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A new domain decomposition technique on non-matching grids for free bound-
ary problems is considered. An iterative DD scheme is used to reduce the origi-
nal free boundary problem to a sequence of problems on two sub-domains, one
of which includes the free boundary and is described by a variational inequal-
ity and the other includes the remainder of the problem and is described by a
second order partial differential equation. In the sub-domain which contains
the free boundary, a fine grid is utilized in order to capture the free boundary
more precisely; while in the other sub-domain, a coarse grid is used in order
to speed up the computation. At each step of the iteration, two sub-problems
are solved by using a Robin boundary condition on the interface.

1 Introduction

Both overlapping and non-overlapping domain decomposition (DD) meth-
ods have been intensively studied for partial differential equations, see e.g.
[Wid92, Lio90, XZ98, MQ89, Den97]. In the last few decades, mathemati-
cians began to apply the overlapping domain decomposition methods to solve
variational inequality problems. The basic idea is to split the original domain
into several overlapping sub-domains and solve the variational inequality on
each sub-domain via data transfer from the common area between those sub-
domains. [Bru91, Tai03, HZ92] and their references provide many variants
of this approach whereas convergence analyses of the algorithms and their
application to many problems in different fields are provided.

However, for many practical problems in the engineering and industrial
fields, it is much easier and more convenient to split the original domain into
two or three non-overlapping sub-domains and then take care of the problems
in each sub-domain where the original problem may show different behavior.
Recently, a non-overlapping DD method which utilizes a Robin boundary
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condition on the common boundary between these sub-domains was proposed
in [JBS05] for the variational inequality problem and the convergence analysis
of the DD method was provided.

In this paper, we consider free seepage flow through a dam with a toe
drain that can be considered as a variational inequality. We will apply the
non-overlapping DD method to decompose the original problem into two sub-
problems where the partial differential equation is treated in one sub-domain
while the variational inequality is treated in the second sub-domain where the
free boundary is located. Since our concern is to find the exact location of the
free boundary in the second domain, non-matching grids are applied in those
sub-domains. In the first sub-domain, a coarse grid is used in order to speed
up the computation; while in the second sub-domain which contains the free
boundary, a fine grid is utilized in order to capture the free boundary more
precisely. At each step of the iteration, two sub-problems are solved simulta-
neously by using a Robin boundary condition on the common boundary.

This paper is organized as follows. In Section 2, we formulate the seep-
age problem and apply the non-overlapping DD method to split the original
problem into 2 sub-problems. In Section 3, we utilize the non-matching grid
technique in those two sub-domains for the discretization of the problem and
then apply the finite difference method with projection on the non-matching
grids. Numerical results are reported to show the advantage of our new algo-
rithm. In Section 4, a summary of the paper and some future considerations
are outlined.

2 Formulation of the problem

Many problems involving free boundaries can be reduced to the study of vari-
ational inequalities. In [Bru91], the author proposed several domain decom-
position methods to split the domain into two or more sub-domains. Then by
iterating between these sub-domains he solved the whole problem and found
the free boundary. However, these schemes require the solution of one sub-
problem at one time. Herein, a DD scheme will be used which can solve these
two or even more sub-problems simultaneously.

In this paper, we consider a free boundary seepage problem of flow through
a porous dam with a toe drain. For simplicity, the soil in the flow field is
assumed to be homogeneous and isotropic, capillary and evaporation effects
are neglected. In addition, the flow follows Darcy’s law:

−→q = −k∇[(
p

ρg
) + y], (2.1)

where −→q is the velocity vector, p is the pressure, k is the permeability of the
soil, ρ is the density of the fluid, g is the gravitational acceleration, and y is
the vertical coordinate(positive upward). The seepage velocity has a potential
φ(x, y) = k[( p

ρg
) + y]. Meanwhile, let ψ(x, y) be the stream function of the
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flow. In this study, the location of the free surface Γ0 = {x, f(x)} and the
seepage domain Ω need to be found, see Figure 1. The seepage domain is
defined as:

Ω = {(x, y) : 0 < x ≤ xF , 0 < y < α(x);xF < x < xC , 0 < y < f(x)},

where xF and xC are the distances in the x-direction to points F and C,
respectively, and α(x) is the shape function of the dam profile.

Fig. 1. The seepage problem.

The functions φ(x, y) and ψ(x, y) are defined on Ω and satisfy the following
formulation:

Ω = {(x, y) : 0 < x ≤ xF , 0 < y < α(x);xF < x < xC , 0 < y < f(x)}
φx − ψy = 0 in Ω
φy + ψx = 0 in Ω

φ = yF on ÂF
φ = 0 on [BC]
ψ = q on [AB]
ψ = 0 on Γ0

φ = y on Γ0,

(2.2)

where yF is the height at F , and q is the flow rate through the flowfield.
Define D = {(x, y) : 0 < x ≤ xF , 0 < y < α(x);xF < x < xC′ , 0 < y <

yF } and extend φ and ψ continuously toD by setting φ(x, y) = φ(x, y) in Ω; =
y in D −Ω and ψ(x, y) = ψ(x, y) in Ω; = 0 in D −Ω.

Next, we can define a new dependent variable w using the Baiocchi trans-
formation on D:

w(P ) =

∫

FP

−ψdx+ (y − φ)dy, (2.3)

where FP is a smooth path in D joining F to P in D. The integration is
indeed independent of the path. Then w ∈ H2(D)

⋂
C1(D) satisfies:
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∆w = χΩ in D

wy = y − yF on ÂF

w = ( q2

6 ) + q(xB − x) on [AB]
wy = 0 on [BC]

w = 0 in D −Ω( also on Γ0)
w > 0 in Ω (w ≥ 0 in D),

(2.4)

where χΩ = 1 in Ω and χΩ = 0 in D −Ω. Hence,

w(x, y) ≥ 0, 1 −∆w(x, y) ≥ 0, w(1 −∆w) = 0 in D. (2.5)

If w is found satisfying (2.4), then we can determine Ω = {(x, y) ∈ D :
w(x, y) > 0}.

It will be seen shortly that if we can properly split D into two non-
overlapping sub-domains, the free boundary is only located in one sub-domain,
which makes the original problem simpler. Therefore, the DD method looks
promising for this free boundary problem. [Bru91] applied the non-overlapping
D-N algorithm proposed in [MQ89] to the above problem and the numerical
results show that D-N algorithm is better than the traditional one-domain
finite difference scheme. However, no convergence property of the D-N algo-
rithm can be proven.

Recently, the convergence analysis was provided for a non-overlapping DD
method on the uniform meshes with a Robin boundary condition applied
to the general free boundary problem represented as variational inequality
[JBS05]. In the following we use that DD scheme from [JBS05] to solve the
above seepage problem. First, decompose D into subsets D1 = {(x, y) : 0 <
x < xF , 0 < y < α(x)} and D2 = {(x, y) : xF < x < xC′ , 0 < y < yF }
with the interface between D1 and D2 denoted by Γ = {(x, y) : x = xF , 0 <
y < yF } in Figure 2. If w1,w2 denote the restriction of w in D1 and D2,
respectively, we can write down the following iterative procedure:
Step 1. Initially set g1

1 = g1
2 = 0 on Γ .

Step 2. Solve the following two sub-problems for wn
1 and {wn

2 , Ω
n
2 }, n =

1, 2, · · ·, respectively:
Problem 1:

∆wn
1 = 1 in D1

wn
1 = ( q2

6 ) + q(xB − x) on [AF ′

1]

(wn
1 )y = y − yF on ÂF

wn
1 +

∂wn

1

∂n
= gn

1 on Γ.

(2.6)

Problem 2:
wn

2 (∆wn
2 − 1) = 0 in D2

wn
2 = ( q2

6 ) + q(xB − x) on [F ′

1B]
wn

2 y = 0 on [BC′]

wn
2 ≥ 0 in D2

wn
2 +

∂wn

2

∂n
= gn

2 on Γ
Ωn

2 = {(x, y) : wn
2 (x, y) > 0}.

(2.7)
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Step 3. Set
gn+1
2 = 2wn

1 − gn
1 on Γ

gn+1
1 = 2wn

2 − gn
2 on Γ.

(2.8)

Then repeat Step 2 with n replaced by n+1. These iterations are stopped when
maxΓ |wn+1

1 −wn
1 | < ǫ and maxΓ |wn+1

2 −wn
2 | < ǫ, where ǫ is some fixed error

tolerance. Problem 1 and 2 in Step 2 are solved based on the Robin boundary

Fig. 2. The domain decomposition.

condition values gn
1 and gn

2 which are updated iteratively from their previous
value and the w value on the common boundary. This avoids the computation
of differentiating w which may reduce the precision.

3 Non-Matching Grid Discretization and Results

In this Section, we will utilize a non-matching grid technique to obtain the
numerical scheme for the above seepage problem on non-matching grids. At
first, we apply the 2nd-order finite difference scheme to ∆w and obtain the
discrete formula for the first equation of (2.6) in D1 as follows:

(wn
1 )i+1,j + (wn

1 )i−1,j + (wn
1 )i,j+1 + (wn

1 )i,j−1 − 4(wn
1 )i,j

h2
1

= 1 (3.1)

where D1 is divided into a rectangular mesh with mesh size ∆x = ∆y = h1,
i, j are the row and column mesh point numbers, respectively. The boundary
conditions in (2.6) can be discretized by the forward finite difference scheme.

Meanwhile, we can discretize (2.7) in D2 in a similar way and obtain

(wn
2 )i,j(

(wn
2 )i+1,j + (wn

2 )i−1,j + (wn
2 )i,j+1 + (wn

2 )i,j−1 − 4(wn
2 )i,j

h2
2

− 1) = 0

(3.2)
where D2 is divided into a rectangular mesh with mesh size ∆x = ∆y = h2.

Since our focus is to find the location of the free boundary in D2 more
precisely, we construct a fine grid in D2 and meanwhile construct a coarse grid
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in D1 to reduce the computation load there. Therefore, we assume h2 = 1
2h1

throughout our computation, i.e., the grid size of D2 is only half of that
of D1. Because of the different grid sizes in D1 and D2, the data transfer
equations (2.8) between gn

1 and gn
2 cannot be discretized naturally. In order

to discretize (2.8), we have to approximate gn
1 with its neighbouring gn

2 values
on Γ , and vice versa, as shown in Figure 3. From Figure 3, we notice that w1,j

Fig. 3. The nonmatching grids.

is affected by w2,2j . Meanwhile, w2,2j is affected by w1,j and w2,2j+1 is affected
by both w1,j and w1,j+1. Therefore, the reasonable data transfer on Γ will be
w1,j = w2,2j from D2 to D1 and w2,2j = w1,j and w2,2j+1 = 1

2 (w1,j + w1,j+1)
from D1 to D2. g1 and g2 can be taken care of similarly. Then, (2.8) can be
discretized as follows:

(gn+1
1 )j = 2(wn

2 )2j − (gn
2 )2j

(gn+1
2 )2j = 2(wn

1 )j − (gn
1 )j

(gn+1
2 )2j+1 = 1

2{[2(wn
1 )j − (gn

1 )j ] + [2(wn
1 )j+1 − (gn

1 )j+1]}

(3.3)

The computation is run as follows: at first we scan throughD1 and D2 to solve
for wn

1 and wn
2 from (3.1) and (3.2) together with the boundary conditions.

Then update gn
1 and gn

2 on Γ from (3.3) and repeat to scan through D1 and
D2 as before. The iteration will stop if the convergence criterion is met.

During the computation, finite difference SOR (Successive over-relaxation)
is utilized inD1, while inD2 which contains the free boundary, finite difference
SOR (Successive over-relaxation) with projection is used to make sure the w2

value at each point is always non-negative.
Therefore, when applying the SOR in D1, (3.1) becomes:

(w
(n+ 1

2
)

1 )i,j = (1
4 ((wn

1 )i+1,j + (wn
1 )i−1,j + (wn

1 )i,j+1 + (wn
1 )i,j−1 − h2

1)

(w
(n+1)
1 )i,j = (wn

1 )i,j + β((w
(n+ 1

2
)

1 )i,j − (wn
1 )i,j)

(3.4)

where β is the relaxation parameter.
Similarly, when applying the SOR with projection in D2, (3.2) becomes

(w
(n+ 1

2
)

2 )i,j = 1
4 ((wn

2 )i+1,j + (wn
2 )i−1,j + (wn

2 )i,j+1 + (wn
2 )i,j−1 − h2

2)

(w
(n+1)
2 )i,j = max(0, (wn

2 )i,j + β((w
(n+ 1

2
)

2 )i,j − (wn
2 )i,j))

(3.5)
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The flow rate q through the flow field is also unknown a priori. Therefore,
in addition to the inner iteration to solve for w with a given q, there is also an
outer iteration on the q to determine the flow rate. The compatibility condition

for the outer iteration (see [SB78]) is f(q) = (w2(xF , yF −∆y)) − ∆y2

2 = 0.
In fact, we can set q0 and q1 to be arbitrary values. Then we use the secant
method to determine q2 based on q0 and q1 from (3.6) for the third outer loop,
and so on until we reach some qn whose |f(qn)| < ǫ.

q2 = q1 −
q2 − q1

f(q2) − f(q1)
f(q1). (3.6)

The example uses the following data: α(x) = x where 0 < x < xF , yF = 30ft,
xF = 30ft, xB = 60ft, h1 = 0.5ft, h2 = 0.25ft, β = 1.25, and ǫ = 0.005.

Figure 4 shows the free boundary obtained by the new DD algorithm.
It exactly matches the numerical results from [Bru91]. However, the combi-
nation of the new non-overlapping domain decomposition method and the
non-matching grid technique generates a better performance than those from
[Bru91]. Table 1 shows the required number of iterations for our current algo-
rithm and the algorithm from [Bru91]. We can see that the performance has
been improved considerably over [Bru91].
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Fig. 4. Free boundary in D2.

Outer iteration Current Algorithm Algorithm of [Bru91]

1 1867 2374

2 1024 1604

3 1651 2088

4 618 996

5 109 376

6 31 156

7 2 18

Table 1. Comparison of required number of inner iterations between the two algo-
rithms.
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4 Conclusion and future directions

In this paper, we studied a free boundary seepage problem of flow through a
porous dam with a toe drain. The characteristic of this problem is that the
free boundary is unknown in advance. However, we can determine that the
free boundary is located in one of the sub-domains if we can properly split
the domain into two or more sub-domains. Then, we can apply the traditional
non-overlapping DD method to this problem. Meanwhile, the non-matching
grid discretization is utilized on these sub-domains in order to obtain higher
resolution of the free boundary in the fine-grid sub-domain while maintaining
computational efficiency in the coarse-grid sub-domain.

The promising numerical results motivate us to establish the convergence
analysis and error estimates between the numerical solution based on a com-
bination of non-overlapping DD method and non-matching grid discretization
and the true solution of the original problem for the general free boundary
problem. We will investigate this theoretical issue in the future.
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