheme is
that it does not introduce constraint equations and their resulting Lagrange multiplier
fields, as done in mixed and mortar methods. However, the standard DG formulation
leads to a large system of equations due to the presence of “duplicate” nodes.

⋆ The first and third author would like to acknowledge the support providedby NSF under
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In sections (2) and (3) we describe our discontinuous Galerkin (DG) formulation
and provide ana priori analysis. Section (4) presents numerical examples using our
formulation. Finally, in section (5) we draw conclusions and suggest future work.

2 Problem Definition

We consider the following linear heat conduction problem asour representative ex-
ample of a parabolic equation:

u̇ − ∆u = f in Ω × I (1)

u = 0 on ∂ΩD × I (2)

−∇u · n = 0 on ∂ΩN × I (3)

u(·, 0) = ũ in Ω (4)

whereu(x, t) is the scalar temperature field to be computed over the time interval
I = (0, T ); ∂Ω defines the boundary of the regionΩ which is divided into two
complimentary regions,∂ΩD, on which homogeneous Dirichlet boundary conditions
are specified, and∂ΩN , on which homogeneous Neumann boundary conditions are
specified; and̃u is the prescribed initial condition onu. We solve the above partial
differential equation by discretizing via a DG finite element method that is based on
Nitsche’s method (Nitsche [1970]) to weakly enforce Dirichlet boundary conditions.
In our DG framework this method enables us to weakly enforce the continuity inu
across the non-conforming interface.

Fig. 1.Domain Partitioning

The regionΩ is divided inton non-overlapping sub-domainsω1, . . . , ωn with
boundaries∂ω1, . . . , ∂ωn such thatΩ = ∪n

i=1ωi. Denoting the set of all interior
boundaries asΓ , we have:

Γ = ∪ eij (5)
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whereeij = ∂ωi ∩ ∂ωj is the interior boundary shared byωi andωj . On eij we
define the jump and average operators as

[[u]] = u|∂ωi
− u|∂ωj

(6)

〈〈u〉〉 =
1

2
(u|∂ωi

+ u|∂ωj
) (7)

wherei < j. In what follows we describe our DG formulation and relate the final
weak statement to the underlying partial differential equations. Standard Galerkin
finite element formulations employ test and trial functionsthat are continuous inΩ.
With the DG formulation these functions are no longer continuous acrossΓ , rather
they belong to the following spaces:

Vh = {wh ∈ L2(Ω) : wh|ωi
∈ R

p(ωi), forp ≥ 1}

with h being the maximal length of the sides of our quasi-uniform triangulation.
Assuming sufficiently regular boundary and source data we require our DG formu-
lation to weakly satisfy the following additional conditions on any interior interface
and particularly onΓ , i.e.:

[[uh]] = 0 on Γ × I (8)

[[∇uh]] · ni = 0 on Γ × I (9)

Thus, to formulate the weak form of the partial differentialequation, we weight
equations (1), (3), (8), and (9) bywh, wh,−〈〈∇wh〉〉 ·n, and〈〈wh〉〉 respectively, and
integrate over their respective domains to obtain:

∑

i

∫

ωi

wh (u̇h − ∆uh − f) dΩ +

∫

∂ΩN

wh (∇uh · n) ds

−

∫

Γ

(〈〈∇wh〉〉 · n) [[uh]] ds +

∫

Γ

〈〈wh〉〉 [[∇uh]] · n ds = 0 (10)

This weak form could lead to instabilities (Becker and Hansbo [1999]), so we stabi-
lize our formulation by augmenting the above with the following penalty function:

P =

∫

Γ

η

h
[[wh]] [[uh]] ds (11)

which is related to the jump condition onuh (cf. equation (8)). Integration by parts,
and the identity[[a b]] = [[a]] 〈〈b〉〉 + 〈〈a〉〉 [[b]] yields the DG problem statement:
Finduh : Ω × I → Rwhereuh(t) ∈ Vh such that

(u̇h, wh) + a(uh, wh) = (f, wh) ∀ (wh, t) ∈ Vh × I (12)

(uh(0) − ũ, wh) = 0 ∀ wh ∈ Vh (13)

where(uh, wh) is the standardL2 inner product overΩ and
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a(uh, wh) =
∑

i

∫

ωi

∇wh · ∇uh dΩ −

∫

Γ

[[wh]] 〈〈∇uh〉〉 · n ds −

∫

Γ

[[uh]] 〈〈∇wh〉〉 · n ds

+

∫

Γ

η

h
[[wh]] [[uh]] ds (14)

For the steady-state case, i.e.u̇ = 0, our weak form is the same as that of Becker
and Hansbo [1999], and Arnold et al. [2002], and hence their stability and opti-
mal convergence proofs hold. Our formulation leads to a sparse, symmetric system
of equations thereby maintaining the computational efficiency of the regular finite
element approach. Though, Arnold [1982], Rivière and Wheeler [2000], have for-
mulated two differentnon-symmetricweak forms for solving nonlinear parabolic
equations, to our knowledge there is no literature where ourproposed DG scheme
has been used for parabolic equations.

3 A priori analysis

In this section we highlight the important results of oura priori analysis. One can
refer to Kulkarni et al. [2005] for a detailed description ofthe a priori analysis.
Through oura priori analysis we demonstrate that our methodology is consistent,
stable and converges at a rate similar to that of a standard Galerkin scheme. The fol-
lowing lemma, an extension of that in Becker and Hansbo [1999] proves consistency
i.e. the exact solution to the partial differential equation (1)-(4) satisfies the DG weak
form (12).

Lemma 1. If u is the solution to equations (1)-(4) then it also solves (12)

Proof. Sinceu solves equations (1)-(4)[[u]] = 0, 〈〈u〉〉 = u, 〈〈∇u〉〉 · n = ∇u · n.
Thus

(f, wh) − a(u,wh) = (f, wh) − (u̇, wh) − (∇u,∇wh) +

∫

Γ

[[wh]]∇u · n ds

= (f − u̇ + ∆u,wh)

= 0 (15)

which proves the lemma. �

For our error analysis we introduceHr the standard Hilbert space with its as-
sociated norm||·||

Hr(Ω). Since the DG formulation allows for a discontinuous field
acrossΓ we introduce the following norm that accounts for the discontinuity in uh:

|||uh|||
2

= ||∇uh||
2
L2(Ω) +

∣

∣

∣

∣

∣

∣
h1/2〈〈∇uh〉〉 · n

∣

∣

∣

∣

∣

∣

2

L2(Γ )
+
∣

∣

∣

∣

∣

∣
h−1/2 [[uh]]

∣

∣

∣

∣

∣

∣

2

L2(Γ )
(16)

This norm is equivalent to aH1 norm on a broken space. We now state without proof
oura priori error estimate:
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Theorem 1. If uh is the solution of (12) andu is the solution of (1)-(4), then

|||uh − u||| ≤C |||uh(0) − ũ|||

+ Chr−1

(

||ũ||
Hr(Ω) + ||u(t)||

Hr(Ω) + C2

(
∫ t

0

||u̇||
2
Hr(Ω) dz

)1/2
)

for 2 ≤ r ≤ p + 1 u ∈ Hr(Ω) ∩H1
0(Ω) (17)

The first term on the right side of the inequality accounts forthe error in projecting
the initial condition onto the finite element space; weak satisfaction of the initial
condition via equation (13) would ensure that this term converges at an optimal rate
of hr−1. The second term shows that our error converges at the rate ofhr−1 which
represents an optimal order of convergence in the||| · ||| norm.

The following lemma (also stated without proof), an extension of that in Johnson
[1987] shows the stability of our DG formulation i.e. under suitable assumptions on
the smoothness of the initial condition the DG solution remains bounded and decays
over time.

Lemma 2 (Stability). Let uh be the solution to (12) withf = 0 then it satisfies the
property

||uh(t)||L2(Ω) ≤ ||uh(0)||L2(Ω) ≤ ||ũ||L2(Ω) ∀ t ∈ I (18)

This lemma which uses coercivity of the bilinear operatora(uh, wh) proves the sta-
bility of the DG formulation for the case whenf = 0.

4 Numerical Results

To validate the DG formulation and thea priori analysis we consider equation (1)
with initial condition ũ = sin(x) over a 1-D domainΩ = (0, π). The analytical
solution for this problem is Kreyszig [1993]

u(x, t) = e−t sin(x) (19)

The numerical examples employ linear elements and a backward-Euler time step-
ping scheme. Each element is considered to be a separate sub-domainωi and the
interfaceΓ is the collection of all the end points of the elements. In figure (2) we
plot u(x, t) at various instants in time. As expectedu decays with increasing time.
Figures 3(a), 3(b) illustrate the error norm (cf. equation (16)) versus the element size
h. Plot 3(a) which is obtained using a time step of∆t = 0.0001, and figure 3(b)
obtained by varying the time step as∆t ∝ h2 show the optimal order of error con-
vergence.

To further validate the DG formulation we repeat the above example using the
hat function initial condition

ũ =

{

x, if 0 < x ≤ π/2 ;

π − x if π/2 < x < π .
(20)
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Fig. 2.u(x) at various time steps
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Fig. 3.Error norm with (a)∆t = 0.0001 and (b) with∆t ∝ h
2

for which the analytical solution is Kreyszig [1993]

u(x, t) =

∞
∑

n=1

Bn sin(nx) e−n2t (21)

where

Bn =

{

4
n2π for n = 1, 5, 9, . . .

− 4
n2π for n = 3, 7, 11, . . .

(22)

In figure 4(a) we plot the evolution ofu over time. Though the initial condition in
this example problem is not as smooth as in the previous example figure 4(b) shows
that we still obtain optimal convergence rate.
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Fig. 4.Simulation with hat function as initial condition (a)u(x) at various time steps (b) Error
with ∆t = 0.001

5 Conclusions

A DG formulation for solving parabolic equations on non-conforming meshes has
been developed. The formulation leads to a symmetric, sparse system and does not
involve constraint equations or Lagrange multiplier fieldslike the mortar method.
Thea priori analysis of the method shows that the method is consistent, stable and
demonstrates optimal order of convergence. Numerical results validate our analy-
sis. We believe the method has applications to efficient multi-component simulation
and adaptive refinement. Currently we are applying this scheme to adaptively refine
interface evolution problems (Kulkarni et al. [2005]).

References

T. Arbogast. Non-mortar mixed finite element method for elliptic problems on non-
matching multiblock grids.Computer Methods in Applied Mechanics and Engi-
neering, 149(1-4):255–265, 1997.

D. N. Arnold. An interior penalty finite element method with discontinuous ele-
ments.SIAM Journal of Numerical Analysis, 19:742–760, 1982.

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unifiedanalysis of dis-
continuous galerkin methods for elliptic problems.SIAM Journal of Numerical
Analysis, 39:1749–1779, 2002.

R. Becker and P. Hansbo. A finite element method for domain decomposition with
non-matching grids.INRIA Tech. Report 3613, 1999.

C. Bernadi, Y. Maday, and A. Patera. A new nonconforming approach to domain
decomposition: the mortar element method. In H. Brezis and J. L. Lions, editors,
Nonlinear partial differential equations and their application. Pitman, 1989.



8 D. V. Kulkarni, D.V. Rovas, D.A. Tortorelli

E.G.D. Carmo and A.V.C. Duarte. A discontinuous finite-element based domain
decomposition method.Comp. meth. in applied mech. and engrg., 190:825–843,
2000.

B. Cockburn, G.E. Karniadakis, and C.-W.Shu.Discontinuous Galerkin methods.
Lecture notes in computational science and engineering. Springer Verlag, 11 edi-
tion, 2000.

L. Demkowicz, J.T. Oden, W. Rachowicz, and O. Hardy. Toward auniversal h-
p adaptive finite element strategy, Part 1. Constrained approximation and data
structure.Computer Methods in Applied Mechanics and Engineering, 77:79–112,
1989.
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