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1 Introduction

There often encounter requirements to compute what flow pattern is gen-
erated in the stationary state. With progress of computer environment and
increasing demand of precise analyses, numbers of degrees of freedom of such a
computation become larger. However, as far as we know, computational codes
may be rare, which are efficient for large scale, stationary, and nonlinear flow
problems. Therefore, we have developed ADVENTURE sFlow [3], which is
one of modules included in the ADVENTURE project [1].

ADVENTURE sFlow uses the Newton method as the nonlinear iteration,
and to compute the problem at each step of the nonlinear iteration a stabilized
finite element method is introduced. Moreover, to reduce the computational
costs, an iterative domain decomposition method is applied to stabilized finite
element approximations of stationary Navier–Stokes equations, where Gener-
alized Product-type methods based on Bi-CG (GPBiCG) [6] is used as the
iterative solver of the reduced linear system in each step of the nonlinear it-
eration. A parallel computing using the Hierarchical Domain Decomposition
Method (HDDM) is also introduced.

Numerical results show that ADVENTURE sFLow can analyze a station-
ary flow problem, where its degrees of freedom (DOF) is about 10 millions.

2 Formulation

Let Ω be a three-dimensional bounded domain with the Lipschitz continuous
boundary Γ. We consider the stationary incompressible Navier–Stokes equa-
tions as follows: 




−1
ρ
∇· σ(u, p) + (u·∇)u =

1
ρ

f in Ω, (1a)

∇· u = 0 in Ω, (1b)
u = g on Γ, (1c)



2 H. Kanayama, et al.

where u = (u1, u2, u3)T is the velocity [m/s], p is the pressure [N/m2], ρ is the
density [kg/m3], f = (f1, f2, f3)T is the body force [N/m3], g = (g1, g2, g3)T

is the boundary velocity [m/s], and σ(u, p) is the stress tensor [N/m2] defined
by

σij(u, p) ≡ −pδij + 2µDij(u), Dij(u) ≡ 1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3,

with the Kronecker delta δij and the viscosity µ [kg/(ms)].
By application of the Newton method to (1) as the nonlinear iteration, the

kth step linearized equations become the following: find (uk, pk) such that




−1
ρ
∇· σ(uk, pk) +

(
uk−1 ·∇)

uk +
(
uk ·∇)

uk−1

=
1
ρ

f +
(
uk−1 ·∇)

uk−1 in Ω, (2a)

∇· uk = 0 in Ω, (2b)
uk = g on Γ. (2c)

To avoid some intricate notations, we rewrite the linearized Navier–Stokes
equations as follows: find (u, p) such that





−1
ρ
∇· σ(u, p) + (w·∇) u + (u·∇)w = f̃ in Ω, (3a)

∇· u = 0 in Ω, (3b)
u = g on Γ, (3c)

where w is a given velocity [m/s]. Obviously, the equations (3) yield (2) by
substituting

uk−1, uk, pk, and
1
ρ
f +

(
uk−1 ·∇)

uk−1

into w, u, p, and f̃ , respectively.
Let Th be a decomposition of Ω consisting of a union of tetrahedra, and K

a tetrahedron in Th. Let uh and ph be the velocity and the pressure approx-
imated by P1/P1 elements. As in [3], the stabilized finite element method is
introduced to (3) as follows: find (uh, ph) satisfying (1c) such that

a0(uh, vh) + a1(wh, uh, vh) + a1(uh, wh, vh) + b(vh, ph) + b(uh, qh)

+
∑

K∈Th

{
τK

((
wh ·∇

)
uh +

(
uh ·∇

)
wh +

1
ρ
∇ph,

(
wh ·∇

)
vh +

(
vh ·∇

)
wh − 1

ρ
∇qh

)
K

+ δK(∇·uh,∇·vh)K

}

= (f̃ , vh) +
∑

K∈Th

τK

(
f̃ ,

(
wh ·∇

)
vh +

(
vh ·∇

)
wh − 1

ρ
∇qh

)
K

, (4)
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where

a0(u, v) ≡ 2µ

ρ

∫

Ω

D(u) :D(v) dx, a1(w, u, v) ≡
∫

Ω

[
(w·∇)u

]
v dx,

b(v, q) ≡ − 1
ρ

∫

Ω

q∇· v dx, (f, v) ≡
∫

Ω

fv dx, (f, v)K ≡
∫

K

fv dx,

vh and qh are the test functions satisfying vh = 0 on Γ, wh is the convection
velocity approximated by P1 elements, and the notation “:” denotes the tensor
product. The stabilized parameters τK and δK are defined by

τK ≡ min
{

hK

2 ‖w‖∞
,

ρ h2
K

24µ

}
, δK ≡ min

{
λρh2

K‖w‖2∞
12µ

, λhK‖w‖∞
}

,

where λ denotes a positive constant, ‖w‖∞ denotes the maximum norm of w
in K, hK denotes the diameter of K.

Let Kx = f be the finite element system derived from (4), where K de-
notes the regular, asymmetric coefficient matrix corresponding to (4), x the
vector corresponding to the velocity and the pressure, f the vector corre-
sponding to the body force and the boundary velocity. Let Ω be divided into
some subdomains. Let xi, xb, and xt be vectors corresponding to DOF in the
interior of Ω, on the interface between subdomains, and on Γ, where xt is a
given vector. Then, the system Kx = f can be rewritten as follows:




Kii Kib Kit

Kbi Kbb Kbt

0 0 E








xi
xb
xt



 =





fi
fb
ft



 , (5)

where E is a unit matrix. Eliminating xi from (5), we can get the linear
system on the interface:

Sxb = χ, (6)

where

S ≡ Kbb −KbiKii
−1Kib,

χ ≡ fb −KbiKii
−1fi − (Kbt −KbiKii

−1Kit)xt.

GPBiCG is allied to (6), and xb is obtained. In the practical computing, the
matrix S is not constructed explicitly. The products of matrices and vectors
appearing in GPBiCG can be replaced by solving the Navier–Stokes equations
in each subdomain, which implies that the method is fit for parallel computing;
see, for example, [2]. The application of the skyline method to a problem in
each subdomain yields xi from xb. Therefore the solution in the whole domain
at the nth step of the nonlinear iteration is obtained.

In the actual parallel computing, we adopt HDDM [5] for data and pro-
cessor management to have the workload balanced among processors. It is
already shown that HDDM is effective for a structural problem where the
number of DOF is 100 millions [4].
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3 Numerical examples

A station model is considered as a numerical example; see Fig. 1. The station
has one plathome at the lower floor, one ticket gate at the upper floor, and
three exits from the upper floor to the ground. The model considers the station
that two trains are approaching along the red arrows in Fig. 1 with their speeds
1 [m/s], the fixed boundary conditions are imposed on the wall boundaries,
and the air flows out from the other sides of the plathome and the exits
with the stress-free conditions. The body force is set to be 0. The kinematic
viscosity µ/ρ is set to be 1.0× 10−1 [m2/s].

As in Section 2, Ω is divided into a union of tetrahedra, and the flow field
is approximated by P1/P1 elements: the number of elements and DOF are
18, 873, 133 and 12, 943, 664, respectively. The number of subdomains is set to
be 300, 000. Throughout this section, λ is set to be 1.0.

As in Section 2, the Newton method is used for the nonlinear iteration.
The initial value of the nonlinear iteration is the finite element solution of
the corresponding Stokes problem. The nonlinear iteration is stopped when
the relative rate of changes ‖xn+1− xn‖∞

/ ‖xn+1‖∞ becomes smaller than
1.0 × 10−4, where xn denotes the solution vector at the nth step, and ‖ . ‖∞
the maximum norm.

In the Stokes equation for the initial condition, and in each step of the
nonlinear iteration, the resultant linear systems on the interface are solved
by GPBiCG with the simplified diagonal scaling preconditioner. The initial
vector of the GPBiCG iteration is taken from zero vector in case of the Stokes
equation for the initial condition of the nonlinear iteration, and is taken from
the solution vector at the previous step at each step of the nonlinear it-
eration. The GPBiCG iteration is stopped when the relative residual norm
‖χ−Sxb‖2

/ ‖χ‖2 becomes smaller than 1.0× 10−5, where ‖ . ‖2 denotes the
Euclidean norm. Computation of the model was performed on Alpha21264
with 30 CPUs at Computing and Communications Center, Kyushu Univer-
sity. It took about 100 hours to compute.

Fig. 2 shows the residual norm versus the number of GPBiCG iterations
at each step of the nonlinear iteration. As the iteration progresses forward,
the convergences of GPBiCG become faster. Fig. 3 shows relative rate of
changes versus the number of nonlinear iterations. The nonlinear iteration by
the Newton method goes well. Fig. 4 shows the streamlines in the station. In
both cases, the flow comes into the station along the approaches of the trains,
and goes out from the other sides of the plathome and from the exits.

At the end of this section, we consider the difficulty of computations in
case of high Reynolds numbers and large scale problems. Table 1 shows the
computational data on the mesh size and the numbers of DOF. Table 2 shows
CPU time [min] in some cases of Reynolds numbers and meshes. In Cases I
and II, the problem can be solved for six Reynolds numbers. However, as the
scale is larger, the problem can not be solved for higher Reynolds numbers.
Finally, in Case VI, the problem can be solved for only Re = 50.
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4 Conclusion

To analyze the stationary Navier–Stokes equations, ADVENTURE sFlow has
been developed, which is one of the modules produced in the ADVENTURE
project [1]. The Newton method has been introduced as the nonlinear it-
eration, and the stabilized finite element method as the approximation of
the linearized equations at every steps of the nonlinear iteration. Moreover,
for parallel computations, the iterative domain decomposition method and
HDDM have been introduced, which are based on GPBiCG.

A station model, whose numbers of degrees of freedom is about 10 millions,
has been analyzed.

We are going to analyze problems in case of higher Reynolds numbers or
coupled problems.
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Table 1. The maximum diameter of mesh and the numbers of DOF.

Case I II III IV V VI

Diameter [m] 1.60 0.90 0.80 0.71 0.59 0.50
DOF [×105] 0.5 2 3 4 7 10

DOF: in round numbers
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Fig. 1. A station model.
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Fig. 2. Relative residuals of GPBiCG at each step of the nonlinear iteration.
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Fig. 3. Relative rates of changes in the Newton method.

Table 2. The number of iterations in case of some Reynolds numbers and meshes

Re I II III IV V VI

50 1.67 8.80 15.17 23.07 23.52 48.1
245 1.83 31.60 66.27 120.9 350.5 —
490 1.83 44.45 130.0 343.1 — —
735 2.00 59.20 152.4 — — —
980 2.12 57.77 396.5 — — —
1225 2.25 63.91 — — — —

Unit: [min], —: Not convergence



8 H. Kanayama, et al.

Fig. 4. The streamlines of the station model.


