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1 Introduction

The construction of fast and reliable solvers for contact problems with fric-
tion is even nowadays a challenging task. It is well known that contact prob-
lems with Coulomb friction have the weak form of a quasi-variational in-
equality [KO88, HHNL88, NJH80]. For small coefficients of friction, a solu-
tion can be obtained by means of a fixed point iteration in the boundary
stresses [NJH80]. This fixed point approach is often used for the construction
of numerical methods, since in each iteration step only a constrained convex
minimization problem has to be solved [DHK02, LPR91]. Unfortunately, the
convergence speed of the discrete fixed point iteration deteriorates for smaller
meshsizes. Here, we present a nonlinear multigrid method which removes the
outer fixed point iteration and gives rise to a highly efficient solution method
for frictional contact problems with Coulomb friction and other local friction
laws in 2 and 3 space dimensions. The numerical cost is comparable to friction-
less contact problems. Our method is based on monotone multigrid methods,
see [KK01], and does not require any regularization of the non penetration
condition or of the friction law. Therefore, the results are highly accurate. Us-
ing the basis transformation given in [WK00], our method can also be applied
to two body contact problems.

2 Elastic Contact with Coulomb Friction

In this section, we give the strong and the weak formulation of the contact
problem with Coulomb friction between a deformable body and a rigid foun-
dation. We identify the body in its reference configuration with the domain
Ω ⊂ Rd, d = 2, 3. The boundary ∂Ω is decomposed into three disjoint parts,
ΓD, ΓN , and ΓC , the possible contact boundary. The actual zone of contact is
assumed to be contained in ΓC but is not known in advance. We assume
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measd−1(ΓD) > 0 and denote tensor and vector quantities by bold sym-
bols, e.g., v, and the components by vi, 1 ≤ i, j ≤ d and (·),j = ∂/∂xj(·).
The summation convention is enforced on indices 1 ≤ i, j ≤ d. We define
the usual Sobolev space of displacements with weak derivative in L2 by
H1(Ω) := (H1(Ω))d and set HD := {v | v ∈ H1(Ω), v|ΓD

= 0}. We con-
sider linear elastic material, i.e., the stresses σ = (σij)d

i,j=1 are given by
Hooke’s law σij(u) := Eijml ul,m. Here, Hooke’s tensor E = (Eijml)d

i,j,l,m=1,
Eijlm ∈ L∞(Ω), 1 ≤ i, j, l, m ≤ d is sufficiently smooth, symmetric and posi-
tive definite. On ∂Ω the normal and tangential displacements are defined by
un = u·n and uT = u− un·n, where n is the outer normal vector. Similarly,
σn = niσijnj and (σT )i = σijnj−σn ·n are the normal and tangential stresses,
respectively. Let g : Rd ⊃ ΓC → R be a a continuous function giving the dis-
tance between the body and the rigid foundation, taken in normal direction
with respect to the reference configuration. Then, for small deformations, we
can say that the body Ω does not penetrate the rigid foundation if we have
un(x) ≤ g(x) for all x ∈ ΓC , see e.g., [KO88].

At the points, where the body and the rigid foundation come into contact,
friction may occur. Here we use the Coulomb law of friction. It states that
the force, which is needed to move a body lengthwise a rigid foundation, is
proportional to the force pushing the body perpendicular onto the rigid foun-
dation. The boundary value problem constituting the elastic contact problem
with friction consists of the equilibrium condition (1) in Ω, the boundary con-
ditions (2) and (3) on ΓD and ΓN , the contact conditions (5), (6) on ΓC and
the Coulomb law of friction (7), (8) on ΓC . In equations (7), (8), | · | is the
Euclidean norm on Rd−1. Here, we assume sufficiently smooth data and the
for coefficient of friction holds F ∈ L∞(ΓC) and F ≥ F0 > 0 a.e. on ΓC .

−σij(u),j = fi in Ω (1)
u = 0 on ΓD (2)

σij(u) · nj = pi on ΓN (3)
σn ≤ 0 (4)

u · n ≤ g (5)
(u · n− g)σn = 0 (6)

uT = 0 ⇒ |σT | < F |σn| (7)

uT 6= 0 ⇒ σT = −F|σn| uT

|uT | (8)

By (7) and (8), Coulomb’s law of friction is a local friction law, since the fric-
tional response at x ∈ ΓC depends only on the stress developed at x. Moreover,
we can divide all points in the actual zone of contact into sticking and sliding
points. A point x is called sticky, if no tangential displacement occurs, i.e., if
uT (x) = 0. It is called sliding, if uT (x) 6= 0. Of particular interest is boundary
condition (8). For d = 2 and uT 6= 0, we have uT /|uT | ∈ {−1, 1}. This is in
contrast to the case d = 3, where uT /|uT | ∈ S2 = {v |v ∈ R2, |v| = 1}. In
order to give the variational formulation of problem (1)–(8), let us define the
closed convex set K of admissible displacements

K := {v ∈ HD | vn ≤ g on ΓC} . (9)
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We define the bilinear form a(·, ·) by a(u, v) =
∫

Ω
σij(u)vi,j dx and set

f(v) =
∫

Ω
fivi dx +

∫
ΓN

pivi ds. At the contact boundary the virtual work of
the frictional forces is characterized by the following nonlinear and nondiffer-
entiable functional j : HD ×HD → R

j(u,v) =
∫

ΓC

F |σn(u)| |vT | ds . (10)

Using these definitions, the weak formulation of the boundary value problem
(1)-(8) is given by the following quasi-variational inequality: Find u ∈ K, such
that

a(u, v − u) + j(u, v)− j(u,u) ≥ f(v − u) , v ∈ K , (11)

see [DL76, KO88, HHNL88]. The functional j is nonconvex, nonquadratic
and nondifferentiable. Thus, standard methods from convex analysis cannot
be applied to gain a solution of the quasi-variational inequality (11).

3 A Multigrid Method for a quasi-variational Inequality

In [NJH80, HHNL88], the following fixed point iteration is considered: Let
u0 ∈ K be given. Then, for k = 1, 2, . . ., compute uk as the unique solution
of the variational inequality

a(uk,v − uk) + j(uk−1, v)− j(uk−1, uk) ≥ f(v − uk) v ∈ K . (12)

Setting τ = −σn(uk−1) and introducing

H
−1/2
+ := {v ∈ H−1/2(ΓC) | 〈v, w〉H−1/2×H1/2 ≥ 0 , w ∈ H1/2(ΓC)} ,

(12) defines a mapping Ψ : H
−1/2
+ → H

−1/2
+ by Ψ(τ) = −σn(uk). For suffi-

ciently small F , this mapping can be shown to have a fixed point, which is a
solution of problem (11), see [NJH80, HHNL88]. This fixed point iteration can
be used for the numerical solution of (11), see [LPR91, Kra01, DHK02, Hil02]
and is also the starting point for our method.

In this section, we present a nonlinear multigrid method by means of which
the variational inequality (12) can be solved efficiently. Moreover, we extend
our method in a way that the fixed point iteration is removed. The resulting
nonlinear multigrid method can then be applied to the quasi-variational in-
equality (11) directly. In our numerical experiments, see Section 4, this method
has been shown to be an iterative solution method for (11) with multigrid
complexity.

Let (T`)L
`=1 denote a family of nested and shape regular meshes with mesh-

size parameter h`. We use Lagrangian conforming finite elements S` ⊂ HD

of first order. The set of nodes of T` is denoted by N (`) and the nodal basis
functions of S` are {λ(`)

p }p∈N (`) . The nodes on the possible contact boundary
are C(`) = ΓC ∩N (`). As discretization of the convex set K we take
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KL := {u ∈ SL | u(p)·n(p) ≤ g(p) , p ∈ C(L)} .

Note, that in general KL 6⊂ K. We define the discrete normal stresses sn(uL)
for u ∈ SL on the basis of Greens theorem as the linear residual by

(sn(u))p := r(λ(L)
p · n) := a(u, λ(L)

p · n)− f(λ(L)
p · n) , (13)

cf. [HHNL88]. As discretization for the functional j we choose for u, v ∈ SL

jL(u,v) :=
∑

p∈C(L)
F |(sn(u))p| |vT (p)| ds (14)

Inserting the functional jL, (12) gives rise to the discrete fixed point iteration:
Let u0 ∈ SL be given. For k = 1, 2, . . . solve

a(uk, v − uk) + jL(uk−1, v)− jL(uk−1, uk) ≥ f(v − uk) , v ∈ KL , (15)

in each step of which a variational inequality has to be solved. We remark
that for the contractivity constant C of the discrete fixed point iteration (15)
holds C = C(h) = O(h−1/2), see [Hil02]. Thus, the iteration process slows
down for decreasing meshsize h.

As starting point for our nonlinear multigrid method let us note that the
solution uk of (12) can equivalently be characterized as the unique minimizer
of the convex functional

Ĵuk−1(·) = J + j(uk−1, ·) + ϕK = (
1
2
a(·, ·)− f(·)) + j(uk−1, ·) + ϕK

over HD. Here, ϕK is defined by ϕK(u) = +∞ for u 6∈ K and zero for
u ∈ K. As discretization of Ĵuk−1 we choose on the basis of (14) the func-
tional Ĵ L

uk−1 := J + jL(uk−1, ·) + ϕKL
. Following [Kor97, KK01], we seek

the minimizer of Ĵ L
uk−1 over SL by successive minimization in direction of a

suitable multilevel basis. To this end, we associate with each node p ∈ N (`),
1 ≤ ` ≤ L, the local subspace V p = span{λ(`)

p · e1(p), . . . , λ(`)
p · ed(p)}. For

the nodes p ∈ C(L) we choose e1(p) = n(p) and extend e1(p) to an orthonor-
mal basis of Rd. For all remaining nodes we choose {ei(p)}1≤i≤d to be the
canonical basis vectors of Rd and set V p = span{µ(`)

p · e1(p), . . . , µ(`)
p · ed(p)}

with functions µ
(`)
p to be discussed later. We moreover assume an ordering

k = k(p, `) of all nodes on all levels to be given such that k(p, r) ≤ k(q, s)
implies r ≥ s for p, q ∈ N (`), 1 ≤ ` ≤ L. Now, we can introduce the multilevel
splitting

S(L) = V p1 + · · ·+ V pnL
+ V pnL+1 + · · ·+ V pM , (16)

where we have set nL = #N (L) and the indices nL + 1, . . . , M stand for the
coarse grid corrections.

We first consider the successive minimization of Ĵ L
uk−1 with respect to the

leading subspaces V p1 + · · ·+ V pnL
. Let w0 ∈ SL be given and set w0 = w0.
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Then, for 1 ≤ m ≤ nL, the local minimization problem: find vm ∈ V pm , such
that

Ĵ L
uk−1(vm + wm−1) ≤ Ĵ L

uk−1(v + wm−1) , v ∈ V pm , (17)

is solved and update wm = wm−1+vm. Setting w1 := wnL , by this nonlinear
Gauß-Seidel method a sequence wν , ν = 0, 1, . . ., of iterates is defined which
converges to the unique minimizer of Ĵ L

uk−1 , see [Glo84, KK01] and [JAJ98]
for a related method using regularization. We refer to [Kra] for a detailed
description how the local problems (17) can be solved efficiently.

The convergent but slow iteration (17) is now accelerated by additional
minimization steps in the direction of coarse grid functions µ

(l)
p , l < L, with

larger support. In contrast to multigrid methods for linear problems, we can-
not represent the functional Ĵ L

uk−1 to be minimized on the coarser grids and
therefore have to use nonlinear coarse grid corrections.

To this end, we introduce the smoothed fine grid iterate ūL := wν , which
is obtained after ν > 0 presmoothing steps of the Gauß–Seidel method (17).
Since the functional ϕKL

+ jL(uk−1, ·) is nondifferentiable and nonquadratic,
we restrict the coarse grid corrections to a neighborhood of the fine grid iterate
ūL where the functional Ĵ L

uk−1 is smooth and can be linearized, see [Kor02].
We define the neighbourhood KūL

of the iterate ūL by

KūL
= {w ∈ KL|wn(p) = 0, p sticky; (w)T ≶ −(ūL)T , if (ūL)T ≶ 0 and p sliding} .

The inequalities have to be understood component wise. On KūL
, we define

jūL(w) =
∑

{p∈C(L)|ūL(p)·n(p)=g(p)}
F |(sn(uk−1))p| |wT (p)| ,

which is a smooth functional, and the quadratic energy functional J̄ L
ūL

by

J̄ L
ūL

=
1
2
(a(·, ·) + j′′ūL

(ūL)(·, ·))− (f(·)− j′ūL
(ūL)(·) + j′′ūL

(ūL)(ūL, ·)) .

The resulting quadratic obstacle problem: Find c ∈ KūL
, such that

J̄ L
ūL

(c) ≤ J̄ L
ūL

(v) , v ∈ KūL
, (18)

requires an obstacle problem with constraints in both, normal and tangential
direction, to be solved. These constraints stem from the non penetration con-
dition and the friction law, respectively. The additional minimization steps
for m > nL of our splitting (16) are now done with respect to the energy (18).
In order to improve the convergence speed of our method, we use so called
truncated basis functions µ

(`)
p , ` < L, which allow for representing the actual

guessed contact boundary on coarser grids, see [Kor97, KK01]. The resulting
multigrid method can be implemented as a V-cycle and is globally conver-
gent, see [KK01, Kra01]. It does not require any regularization, neither of the
non penetration condition nor of the functional j. Moreover, no algorithmic
parameters as damping or regularization parameters have to be chosen. We
now present the two algorithms to be compared in the next section.
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Algorithm 1 (Fixed point iteration with multigrid method)
Initialize: u0 = 0. for k = 1, . . . , kmax do

Find uk ∈ KL by applying sufficiently many multigrid steps to:

a(uk, v − uk) + jL(uk−1, v)− jL(uk−1, uk) ≥ f(v − uk) , v ∈ KL.

if |sn(uk−1)− sn(uk)|/|sn(uk)| ≤ TOL break
Compute the normal stress sn(uk) as linear residual.

end

Algorithm 2 (Nonlinear multigrid method)
Initialize: w0 = u0 = 0.
Find uL ∈ KL by doing sufficiently many of the following multigrid steps:

for m = 1, . . . , nL do
Find vm ∈ V pm , such that

Ĵ L
wm−1(vm + wm−1) ≤ Ĵ L

wm−1(v + wm−1) , v ∈ V pm .

Update wm = wm−1 + vm.
end
Set ūL = wnL and compute coarse grid correction c with respect to J̄ūL

Set uL = ūL + c

Algorithm 2 constitutes our nonlinear multigrid method for the quasi-variational
inequality (11). It has shown to converge in all of our numerical experiments,
even then, when the exact fixed point iteration method fails, see Section 4.

4 Numerical Results

In this section we present numerical results for a Hertzian contact problem in
two space dimensions. We consider a half circle in contact with a rigid founda-
tion. The half circle is centered at (0, 0.4) with radius 0.4 and we have chosen
E = 2000 and ν = 0.28 as material parameters. We prescribe vertical displace-
ment u(x, y) = −0.005 at the upper boundary ΓD = {(x, y) ∈ Γ

∣∣ y = 0.4} and
set ΓC = ∂Ω\ΓD and n(p) = (0,−1)T for p ∈ C(`). We discretize with linear
and bilinear finite elements on triangles and quadrilaterals, respectively and
chose T1 as depicted in the left of Figure 2. A multilevel hierarchy is created
up to Level L = 11 by successive adaptive refinement. We now investigate the
convergence properties of Algorithm 1 and of our Algorithm 2. In Table 1 and
the right picture in Figure 1, the number of outer iteration steps of Algorithm 1
is given. Here, we have set TOL= 10−9 in Algorithm 1. As expected from the
theory, for large coefficients of friction and small meshsize parameters we have
no convergence of Algorithm 1. Note, that for F = 5.0 the nonlinear multigrid
method 2 converges even for small meshsizes. In order to compare the total
amount of work needed using Algorithm 1 and Algorithm 2, respectively, we
compare the total number of V- cycles needed to obtain a solution of (12) on
each level. For the fixed point iteration we sum up the number of V-Cycles in
each iteration step per Level. For our multigrid method we simply take the
total number of iterations. In both cases the multigrid iteration is stopped, if
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F\#dof 94 830 4.674 44.200 334.818 F\#dof 94 830 4.674 4.4200 334.818

0.08 1 5 6 6 6 1.1 1 6 10 16 18

0.4 1 5 10 10 10 2.0 1 6 8 19 33

0.7 1 5 8 12 13 5.0 1 2 2 no conv. no conv.

0.9 1 6 9 15 15 8.0 1 2 2 no conv. no conv.

1.0 1 6 10 10 16 40.0 1 2 2 no conv. no conv.

Table 1. Number of exact fixed point iterations on Level ` = 3, 5, 7, 9, 11

for two two consecutive iterates uν , uν+1 holds ‖uν − ũν+1‖a ≤ 10−11 with
‖u‖2a = a(u, u). As starting value we always use u0 = 0. As can be seen from
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Fig. 1. Left: Comparison of exact fixed point iteration Algorithm 1 and nonlinear
multigrid method Algorithm 2. Right: Behavior of the fixed point iteration

the left picture in Figure 1, our nonlinear methods shows multigrid efficiency
(red line) and is of much higher efficiency than the fixed point iteration (blue
line). The number of needed V -cycles is independet of h.

Finally, the middle picture of Figure 2 shows the tangential (red) and nor-
mal stresses (blue) for F = 0.4. As can be seen, sliding and sticky nodes are
clearly identificated by our method. The implementation of our method has

Fig. 2. Left: T1 Middle: Boundary stress Right: 3d example
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been done in the framework of the FEM-toolbox UG, see [BBJ+97]. Thus, it
is also applicable to more complicated geometries and unstructured grids, as
can be seen in the left Figure 2. As an example of a 3d geometry, here the
displacements of a deformed cork in frictional contact with a surrounding bot-
tle are shown. The reference configuration is given by the shaded transparent
surface. For a more detailed discussion of numerical results in 3d and with
elastic contact we refer to [Kra].

References

[BBJ+97] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz–
Reichert, and C. Wieners. UG – a flexible software toolbox for solving
partial differential equations. CVS, 1:27–40, 1997.

[DHK02] Z. Dostal, J. Haslinger, and R. Kuc̆era. Implementation of the fixed
point method in contact problems with Coulomb frcition based on a dual
splitting type technique. J. Comp. and Appl. Math., 140:245–256, 2002.

[DL76] G. Duvaut and J.L. Lions. Inequalities in mechanics. Springer, 1976.
[Glo84] R. Glowinski. Numerical methods for nonlinear variational problems. Se-

ries in Computational Physics. Springer, New York, 1984.
[HHNL88] I. Hlavác̆ek, J. Haslinger, J. Nec̆as, and J. Lov́ı̆sek. Solution of variational

inequalities in mechanics. Springer, 1988.
[Hil02] P. Hild. On finite element uniqueness studies for Coulomb’s frictional

contact model. Int. J. Appl. Math. Comput. Sci., 12(1):41 – 50, 2002.
[JAJ98] F. Jourdan, P. Alart, and M. Jean. A Gauß-Seidel like algorithm to solve

frictional contact problems. Comp. Meth. in Appl. Mech. Eng., pages
31–47, 1998.

[KK01] R. Kornhuber and R. H. Krause. Adaptive multigrid methods for Sig-
norini’s problem in linear elasticity. CVS, 4:9–20, 2001.

[KO88] N. Kikuchi and J.T. Oden. Contact problems in elasticity: a study of
variational inequalities and finite element methods. SIAM, 1988.

[Kor97] R. Kornhuber. Adaptive Monotone Multigrid Methods for Nonlinear Vari-
ational Problems. Teubner, 1997.

[Kor02] R. Kornhuber. On constrained Newton linearization and multigrid for
variational inequalities. Numerische Mathematik, 99:699–721, 2002.

[Kra] R. H. Krause. Efficient solution of frictional contact problems without
regularization. in preparation.

[Kra01] R. H. Krause. Monotone Multigrid Methods for Signorini’s Problem with
Friction. PhD thesis, Freie Universität Berlin, 2001.

[LPR91] C. Licht, E. Pratt, and M. Raous. Remarks on a numerical method for
unilateral contact including friction. Int. Ser. of Numerical Mathematics,
101:129–144, 1991.

[NJH80] J. Nec̆as, J. Jarus̆ek, and J. Haslinger. On the solution of the variational
inequality to the Signorini problem with small friction. Bollettino U.M.I.,
17:796–811, 1980.

[WK00] B. Wohlmuth and R. H. Krause. Monotone methods on non-matching
grids for non linear contact problems. SISC, Vol. 25:324–347, 2000.


