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1 Introduction

There exists a large number of publications devoted to the construction and
analysis of finite element approximations for problems in solid mechanics, in
which it is necessary to circumvent volumetric locking. Of special interest
are nearly incompressible materials where standard low order finite element
discretizations do not ensure uniform convergence in the incompressible limit.
Methods associated with the enrichment or enhancement of the strain or stress
field by the addition of carefully chosen basis functions have proved to be
highly effective and popular. The key work dealing with enhanced assumed
strain formulations is that of Simo and Rifai [1990]. Of exclusive interest in
our paper are situations corresponding to a pure displacement based formu-
lation which is obtained by a local static condensation of a mixed problem
satisfying a uniform inf-sup condition. We work with conforming bilinear ap-
proximations for the displacement and a pressure space of piecewise constants.
Unfortunately, the standard Q1−P0 pairing does not satisfy a uniform inf-sup
condition. To obtain a stable scheme, we have to extract from the pressure
space the so-called checkerboard modes. Although a lot of work has been done
on stable discretization techniques, the construction of uniformly bounded
iterative solvers in the incompressible limit is still an open problem. Some
results can be found for multigrid solvers applied to a stable saddle point for-
mulation, see, e.g., Wieners [2000] and Schöberl [1999]. Let us note that there
are also recent results on FETI-DP and BDDC domain decomposition meth-
ods for mixed finite element discretizations of Stokes’ equations, see Li and
Widlund [2005], and almost incompressible elasticity, see Dohrmann [2004].
In this work, we propose a dual-primal iterative substructuring method for
almost incompressible elasticity. Numerical results illustrate the performance
and the scalability of our method in the incompressible limit.
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2 Almost incompressible elasticity and finite elements

The equations of linear elasticity model the displacement of a homogeneous
linear elastic material under the action of external and internal forces. The
elastic body occupies a domain Ω ⊂ IR2, which is assumed to be polyhedral
and of diameter one. We denote its boundary by ∂Ω and assume that one part
of it, ∂ΩD, is clamped, i.e., with homogeneous Dirichlet boundary conditions,
and that the rest, ∂ΩN := ∂Ω \ ∂ΩD, is subject to a surface force g, i.e., a
natural boundary condition. We can also introduce a body force f , e.g., gravity.
With H1(Ω) := (H1(Ω))2, the appropriate space for a variational formulation
is the Sobolev space H1

0(Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The
linear elasticity problem consists in finding the displacement u ∈ H1

0(Ω, ∂ΩD)
of the elastic body Ω, such that

∫

Ω

2µε(u) : ε(v)dx +
∫

Ω

λ divu divv dx = 〈F,v〉 ∀v ∈ H1
0(Ω, ∂ΩD). (1)

Here µ and λ are the Lamé parameters, which are constant in view of the
assumption of a homogeneous body, and which are assumed positive. Of par-
ticular interest is the incompressible limit, which corresponds to λ →∞. The
Lamé parameters are related to the pair (E, ν), where E is Young’s modulus
and ν is Poisson’s ratio by

E =
µ(2µ + 3λ)

µ + λ
, ν =

λ

2(µ + λ)
.

Furthermore, εij(u) := 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is the linearized strain tensor, and

ε(u) : ε(v) =
2∑

i,j=1

εij(u)εij(v), 〈F,v〉 :=
∫

Ω

fT v dx +
∫

∂ΩN

gT v dσ.

Our finite element discretization is based on the conforming space Vh of
continuous piecewise bilinear approximations on quadrilaterals. The quasi-
uniform mesh is denoted by Th, and we assume that it has a macro-element
structure, i.e., Th is obtained by uniform refinement from a coarser mesh T m

h .
To start with, we consider the abstract pair (Vh,Mh)

2µ(ε(uh), ε(vh))0 + (divvh, ph)0 = 〈F,vh〉 ∀vh ∈ Vh ,
(divuh, qh)0 − 1

λ (ph, qh)0 = 0 ∀qh ∈ Mh .

In terms of static condensation, we can eliminate the pressure and obtain a
displacement based formulation

∫

Ω

2µε(u) : ε(v)dx +
∫

Ω

λΠMh
divu ΠMh

divv dx = 〈F,v〉 ∀v ∈ Vh, (2)

where ΠMh
denotes the L2-projection onto Mh. It is well known that the

choice Mh = Mu
h
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Mu
h = {q ∈ L2

0(Ω) | q|K ∈ P0(K), K ∈ Th},

does not yield a uniform inf-sup condition and checkerboard modes in the
pressure might be observed, see, e.g., Girault and Raviart [1986]. Thus it is
necessary that Mh is a proper subset of Mu

h . There exist different possibilities
to overcome this difficulty. One option is to work with macro-elements and to
extract from Mu

h the checkerboard mode on each macro-element, as in Girault
and Raviart [1986]. The restrictions of functions in Mu

h to a macro-element
are spanned by the four functions depicted in Figure 1.

(d)(c)(b) (a) 

Fig. 1. Restrictions of the basis functions of Mu
h to a macro-element with ± indi-

cating the sign inside the elements

The functions having the signs indicated in Figure 1 (d) are the local
checkerboard modes pc. To obtain a stable pairing, we have to work with
Mh = Ms

h

Ms
h = {q ∈ Mu

h | (q, pc)0;K = 0, K ∈ T m
h }.

From now on, we call the choice Mh = Mu
h unstable or not stabilized Q1−P0

formulation and the choice Mh = Ms
h stabilized Q1 − P0 formulation. The

analysis and the implementation will be based on (2). We note that in both
case the L2-projection ΠMh

can be carried out locally.

3 The FETI-DP algorithm

Let the domain Ω be decomposed into nonoverlapping subdomains Ωi, i =
1, . . . , N , each of which is the union of finite elements with matching finite
element nodes across the interface Γ . The interface Γ is the union of subdo-
main edges and vertices. For each subdomain Ωi, we assemble local stiffness
matrices K(i) and local load vectors f (i). By u(i) we denote the local solution
vectors of nodal values.

In the dual-primal FETI methods, we distinguish between dual and primal
displacement variables the way the continuity of the solution in those variables
is established. Dual displacement variables are those, for which the continu-
ity is enforced by a continuity constraint and Lagrange multipliers λ and
thus, continuity is not established until convergence of the iterative method
is reached, as in the classical one-level FETI methods; see, e.g., Klawonn and
Widlund [2001]. On the other hand, continuity of the primal displacement
variables is enforced explicitly in each iteration step by subassembly of the
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local stiffness matrices K(i) at the primal displacement variables. This sub-
assembly yields a symmetric, positive definite stiffness matrix K̃ which is not
block diagonal anymore but coupled at the primal displacement variables. Let
us note that this coupling yields a global problem which is necessary to obtain
a numerically scalable algorithm.

We will use subscripts I, ∆, and Π, to denote the interior, dual, and
primal displacement variables, respectively, and obtain for the local stiffness
matrices, load vectors, and solution vectors of nodal values

K(i) =




K
(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ


 ,u(i) =




u(i)
I

u(i)
∆

u(i)
Π


 , f (i) =




f (i)
I

f (i)
∆

f (i)
Π


 .

We also introduce the notation

uB = [uI u∆]T , fB = [fI f∆]T ,u(i)
B = [u(i)

I u(i)
∆ ]T , and f (i)

B = [f (i)
I f (i)

∆ ]T .

Accordingly, we define

KBB = diagN
i=1(K

(i)
BB), K

(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, KΠB = [K(1)

ΠB . . .K
(N)
ΠB ].

We note that KBB is a block diagonal matrix. By subassembly in the primal
displacement variables, we obtain

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
,

where a tilde indicates the subassembled matrices and where

K̃ΠB = [K̃(1)
ΠB · · · K̃(N)

ΠB ].

Introducing local assembly operators R
(i)
Π which map from the local primal

displacement variables u(i)
Π to the global, assembled ũΠ , we have

K̃
(i)
ΠB = R

(i)
Π K

(i)
ΠB , ũΠ =

N∑

i=1

R
(i)
Π u(i)

Π , K̃ΠΠ =
N∑

i=1

R
(i)
Π K

(i)
ΠΠR

(i)T
Π ,

for i = 1, . . . , N . Due to the subassembly of the primal displacement vari-
ables, Lagrange multipliers have to be used only for the dual displacement
variables u∆ to enforce continuity. We introduce a discrete jump operator B
such that the solution u∆, associated with more than one subdomain, coin-
cides when BuB = 0; the interior variables uI remain unchanged and thus the
corresponding entries in B remain zero. Since we assume pointwise matching
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grids across the interface Γ , the entries of the matrix B are 0, 1, and −1.
However, we will otherwise use all possible constraints and thus work with
a fully redundant set of Lagrange multipliers as in [Klawonn and Widlund,
2001, Section 5]. Thus, for an edge node common to four subdomains, we will
use six constraints rather than choosing as few as three.

We can now reformulate the finite element discretization of (2) as



KBB K̃T
ΠB BT

K̃ΠB K̃ΠΠ O

B O O







uB

ũΠ

λ


 =




fB
f̃Π
0


 . (3)

Elimination of the primal variables ũΠ and of the interior and dual displace-
ment variables uB leads to a a reduced linear system of the form

Fλ = d,

where the matrix F and the right hand side d are formally obtained by block
Gauss elimination. Let us note that the matrix F is never built explicitly but
that in every iteration appropriate linear systems are solved; see Farhat et al.
[2000], Klawonn and Widlund [2004] or Klawonn and Rheinbach [2005] for
further details.

To define the FETI-DP Dirichlet preconditioner M−1, we introduce a
scaled jump operator BD; this is done by scaling the contributions of B asso-
ciated with the dual displacement variables from individual subdomains. We
define BD = [B(1)

D , . . . , B
(N)
D ], where the B

(i)
D are defined as follows: each row of

B(i) with a nonzero entry corresponds to a Lagrange multiplier connecting the
subdomain Ωi with a neighboring subdomain Ωj at a point x ∈ ∂Ωi,h∩∂Ωj,h.
We obtain B

(i)
D by multiplying each such row of B(i) with 1/|Nx|, where |Nx|

denotes the multiplicity of the interface point x ∈ Γ . This scaling is called
multiplicity scaling and is suitable for homogeneous problems; see Klawonn
and Widlund [2004]. Our preconditioner is then given in matrix form by

M−1 = BDRT
Γ SRΓ BT

D =
N∑

i=1

B
(i)
D R

(i)T
Γ S(i)R

(i)
Γ B

(i)T
D . (4)

Here, R
(i)
Γ are restriction matrices that restrict the degrees of freedom of a

subdomain to its interface and RΓ = diagi(R
(i)
Γ ).

We have to decide how to choose the primal displacement variables. The
simplest choice is to choose them as certain selected primal vertices of the sub-
domains, see Farhat et al. [2001], where this approach was first considered.
Following the notation introduced in Klawonn et al. [2002], we will denote
the FETI-DP algorithm which uses exclusively selected vertices as primal dis-
placement constraints as Algorithm A. Unfortunately, Algorithm A does not
yield uniform bounds in the incompressible limit. To obtain better convergence
properties, we have to introduce additional constraints. These constraints are
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averages over the edges, which are enforced to have the same values across
the interface. This variant has been introduced in Klawonn et al. [2002] for
scalar problems and is denoted by Algorithm B.

For our FETI-DP algorithm B, we have the following condition number
estimate, cf. Klawonn and Wohlmuth [2005],

Theorem 1. The condition number for the choice Mh = Ms
h satisfies

κ(M−1F ) ≤ C (1 + log(H/h))2.

Here, C > 0 is independent of h,H, and the values of the Poisson ratio ν.

4 Numerical results

We apply Algorithms A and B to (2), where Ω = (0, 1)2 and the Young modu-
lus is defined as E = 210. We will present results for different Poisson ratios ν.
Algorithm A uses all subdomain vertices as primal constraints and Algorithm
B, additionally, uses all edge averages as primal constraints. For the exper-
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Fig. 2. Deformed configuration for the experiments in Table 1 (left) and for the
experiments in Table 2 (right). In both cases a coarser grid than used in the calcu-
lations is depicted.

iments in Table 1, we use a structured grid with 240 × 240 macro elements
(= 480×480 elements). In small portions of the boundary in all four corners of
the unit square homogeneous Dirichlet boundary conditions were applied (see
Figure 2) and the domain was subjected to a volume force directed towards
(1, 1)T . The domain was decomposed into 64 square subdomains with 7 442
d.o.f. each; this results in an overall problem of 462 722 d.o.f. The stopping
criterion is a relative residual reduction of 10−10. The experiments were car-
ried out on two Opteron 248 (2.2 Ghz) 64-bit processors. The differences in
computing time between the unstable and the stabilized Q1 − P0 element,
e.g., for ν = 0.4, are due to the different sparsity patterns of the stiffness
matrices. The stabilized Q1 − P0 element leads to approximately 50% more
nonzero entries in the corresponding stiffness matrix.
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ν It. λmax λmin Time It. λmax λmin Time

Alg. B (stabilized) (not stabilized)

0.4 23 6.98 1.0075 55s 23 6.98 1.0075 47s
0.49 23 6.81 1.0079 55s 23 6.86 1.0086 47s
0.499 24 6.79 1.0078 56s 23 6.79 1.0090 47s
0.4999 24 6.79 1.0078 56s 29 6.48 1.0087 53s
0.49999 24 6.79 1.0080 56s 55 39.98 1.0088 80s
0.499999 25 6.79 1.0076 57s 97 366 1.0086 124s
0.4999999 25 6.79 1.0078 57s 131 3632 1.0096 159s

Alg. A (stabilized) (not stabilized)

0.4 53 42.52 1.012 82s 53 42.52 1.012 81s
0.49 103 316 1.017 139s 67 85.93 1.015 78s
0.499 192 3037 1.018 241s 137 723 1.017 143s
0.4999 270 3.02× 104 1.020 332s 220 7069 1.020 221s
0.49999 368 3.02× 105 1.020 445s 315 7.05× 104 1.021 310s
0.499999 465 3.02× 106 1.022 558s > 500 7.05× 105 1.037 > 486s
0.4999999 > 500 3.02× 107 1.032 > 599s > 500 7.05× 106 1.159 > 484s

Table 1. Algorithms B and A, 462 722 d.o.f. and 64 subdomains.

Algorithm B ν = 0.4999999 ν = 0.4

N Mesh d.o.f. It. λmax λmin It. λmax λmin

4 48× 48 4 802 17 2.51 1.0011 13 2.19 1.0015
9 72× 72 10 658 21 3.38 1.0020 19 3.47 1.0024

16 96× 96 18 818 24 4.03 1.0023 22 4.13 1.0025
36 144× 144 42 050 26 4.53 1.0024 24 4.64 1.0025
64 192× 192 74 498 27 4.69 1.0024 25 4.80 1.0026

100 240× 240 116 162 29 4.75 1.0022 26 4.86 1.0025
144 288× 288 167 042 29 4.78 1.0023 27 4.88 1.0026
256 384× 384 296 450 30 4.79 1.0022 30 4.91 1.0024
576 576× 576 665 858 32 4.80 1.0021 32 4.77 1.0024

1 024 768× 768 1 182 722 32 4.80 1.0021 33 4.81 1.0024

Table 2. Numerical scalability of Algorithm B, Q1 − P0 (stabilized).

For the experiments in Table 2, the unit square is decomposed into 4 to
1 024 subdomains with 1 250 d.o.f. each. Homogeneous Dirichlet boundary
conditions are applied on the bottom and the left side. Again, a volume force
directed towards (1, 1)T is applied. The calculations were carried out on a
single Opteron 144 (1.8 Ghz) 64-bit processor. We used as a stopping criterion
the relative residual reduction of 10−14.



8 Axel Klawonn, Oliver Rheinbach, and Barbara Wohlmuth

Acknowledgement. The first and third author gratefully acknowledge the support
of the “Research in Pairs” (RiP) program while being at the Mathematisches
Forschungsinstitut Oberwolfach.

References

Clark R. Dohrmann. A substructuring preconditioner for nearly incompress-
ible elasticity problems. Technical report, Sandia National Laboratories,
Oct. 2004.

Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and
Daniel Rixen. FETI-DP: A dual-primal unified FETI method - part i:
A faster alternative to the two-level FETI method. Int. J. Numer. Meth.
Engrg., 50:1523–1544, 2001.

Charbel Farhat, Michel Lesoinne, and Kendall Pierson. A scalable dual-primal
domain decomposition method. Numer. Lin. Alg. Appl., 7:687–714, 2000.

Vivette Girault and Pierre-Arnaud Raviart. Finite Element Methods for
Navier-Stokes Equations. Springer-Verlag, Berlin, 1986.

Axel Klawonn and Oliver Rheinbach. A parallel implementation of Dual-
Primal FETI methods for three dimensional linear elasticity using a trans-
formation of basis. Technical Report SM-E-601, Department of Mathemat-
ics, Universität Duisburg-Essen, Germany, February 2005.

Axel Klawonn and Olof Widlund. Dual-Primal FETI methods for linear elas-
ticity. Technical Report TR2004-855, Dept. of Computer Science, Courant
Institute of Mathematical Sciences, New York University, USA, Sept. 2004.

Axel Klawonn and Olof B. Widlund. FETI and Neumann–Neumann iterative
substructuring methods: Connections and new results. Comm. Pure Appl.
Math., 54:57–90, January 2001.

Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja. Dual-Primal FETI
methods for three-dimensional elliptic problems with heterogeneous coeffi-
cients. SIAM J.Numer.Anal., 40, 159-179 2002.

Axel Klawonn and Barbara I. Wohlmuth. FETI-DP for almost incompress-
ible elasticity in the displacement formulation. Technical report, 2005. In
preparation.

Jing Li and Olof Widlund. BDDC algorithms for incompressible Stokes equa-
tions. Technical Report TR2004-861, Dept. of Computer Science, Courant
Institute of Mathematical Sciences, New York University, USA, April 2005.
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