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Summary. Non-conforming meshes are frequently employed in multi-comporiemila-
tions and adaptive refinement. In this work we develop a discontinuoleskBaframework
capable of accommodating non-conforming meshes and apply otoagbpto analyzing the
transient heat conduction problem.

1 Introduction

Non-conforming meshes are frequently employed for adagalution or simula-
tion of multi-component systems. Even though non-confagmheshes are easy to
generate, they require the satisfaction of jump conditamress the non-conforming
mesh interface. Several techniques have been developadotee these conditions
such as mixed methods (Arbogast [1997]), local constrajoadon methods (Guo
and Babgka [1986], Demkowicz et al. [1989]) and mortar methods (B et al.
[1989], Wohimuth [2002]).

In this work we present a Discontinuous Galerkin (DG) frarodwfor accom-
modating non-conforming meshes. The DG method naturattpracnodates jump
conditions and has been employed to solve hyperbolic, ptcaénd elliptic prob-
lems (Cockburn et al. [2000]). For a historical review of D@thods and their ap-
plications to elliptic problems refer to Arnold et al. [2J0Recently, DG schemes
have been applied to enforce jump conditions across noferaing mesh interfaces
such as those encountered in adaptive refinement (Beckétarsbo [1999], Carmo
and Duarte [2000], Perugia and $thau [2001]). Here, we extend the formulation
of Becker and Hansbo [1999] to parabolic problems. A benéfit®@ DG scheme is
that it does not introduce constraint equations and theirltieg Lagrange multiplier
fields, as done in mixed and mortar methods. However, thelatdrDG formulation
leads to a large system of equations due to the presence mifcdie” nodes.
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In sections (2) and (3) we describe our discontinuous Gal¢B¥G) formulation

and provide ara priori analysis. Section (4) presents numerical examples using ou
formulation. Finally, in section (5) we draw conclusionglauggest future work.

2 Problem Definition

We consider the following linear heat conduction probleno@assrepresentative ex-
ample of a parabolic equation:

t—Au=f in2xI Q)
u=0 ondfp x1I (2)
—Vu-n=0 ondf2y x I 3)
u(-,0)=a in (4)

whereu(z, t) is the scalar temperature field to be computed over the titeevial

I = (0,7); 02 defines the boundary of the regidh which is divided into two
complimentary region€)(2p, on which homogeneous Dirichlet boundary conditions
are specified, and{2y, on which homogeneous Neumann boundary conditions are
specified; and: is the prescribed initial condition om. We solve the above partial
differential equation by discretizing via a DG finite elerherethod that is based on
Nitsche’s method (Nitsche [1970]) to weakly enforce Ditattboundary conditions.

In our DG framework this method enables us to weakly enfdneecontinuity inu
across the non-conforming interface.

r
Fig. 1. Domain Partitioning
The regions? is divided inton non-overlapping sub-domains, . . .,w, with
boundarieswy, . .., dw, such that2? = U?_,w,. Denoting the set of all interior

boundaries ag’, we have:
I'=u €ij (5)
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wheree;; = dw; N dw, is the interior boundary shared hy andw;. One;; we
define the jump and average operators as

[ = wlow, — vlow, ©)
) = 5 (ulow, + ulas,) ™

wherei < j. In what follows we describe our DG formulation and relate fimal
weak statement to the underlying partial differential efmues. Standard Galerkin
finite element formulations employ test and trial functidimst are continuous if®.
With the DG formulation these functions are no longer cartims acrosg’, rather
they belong to the following spaces:

Vi, = {wp, € La(2) : wp|w, € RP(w;), forp > 1}

with h being the maximal length of the sides of our quasi-uniforianigulation.
Assuming sufficiently regular boundary and source data \gaire our DG formu-
lation to weakly satisfy the following additional conditi® on any interior interface
and particularly ol i.e.:

[un] =0 onI'x1I (8)
[Vup] -m; =0 onI xI 9)

Thus, to formulate the weak form of the partial differengguation, we weight
equations (1), (3), (8), and (9) by, wy, —{(Vwy)) - n, and{(wy, )) respectively, and
integrate over their respective domains to obtain:

Z/ wp, (up, — Aup, — f) df2 +/ wp, (Vuy, -n) ds

0NN
- /F ((Ven) 1) [un] ds + /F (wn) [Vun] -mds=0  (10)

This weak form could lead to instabilities (Becker and Hang999]), so we stabi-
lize our formulation by augmenting the above with the foliegvpenalty function:

P [ Frun ] ds (11)

which is related to the jump condition art (cf. equation (8)). Integration by parts,
and the identityfa b] = [a] (b)) + {a)) [b] yields the DG problem statement:
Finduy : 2 x I — Rwhereuy(t) € V}, such that

(tn, wn) + alup, wp) = (f,wn)  V (wh,t) € Vi x I (12)
(U}L(O) - aawh) =0 Yw, €V, (13)

where(uy, wy,) is the standard., inner product over? and
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) =3 [ Vun - Vuy a2 - /F [wn] (Vun) - n ds — /F [un] (Vewn) - 1 ds

+ [ Tl ds as)

For the steady-state case, iie= 0, our weak form is the same as that of Becker
and Hansbo [1999], and Arnold et al. [2002], and hence thebikty and opti-
mal convergence proofs hold. Our formulation leads to asgpaymmetric system
of equations thereby maintaining the computational efficyeof the regular finite
element approach. Though, Arnold [1982], Rré and Wheeler [2000], have for-
mulated two differeninon-symmetriaveak forms for solving nonlinear parabolic
equations, to our knowledge there is no literature wherepooposed DG scheme
has been used for parabolic equations.

3 A priori analysis

In this section we highlight the important results of @upriori analysis. One can
refer to Kulkarni et al. [2005] for a detailed description tbe a priori analysis.
Through oura priori analysis we demonstrate that our methodology is consjstent
stable and converges at a rate similar to that of a standdestkBascheme. The fol-
lowing lemma, an extension of that in Becker and Hansbo [Lp8%/es consistency
i.e. the exact solution to the partial differential equatft)-(4) satisfies the DG weak
form (12).

Lemma 1. If u is the solution to equations (1)-(4) then it also solves (12)

Proof. Sinceu solves equations (1)-(4x] = 0, {(u)) = u, {(Vu)) -n = Vu - n.
Thus

(f,wn) — a(u,wp) ,wr) — (4, wp) — (Vu, Vwp,) —|—/ [wp] Vu - n ds

—( :
= (f — a4+ Au,wp)
-0 (15)

which proves the lemma. O

For our error analysis we introdud¢” the standard Hilbert space with its as-
sociated norn|-[|;;. ). Since the DG formulation allows for a discontinuous field
acrossl” we introduce the following norm that accounts for the digtanty in uy,:

2

2 _ 2 1/2 . ~1/2
llundlF* = 1Vnl 150 + | |12 F0n) m [ || ]

(16)

2
’Lz(F)

This norm is equivalent to&* norm on a broken space. We now state without proof
oura priori error estimate:
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Theorem 1.1f u,, is the solution of (12) and is the solution of (1)-(4), then

un = ulll <C|[Jun(0) —alll

t 1/2
+Ch ! <|ﬂ|w(n) + [[u®)l3r (o) + C2 (/O ||@'L\|f2m(n) dz) >
for 2<r<p+1 wuweH (2)NHR2) (17)

The first term on the right side of the inequality accountstifier error in projecting
the initial condition onto the finite element space; wealks&attion of the initial
condition via equation (13) would ensure that this term eoges at an optimal rate
of h"~1. The second term shows that our error converges at the rate dfwhich
represents an optimal order of convergence inthe|| norm.

The following lemma (also stated without proof), an extensif that in Johnson
[1987] shows the stability of our DG formulation i.e. undaitable assumptions on
the smoothness of the initial condition the DG solution remaédounded and decays
over time.

Lemma 2 (Stability). Letu,;, be the solution to (12) witlf = 0 then it satisfies the
property
un (O], 2) < Nun(O)ll, o) < Nl o) VEel (18)

This lemma which uses coercivity of the bilinear operai@r;,, wy,) proves the sta-
bility of the DG formulation for the case wheh= 0.

4 Numerical Results

To validate the DG formulation and ttepriori analysis we consider equation (1)
with initial condition = sin(z) over a 1-D domain? = (0,x). The analytical
solution for this problem is Kreyszig [1993]

u(x,t) = e 'sin(x) (19)

The numerical examples employ linear elements and a badkialer time step-
ping scheme. Each element is considered to be a separattomdinw,; and the
interface! is the collection of all the end points of the elements. Inrigg(2) we
plot u(z,t) at various instants in time. As expectediecays with increasing time.
Figures 3(a), 3(b) illustrate the error norm (cf. equatib®)f versus the element size
h. Plot 3(a) which is obtained using a time step4f = 0.0001, and figure 3(b)
obtained by varying the time step a8 o h? show the optimal order of error con-
vergence.

To further validate the DG formulation we repeat the abovengxle using the
hat function initial condition

: e _
a1 !f 0<x<m/2; (20)
T—x If w/2<z<m.
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Fig. 3. Error norm with (a)At = 0.0001 and (b) withAt o« h?

for which the analytical solution is Kreyszig [1993]

u(z,t) = i B, sin(nz) et (21)
n=1

-

In figure 4(a) we plot the evolution aof over time. Though the initial condition in
this example problem is not as smooth as in the previous ebedliigpre 4(b) shows
that we still obtain optimal convergence rate.

where
- for n=1,509,...
4 for n=3,7,11,...

™

(22)

3
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Fig. 4. Simulation with hat function as initial condition (aJx) at various time steps (b) Error
with At = 0.001

5 Conclusions

A DG formulation for solving parabolic equations on non-mming meshes has
been developed. The formulation leads to a symmetric, sgrstem and does not
involve constraint equations or Lagrange multiplier fieli#e the mortar method.
Thea priori analysis of the method shows that the method is consistatiesand
demonstrates optimal order of convergence. Numericaltsesalidate our analy-
sis. We believe the method has applications to efficientimalhponent simulation
and adaptive refinement. Currently we are applying thisreeht® adaptively refine
interface evolution problems (Kulkarni et al. [2005]).
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