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Summary. When solving an evolution equation in an unbounded domain, various
strategy have to be applied, aiming to reduce the number of unknowns and of com-
putation, from infinite to a finite but not too large number. Among them truncation
of domains with a sponge boundary and Schwarz Waveform Relaxation with over-
lap. These problems are closely related, as they both use the Dirichlet-to-Neumann
map as a starting point for transparent boundary condition on the one hand, and
optimal algorithms on the other hand. Then differential boundary conditions can
be obtained by minimization of the reflection coefficients-or the convergence rate.
In the case of unsteady convection diffusion problems, this leads to a non standard
complex best approximation problem that we present and solve.

1 Problems settings

1.1 Absorbing boundary conditions with a sponge

When computing for instance the flow passing an airfoil, or the diffraction
by an object, the mathematical problem is set on an unbounded domain,
while the domain of interest (i.e. where the knowledge of the solution is rele-
vant), ΩI , is bounded and sometimes small . Then a computational domain is
needed, called ΩC , on which the problem is actually solved. The problem must
be complemented with boundary conditions on ∂ΩC . It is of importance to
introduce a sponge boundary ΩS which absorbs the spurious reflexion, see Fig-
ure 1. The question we address here is the following : how to design boundary
conditions on ∂ΩC such that, for a given sponge layer of size L, the error in
ΩI be minimized. The issue is somewhat different from those used in the usual
absorbing boundary condition setting, where there is no layer (see [1, 4, 6]),
or in the classical sponge layer [7] or PML setting [2], where the equation is
modified in the layer.
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Domain of interest ΩI Domain of computation ΩC = ΩI ∪ ΩS

ΩI
ΩI

ΩS

Fig. 1. sponge boundary

1.2 Domain decomposition with overlap

Suppose now that the domain of interest ΩI be too large to be treated by a
single computer (like for instance in combustion problems, climate modeliza-
tion, · · · ). Then one can divide the domain into several parts, which overlap
or not. In each domain the original problem is solved, whereas one has to
supplement with transmission conditions between the subdomains. A model
geometry is described in Figure 2.
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Domain of interest ΩI Splitted Domain

ΩI

Ω1

Ω2

ΩS

Fig. 2. Domain decomposition with overlap

In this case, given a size of the overlap, the transmission conditions are
designed such to minimize the convergence rate of the Schwarz algorithm. The
two procedures previously described lead to the same optimization problem,
as we shall see in the next two sections. For the wave equation, an explicit
answer was given in [5] for the low degrees. We present here the case of the
unsteady reaction convection diffusion equation in Rn+1

L(u) := ut − ν∆u + a∂xu + b · ∇u + cu = F in R
n+1 × (0, T ),

u(·, 0) = u0 in Rn+1,
(1)

where the coefficients are such that ν > 0, a > 0, b ∈ R
n, c > 0. The operator

∇ operates only in the y direction in Rn. The more simple problem of de-
signing absorbing boundary conditions, without sponge, has been addressed
in [6], introducing an expansion in continous fractions.
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We first describe the methods in Sections 2 and 3, and we set the best ap-
proximation problem. In Section 4 we study this best approximation problem,
which is defined in the complex plane, and involves a non linear functional.
Therefore it is more involved than the standard one. In Section 5 we show
numerical evidences for the optimality of the method.

2 Sponge boundaries for the convection-diffusion

equation: the half-space case

A model problem is the following : the original domain is Rn+1, the domain
of interest is ΩI = (−∞, X) × Rn and the domain of computation is ΩC =
(−∞, X + L) × Rn. A key point is that the data are compactly supported in
ΩC .

2.1 The transparent boundary condition

As it is now classical, the transparent boundary condition on the boundary
∂ΩC is obtained through a Fourier transform in time and in the transverse
direction y. Transforming the equation leads to

−ν∂xxû + a∂xû + (i(ω + b · k) + ν|k|2 + c)û = 0

where û(x, k, ω) is the Fourier transform in the variables y and t. The char-
acteristic equation is

−νλ2 + aλ + i(ω + b · k) + ν|k|2 + c = 0 (2)

It has two roots, such that Reλ+ ≥ a, Reλ− ≤ 0. The solution in the exterior
of ΩC can be written as

û(x) = û(X + L)eλ−(x−(X+L))

and the transparent boundary condition is given by

∂xû(X + L, k, ω) = λ−û(X + L, k, ω)

We call Λ− the pseudo-differential operator in the variables y and t whose
symbol is λ−, and the original problem in Rn+1 is equivalent to

L(u) = F in ΩC × (0, T ),
u(·, 0) = u0 in ΩC ,

∂xu(X + L, y, t) = Λ−u(X + L, y, t)
(3)
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2.2 Sponge boundaries : reflection coefficient

Let now v be a solution of problem with an approximate boundary condition

∂xv(X + L, y, t) = Λ−
a v(X + L, y, t),

where Λ−
a is an operator in the variables y and t, whose symbol λ−

a will have
to be a rational fraction in k and ω. Ve introduce the reflection coefficient

R(ω, k, λ−
a ) =

λ− − λ−
a

λ+ − λ−
a

; R̃(ω, k, λ−
a , L) = R(ω, k, λ−

a ) e−λ+L

An easy calculation shows that the error between u and v is given by

‖u − v‖2
L2(ΩI ) =

∫
|R̃(ω, k, λ−

a , L)|2

2Reλ+
|û(X, ω, k)|2dω dk

In [6], it was proposed in the case c = 0 to approximate λ− by continuous
fractions, for L = 0, which produces a small error for small viscosity. For
larger viscosities, another approach can be used, namely to search for λ−

a in a
class of rational fractions, which minimize the reflection coefficient. This will
be done at the end of Section 3.

3 Overlapping Optimized Schwarz Waveform Relaxation

methods for the convection-diffusion equation

The model problem is the same as in Section 2. All the results in the next
three sections can be found in [3]. The general Schwarz Waveform Relaxation
algorithm for two domains Ω1 = (−∞, L) × Rn , Ω2 = (0,∞) × Rn writes:





L(uk+1
1 ) = f in Ω1 × (0, T )

uk+1
1 (·, 0) = u0 in Ω1

B1u
k+1
1 (L, ·) = B1u

k
2(L, ·) in (0, T )




L(uk+1
2 ) = f in Ω2 × (0, T )

uk+1
2 (·, 0) = u0 in Ω2

B2u
k+1
2 (0, ·) = B2u

k
1(0, ·) in (0, T )

A natural generalization of the Schwarz algorithm would be to use B1 and B2

as equal to identity. It can be proved to be convergent with overlap, with a
convergence rate depending of the size of the overlap.

3.1 The optimal Schwarz algorithm

Theorem 1. The Schwarz method converges in two iterations with or without
overlap when the operators Bi are given by:

B1 = ∂x − Λ−, B2 = ∂x − Λ+,

where Λ± are the operators whose symbols are the roots of (2).
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3.2 The approximations by polynomials

As in the case of absorbing boundary conditions, we choose approximate op-
erators:

Ba
1 = ∂x − Λ−

a , Ba
2 = ∂x − Λ+

a

Since Λ− and Λ+ are related by Λ− + Λ+ = a
ν , we choose the approximations

to be such that Λ−
a + Λ+

a = a
ν . We define the error at step k in domain Ωj

to be ek
j . With the same notations as in previous section, and by analogous

computations, we find the recursive relation

êk+2
j (ω, 0, k) = ρ(ω, k, λ−

a , L)êk
j (ω, 0, k)

where the convergence rate ρ(ω, k, λ−
a , L) is given by

ρ(ω, k, λ−
a , L) = R2(ω, k, λ−

a )e(λ−−λ+)L.

It measures the speed of convergence of the algorithm. The smaller it is, the
faster the algorithm is. We rewrite it slightly differently. Let

δ(ω, k) = a2 + 4ν(i(ω + b · k) + ν|k|2 + c). (4)

We can write

λ− =
a − δ1/2

2ν
,

and δ1/2(ω, k) = f(i(ω + b · k) + ν|k|2) is approximated by a polynomial P

in the variable i(ω + b · k) + ν|k|2, and

λ−
a =

a − P

2ν
.

Therefore the convergence rate takes the simple form

ρ(ω, k, λ−
a , L) =

(
P − δ1/2

P + δ1/2

)2

e−2δ1/2L/ν . (5)

In any case, in order to produce a convergent algorithm, we must have,
|ρ| ≤ 1 a.e. and |ρ| < 1 on any compact set in R × Rn. We notice that for a
general polynomial P we can have

lim
(ω,|k|)→+∞

∣∣∣∣
P − δ1/2

P + δ1/2

∣∣∣∣ = 1.
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3.3 Approximate transmission conditions

We consider here approximations of order lower than 1. If P = p + qx ∈ P1,
then

B1 ≡ ∂x − a−p
2ν + q(∂t + b · ∇ − ν∆S + cI),

B2 ≡ ∂x − a+p
2ν − q(∂t + b · ∇ − ν∆S + cI).

Theorem 2. For p > 0, q ≥ 0, p > a2

4ν q, the algorithm is well-posed and
converges with and without overlap.

The case q = 0 corresponds to a polynomial of degree zero. This theorem is
actually a composite of several results : first the algorithm is well-defined in
relevant anisotropic Sobolev spaces : the result relies in trace theorems and
energy estimates. Second the algorithms are convergent : in the non overlap-
ping case, it relies again on energy estimates in each domain, arranged in such
clever way as to cancelled out the terms on the boundary when suming up the
estimates. In the overlapping case, the convergence rate is uniformly strictly
bounded by one. The one-dimensional results can be found in [3], the two-
dimensional case without second order derivatives is treated in V. Martin’s
thesis and published in [8]. Her result extends to the case we present here
without particular effort.

4 The best approximation problems

The convergence rate has two parts: the overlap intervenes in the term

e−2δ1/2L. Thus, in presence of an overlap, high frequency are taken care of
by the overlap. In any case, when numerical schemes are involved, only dis-
crete frequencies are present, and they are bounded from below and above.
Let Yj be the maximum size of the domain in the yj direction/ If δt and
{δy1, · · · , δyn} are the discrete steps in time and space, the frequencies can
be only such that ω ∈ IT , kj ∈ Ij , with IT = ( π

T , π
δt ), and Ij = ( π

Yj
, π

δyj
).

The best approximation problem consists in, for a given n, finding P in Pn

minimizing sup
ω∈IT ,kj∈Ij

|ρ(ω, k, λ−
a , L)|.

Using the forms in (4) and (5), we can rewrite it as, for a given n, finding
P in Pn minimizing

sup
z∈K

∣∣∣∣
P (z) − f(z)

P (z) + f(z)
e−Lf(z)/ν

∣∣∣∣ (6)

where K is a compact set in C+, K = {i(ω + b · k) + ν|k|2, ω ∈ IT , kj ∈
Ij , 1 ≤ j ≤ n}.

4.1 A general result

K is a compact set in C, f a continuous function on K, such that f(K) ⊂
{z ∈ C : Re z > 0}. Define
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δn(l) = inf
p∈Pn

sup
z∈K

∣∣∣∣
p(z) − f(z)

p(z) + f(z)
e−lf(z)

∣∣∣∣ ,

Problem (6) generalizes as:

Find p∗n such that sup
z∈K

∣∣∣∣
p∗n(z) − f(z)

p∗n(z) + f(z)
e−lf(z)

∣∣∣∣ = δn(l)

This is a non classical complex best approximation problem, for two reasons:

first the cost function p(z)−f(z)
p(z)+f(z) is non linear, second there is a weight e−lf(z)

which is rapidly small and allows for large values of p(z)−f(z)
p(z)+f(z) . We have a

fairly complete theory in the non overlapping case : existence, uniqueness,
and equioscillation property. Furthermore any local minimum is global. In the
overlapping case, general results are more restrictive:for l sufficiently small,
there is a solution, any solution equioscillates, and if δn(l)el supz∈K ℜf(z) < 1,
then the solution is unique. In the symmetric case, i.e., if K is symmetric
with respect to the real axis, and if for any z in K, f(z̄) = f(z), then the
polynomial of best approximation has real coefficients. Furthermore for odd
n the number of equioscillations is bigger or equal to n + 3.

4.2 The 1-D case

In this case, the convergence rate actually equioscillates in 3 real points, and
we can have explicit formulae to determine the best polynomial p∗1. Further-
more the constrains on the coefficients for well-posedness are fulfilled. In 2-D,
it is still an open question.When solving by a numerical scheme, the over-
lap is such that L ≈ C1∆x and the space and time meshes are related by
∆t ≈ C2∆xβ , β ≥ 1 (in general β can be 1 or 2). With overlap, for β = 1,
sup|ρ| ≈ 1−O(∆x1/8), while for β = 2, sup|ρ| ≈ 1−O(∆x1/5). Without over-
lap, in both cases, sup|ρ| ≈ 1−O(∆t1/8). Thus, if ∆t ≈ ∆x, the performances
with or without overlap are comparable, if ∆t ≈ ∆x2, the performances are
higher with overlap.

5 Numerical results

In order to check the relevance of the theoretical best approximation, we run
the case ν = 0.2, a = 1, c = 0, Ω = (0, 6), T = 2.5. u(x, 0) = e−3(1.2−x)2 . The
boudary conditions are u(0, t) = 0 and u(6, t) = 0.We chose Ω1 = (0, 3.04),
Ω2 = (2.96, 6), which means L = 0.08. The scheme is upwind in space, back-
ward Euler in time, with ∆x = 0.02, ∆t = 0.005. The initial guess is random.
Figure 3 shows that the theoretical best value of p and q, coefficients of P

(represented by the star), is very close to the one numerically observed.
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Fig. 3. Error after 5 iterations as a function of p and q.

6 Conclusion

We have proposed a complete theory of a best approximation problem arising
in sponge layers or SWR algorithms for parabolic equations. In one dimension
it can be solved explicitely, thus providing the best answers to our questions.
It remains to extend it in three directions: to rational fractions, to higher
order, and to higher dimensions.
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