
Preconditioned Eigensolver LOBPCG in hypre

and PETSc

Ilya Lashuk, Merico Argentati, Evgueni Ovtchinnikov, and Andrew Knyazev

Department of Mathematics, University of Colorado at Denver, P.O. Box 173364,
Campus Box 170, Denver, CO 80217, USA.
{ilashuk,rargenta,eovtchin}@math.cudenver.edu,
andrew.knyazev@cudenver.edu

We present preliminary results of an ongoing project to develop codes of
the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG)
method for symmetric eigenvalue problems for hypre and PETSc software
packages. hypre and PETSc provide high quality domain decomposition and
multigrid preconditioning for parallel computers. Our LOBPCG implemen-
tation for hypre is publicly available in hypre 1.8.2b and later releases. We
describe the current state of the LOBPCG software for hypre and PETSc and
demonstrate scalability results on distributed memory parallel clusters using
domain decomposition and multigrid preconditioning.

This work is partially supported by the Center for Applied Scientific Com-
puting, Lawrence Livermore National Laboratory and the National Science
Foundation DMS 0208773.

1 Introduction

We implement a parallel algorithm of the Locally Optimal Block Precon-
ditioned Conjugate Gradient Method (LOBPCG) [5, 6] for the solution of
eigenvalue problems Ax = λBx for large sparse symmetric matrices A and
B > 0 on massively parallel computers for the High Performance Precondi-
tioners (hypre) [3] and Portable, Extensible Toolkit for Scientific Computation
(PETSc) [2] software libraries. Software for the Preconditioned Eigensolvers
is available at http://math.cudenver.edu/̃ aknyazev/software/CG/

which contains, in particular, our MATLAB and hypre codes of LOBPCG.
Our native hypre LOBPCG version efficiently takes advantage of powerful
hypre algebraic and geometric multigrid preconditioners. Our native PETSc
LOBPCG version gives the PETSc users community an easy access to a cus-
tomizable code of a high quality modern preconditioned eigensolver.

The LOBPCG method has recently attracted attention as a potential com-
petitor to the Lanczos and Davidson methods due to its simplicity, robustness



2 I. Lashuk, M. Argentati, E. Ovtchinnikov, A. Knyazev

and fast convergence. C++ (by R. Lehoucq, U. Hetmaniuk et al. [1, 4], will ap-
pear in Anasazi Trilinos), FORTRAN 77 (by Randolph Bank, part of PLTMG
9.0 and above) and FORTRAN 90 (by G. Zèrah, part of ABINIT v4.5 and
above, complex Hermitian matrices) implementations of the LOBPCG are
being developed by different groups in such application areas as structural
mechanics, mesh partitioning and electronic structure calculations.

2 Abstract LOBPCG implementation for hypre/PETSc

For computing only the smallest eigenpair, we take the block size m = 1 and
then the LOBPCG gets reduced to a local optimization of a 3-term recurrence:
x(i+1) = w(i) + τ (i)x(i)+γ(i)x(i−1),
w(i) = T (Ax(i) − λ(i)Bx(i)), λ(i) = λ(x(i)) = (x(i), Ax(i))/(Bx(i), x(i))

with properly chosen scalar iteration parameters τ (i) and γ(i). The easiest and
most efficient choice of parameters is based on an idea of local optimality [5, 6],
namely, select τ (i) and γ(i) that minimize the Rayleigh quotient λ(x(i+1))
by using the Rayleigh–Ritz method. For finding m smallest eigenpairs the
Rayleigh–Ritz method on a 3m–dimensional trial subspace is used during
each iteration for the local optimization.

LOBPCG description in [6] skips important details. The complete descrip-
tion of the LOBPCG algorithm as it has been implemented in MATLAB code
rev. 4.10 and the hypre code 1.9.0b follows:

Input: m starting linearly independent multivectors in X ∈ R
n×m,

l linearly independent constraint multivectors in Y ∈ R
n×l, devices to

compute A ∗ X, B ∗ X and T ∗ X.
1. Allocate memory for ten multivectors

W,P,Q,AX,AW,AP,BX,BW,BP,BY ∈ R
n×m.

2. Apply constraints to X:

BY = B ∗ Y ; X = X − Y ∗
(

Y T ∗ BY
)

−1
∗ XT ∗ BY .

3. B-orthonormalize X: BX = B ∗ X;R = chol(XT ∗ BX);X = X ∗ R−1;
BX = BX ∗ R−1; AX = A ∗ X. (”chol” is the Cholesky decomposition)

4. Compute the initial Ritz vectors: solve the eigenproblem
(XT ∗ AX) ∗ TMP = TMP ∗ Λ;
and compute X = X ∗ TMP ;AX = AX ∗ TMP ; BX = BX ∗ TMP .

5. Define index set I to be {1, . . . ,m}
6. for k = 0, . . . ,MaxIterations
7. Compute residuals: WI = AXI − BXI ∗ ΛI .
8. Exclude from index set I those indices which correspond to residual

vectors for which the norm became smaller than the tolerance.
If I after that became an empty set, then exit loop.

9. Apply preconditioner T to the residuals: WI = T ∗ WI .
10 Apply constraints to preconditioned residuals WI :

WI = WI − Y ∗
(

Y T ∗ BY
)

−1
∗ WT

I
∗ BY .



Preconditioned Eigensolver LOBPCG in hypre and PETSc 3

11. B-orthonormalize WI : BWI = B ∗ WI ; R = chol(W T

I
∗ BWI);

WI = WI ∗ R−1; BWI = BWI ∗ R−1.
12. Compute AWI : AWI = A ∗ WI .
13. if k > 0
14. B-orthonormalize PI : R = chol(P T

I
∗ BPI);PI = PI ∗ R−1;

15. Update API = API ∗ R−1; BPI = BPI ∗ R−1.
16. end if

Perform the Rayleigh Ritz Procedure:

Compute symmetric Gram matrices:

17. if k > 0

18. gramA =





Λ XT ∗ AWI XT ∗ API

· WT

I
∗ AWI WT

I
∗ API

· · PT

I
∗ API



.

19. gramB =





I XT ∗ BWI XT ∗ BPI

· I WT

I
∗ BPI

· · I



.

20. else

21. gramA =

[

Λ XT ∗ AWI

· WT

I
∗ AWI

]

.

22. gramB =

[

I XT ∗ BWI

· I

]

.

23. end if

24. Solve the generalized eigenvalue problem:

gramA ∗ Y = gramB ∗ Y ∗ Λ, where the first m eigenvalues in
increasing order are in the diagonal matrix Λ and the corresponding
gramB-orthonormalized eigenvectors are columns of Y .
Compute Ritz vectors:

25. if k > 0

26. Partition Y =





YX

YW

YP



 according to the number of columns in

X, WI , and PI , respectively.
27. Compute P = WI ∗ YW + PI ∗ YP ;

AP = AWI ∗ YW + API ∗ YP ; BP = BWI ∗ YW + BPI ∗ YP .
28. X = X ∗ YX + P ;AX = AX ∗ YX + AP ;BX = BX ∗ YX + BP .
29. else

30. Partition Y =

[

YX

YW

]

according to the number of columns in

X and WI respectively.
31. P = WI ∗ YW ;AP = AWI ∗ YW ;BP = BWI ∗ YW .
32. X = X ∗ YX + P ;AX = AX ∗ YX + AP ;BX = BX ∗ YX + BP .
33. end if

37. end for

Output: Eigenvectors X and eigenvalues Λ.



4 I. Lashuk, M. Argentati, E. Ovtchinnikov, A. Knyazev

The LOBPCG eigensolver code is written in C-language and calls a few
LAPACK subroutines. The matrix–vector multiply and the preconditioner
call are done through user supplied functions. The main LOBPCG code is
abstract in the sense that it works only through an interface that determines
the particular software environment: hypre or PETSc, in order to call parallel
(multi)vector manipulation routines.

A block diagram of the high-level software modules is given in Figure 1.

PETSc driver for LOBPCG hypre driver for LOBPCG

Interface PETSc-LOBPCG Interface hypre-LOBPCG

PETSc libraries Abstract LOBPCG in C hypre libraries

?6 ?6

?6 ?6 ?6 ?6

Fig. 1. LOBPCG hypre/PETSc software modules

hypre supports four conceptual interfaces: Struct, SStruct, FEM and IJ.
At present, LOBPCG has been tested with all but the FEM interface. hypre

test drivers for LOBPCG are simple extensions of the hypre test drivers for
linear system. We anticipate that both types of drives will be merged in the
post 1.9.0b hypre release.

We do not use shift-and-invert strategy. Preconditioning is implemented
directly as well as through calls to the hypre/PETSc preconditioned conjugate
gradient method (PCG). Specifically, in the latter case the action x = Tb of
the preconditioner T on a given vector b is performed by calling a few steps
of PCG to solve Ax = b.

LOBPCG-hypre has been tested with all available hypre PCG-capable pre-
conditioners in Struct, SStruct and IJ interfaces, most notably, with IJ AMG–
PCG algebraic multigrid, IJ DS–PCG diagonal scaling, IJ additive Schwarz–
PCG, and Struct PFMG-PCG geometric multigrid. LOBPCG-PETSc has
been tested with PETSc native Additive Schwarz and PETSc linked IJ AMG
from hypre.



Preconditioned Eigensolver LOBPCG in hypre and PETSc 5

3 hypre/PETSc LOBPCG Numerical Results

3.1 Basic Accuracy of Algorithm

In these tests LOBPCG computes the smallest 50 eigenvalues of 3D 7–Point
200 × 200 × 200 and 200 × 201 × 202 Laplacians. In the first case we have
eigenvalues with multiplicity and in the second case the eigenvalues are dis-
tinct, but clustered. The initial eigenvectors are chosen randomly. We set the
stopping tolerance (the norm of the maximum residual) equal to 10−6. The
numerical output and exact eigenvalues are compared. In both cases for all
eigenvalues the maximum relative error is less than 10−8 and the Frobenius
norm ‖V T V − Im×m‖ < 10−12, where V ∈ R

n×m contains the approximate
eigenvectors. These tests suggest that LOBPCG is cluster robust, i.e. it does
not miss (nearly) multiple eigenvalues.

In some tests, the LOBPCG code becomes instable because of ill-conditioned
Gram matrices, which is typically a result of bad initial guesses, e.g., gener-
ated by a poor quality random number generator. When the ill-conditioning
appears restarts are helpful. The simplest restart is to drop the matrix P
from the basis of the trial subspace. Such restarts improve the stability of
the LOBPCG code as observed in MATLAB tests, and are planned to be
implemented in a future hypre/PETSc LOBPCG revision.

3.2 Performance Versus the Number of Inner Iterations

Let us remind the reader that we can execute a preconditioner x = Tb directly
or by calling PCG to solve Ax = b. We do not attempt to use shift-and-invert
strategy, but instead simply take T to be a preconditioner for A. Therefore,
we can expect that increasing the number of “inner” iterations of the PCG
might accelerate the overall convergence, but only if we do not make too
many iterations. In other words, for a given matrix A and a particular choice
a preconditioner, there should be an optimal finite number of inner iterations.

5 10 15 20 25

100

150

200

250

PCG Additive Schwarz Performance

T
ot

al
 L

O
B

P
C

G
 T

im
e 

in
 s

ec

Number of Inner PCG Iterations

Hypre Additive Schwarz
PETSc Additive Schwarz

0 0.5 1 1.5 2 2.5 3
15

20

25

30

35

40

45

50

55

60

65
PCG MG Performance

T
ot

al
 L

O
B

P
C

G
 T

im
e 

in
 s

ec

Number of Inner PCG Iterations

Hypre AMG through PETSc

Hypre AMG

Hypre Struct PFMG

Fig. 2. Performance versus the number of inner iterations. 7–Point 3-D Laplacian,
1,000,000 unknowns. Dual 2.4-GHz Xeon 4GB.



6 I. Lashuk, M. Argentati, E. Ovtchinnikov, A. Knyazev

In numerical example illustrated on Figure 2, we try to find this opti-
mal number for the Schwarz–PCG and AMG-PCG preconditioners in hypre

and PETSc. We measure the execution time as we vary the quality of the
preconditioner by changing the maximum number of inner iterations in the
corresponding PCG solver. We find that on this problem the optimal number
of inner iterations is approximately 10−15 for Schwarz-PCG, but AMG-PCG
works best if AMG is applied directly as a preconditioner, without even ini-
tializing the AMG-PCG function.

Our explanation of this behavior is based on two facts. First, the Schwarz
method is somewhat cheaper, but not of such a good quality, compared to
AMG in these tests. Moreover, the costs for matrix vector multiplies and
multivector linear algebra in LOBPCG is a relatively small proportion of the
AMG application, but comparable to the computational cost of Schwarz here.
Second, one PCG iteration is less computationally expensive compared to
one LOBPCG iteration because of larger number of linear algebra operations
with multivectors in the latter. A single direct application of AMG as the
preconditioner in LOBPCG gives enough improvement in convergence to make
it the best choice, while Schwarz requires more iterations that are less time
consuming if performed through PCG, rather than by direct application in
LOBPCG.

3.3 LOBPCG Performance vs. Block Size

We test both hypre and PETSc LOBPCG codes on a 7–Point 3-D Laplacian
with 2,000,000 unknowns with hypre AMG Preconditioner on Sun Fire 880, 6
CPU 24GB system by increasing the block size m, i.e. the number of computed
eigenvectors, from 1 to 16. We observe that the growth of the total CPU
time with the increase of the block size is linear, from approximately 100
sec for m = 1 to 2,500 sec for m = 16. We expect that for larger m the
complexity term m2n becomes visible. We note, however, that neither hypre

nor PETSc currently has efficiently implemented multivectors, e.g., in the
current implementation the number of MPI communications in computation
of the Gram matrices grows with m. An efficient implementation of main
multivector functions is crucial in order to significantly reduce the overall
costs for large m.

3.4 Scalability with the Schwarz–PCG and Multigrid–PCG

preconditioners

We test scalability by varying the problem size so it is proportional to the
number of processors. We use a 7–Point 3–D Laplacian and set the block size
m = 1.

For the Schwarz–PCG, we set the maximum number of inner iterations of
the PCG to 10. The tests are performed on the Beowulf cluster at CU Denver
that includes 36 nodes, two PIII 933MHz processors and 2GB memory per



Preconditioned Eigensolver LOBPCG in hypre and PETSc 7

node, running Linux RedHat and a 7.2SCI Dolpin interconnect and on MCR
cluster (dual Xeon 2.4-GHz, 4 GB nodes) at LLNL. In all these tests, the time
per iteration is reasonably scalable, but the number of LOBPCG iterations
grows with the problem size i.e., the Schwarz–PCG preconditioner in hypre

and in PETSc is not optimal in this case.
For the Multigrid–PCG preconditioners, we apply the preconditioners di-

rectly, without calling the PCG. We test here hypre IJ AMG–PCG algebraic
multigrid, hypre Struct PFMG-PCG geometric multigrid and PETSc linked
IJ AMG from hypre on LLNL MCR cluster, see Figure 3.4 left.

One Eight
0

50

100

150

MG Iterations scalability

LO
B

P
C

G
 T

im
e 

in
 s

ec

Number of 2−CPU 2.4 GHz Xeon nodes

1.8.4a Hypre PFMG

1.8.4a Hypre AMG

1.8.2 Hypre AMG by PETSc

One Eight
0

50

100

150

MG Setup scalability

S
et

up
 T

im
e 

in
 s

ec

Number of 2−CPU 2.4 GHz Xeon nodes

1.8.4a Hypre PFMG

1.8.4a Hypre AMG

1.8.2 Hypre AMG by PETSc

Fig. 3. 7–Point Laplacian, 2,000,000 unknowns per node. Preconditioners: AMG
and PFMG. System: LLNL MCR. LOBPCG scalability (left) and preconditioner
setup (right).

Good LOBPCG scalability can be seen on Figure 3.4 left. The Struct
PFMG takes more time compared to AMG here because of the larger con-
vergence factor. To satisfy the reader curiosity, we also provide the scalability
data for the preconditioner setup on Figure 3.4 right.

Conclusions

• We present apparently the world’s first parallel code for generalized sym-
metric definite eigenvalue problems, that can apply the preconditioning
directly. The LOBPCG is our method of choice for the preconditioned
eigensolver because of its simplicity, robustness and fast convergence.

• Our hypre/PETSc LOBPCG code illustrates that the LOBPCG “matrix-
free” algorithm can be successfully implemented using parallel libraries
that are designed to run on a great variety of multiprocessor platforms.

• In problems we tested with AMG preconditioning, 90%–99% of the compu-
tational effort is required for the preconditioner setup and in the applying
the preconditioner and thus the LOBPCG scalability is mainly dependent
on the scalability of hypre/PETSc preconditioning. Initial scalability mea-
surements look promising, but more testing is needed by other users.



8 I. Lashuk, M. Argentati, E. Ovtchinnikov, A. Knyazev

• The LOBPCG hypre software has been integrated into the hypre software
at LLNL and has been publicly released in hypre–1.8.2b and above, and
so is available for users to test.

The authors are very grateful to all members of the Scalable Algorithms
Group of the Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory and, in particular, to Rob Falgout, Edmond Chow,
Charles Tong, and Panayot Vassilevski, for their patient support and help.

References

1. Peter Arbenz, Ulrich L. Hetmaniuk, Richard B. Lehoucq, and Raymond S. Tu-
minaro. A comparison of eigensolvers for large-scale 3D modal analysis using
AMG-preconditioned iterative methods. Int. J. Numer. Meth. Engng., 2005. Also
available as Sandia National Laboratories Technical report SAND 2005-0282J.

2. Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and
Hong Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision
2.1.5, Argonne National Laboratory, 2004.

3. Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang. Pursuing scalability
for hypre’s conceptual interfaces. ACM Transactions on Mathematical Software,
2005. For TOMS special issue on the ACTS Collection.

4. Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra,
Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P.
Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S.
Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. An
overview of the trilinos project. ACM Transactions on Mathematical Software,
2005. For TOMS special issue on the ACTS Collection.

5. A. V. Knyazev. Preconditioned eigensolvers: practical algorithms. In Z. Bai,
J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors, Templates for

the Solution of Algebraic Eigenvalue Problems: A Practical Guide, pages 352–368.
SIAM, Philadelphia, 2000.

6. A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally opti-
mal block preconditioned conjugate gradient method. SIAM J. Sci. Comput.,
23(2):517–541, 2001.


