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 = R�Q, where Q is a bounded domain of R2, and onsider the elliptiPDE of advetion-di�usion-reation type given by�div (ru) + div (bu) + �u = f in 
Bu = g on R� �Q; (1.1)with the additional requirement on the solutions to be bounded at in�nity.After a �nite element, �nite di�erenes or �nite volume disretization, weobtain a large sparse system of linear equations, given byAw = f : (1.2)Under lassial assumtpions on the oeÆients of the problem (e.g. � �12divb > 0 a.e. in 
) the matrix A in (1.2) is de�nite positive.We solve problem (1.2) by means of an Optimized Shwarz Method: suhmethods have been introdued at the ontinuous level in [4℄, and at the dis-rete level in [5℄. We design optimized interfae onditions diretly at the al-gebrai level, in order to guarantee robustness with respet to heterogeneitiesin the oeÆients.1.2 LDU fatorization and absorbing boundaryonditionsIn this setion we enlighten the link between an LDU fatorization of a matrixand the onstrution of absorbing onditions on the boundary of a domain



2 Lua Gerardo-Giorda and Fr�ed�eri Nataf(see [1℄). As it is well known in domain deomposition literature, suh ondi-tions provide exat interfae transmission operators. Let then e
 2 R3 be abounded polyedral domain. We assume that the underlying grid is obtainedas a deformation of a Cartesian grid on the unit ube, so that for suitableintegers Nx, Ny, and Nz, w 2 RNx�Ny�Nz . If the unknowns are numberedlexiographially, the vetor w is a olletion of Nx sub-vetors wi 2 RNy�Nz ,i.e. w = (wT1 ; : : : ; wTNx)T : (1.3)From (1.3), the disrete problem in e
 readsBw = g; (1.4)where g = (g1; ::; gNx)T , eah gi being a Ny�Nz vetor, and where the matrixB of the disrete problem has a blok tri-diagonal strutureB = 0BBBB�D1 U1L1 D2 . . .. . . . . . UNx�1LNx�1 DNx 1CCCCA ; (1.5)where eah blok is a matrix of order Ny �Nz.An exat blok fatorization of the matrix B de�ned in (1.5) is given byB = (L+T)T�1(U +T); (1.6)where L = 0BBBB� 0L1 . . .. . . . . .LNx�1 01CCCCA U = 0BBBB�0 U1. . . . . .. . . UNx�10 1CCCCA ;while T is a blok-diagonal matrix whose nonzero entries are the bloks Tide�ned reursively asTi = 8<:D1 for i = 1Di � Li�1T�1i�1Ui�1 for 1 < i � Nx:So far, we an give here the algebrai ounterpart of absorbing boundaryonditions. Assume g = (0; ::; 0; gp+1; ::; gNx), and let Np = Nx � p + 1. Toredue the size of the problem, we look for a blok matrix K 2 (RNy�Nz)Np ,eah entry of whih is a Ny �Nz matrix, suh that the solution of Kv = ~g =(0; gp+1; ::; gNx)T satis�es vk = wk+p�1 for k = 1; ::Np. The rows 2 throughNpin the matrixK oinide with the last Np�1 rows of the original matrix B. Toidentify the �rst row, whih orresponds to the absorbing boundary ondition,



1 Algebrai OSM for strongly heterogeneous unsymmetri problems 3take as a right hand side in (1.4) the vetor g = (0; ::; 0; gp+1; ::; gNx), and,owing to (1.6), onsider the �rst p rows of the fatorized problem0BBB� T1L1 T2. . . . . .Lp�1 Tp1CCCA0BBB�T�11 T�12 . . . T�1p 1CCCA0BBB�T1 U1T2 U2. . . . . .Tp Up1CCCA0BBB� w1...wpwp+11CCCA = 0B�0...01CA :The �rst two are p� p square invertible matries, so we need to onsider onlythe third one, a retangular p� (p+ 1) matrix: from the last row we getTpwp + Upwp+1 = 0; (1.7)whih, identifying v1 = wp and v2 = wp+1, provides the �rst row in matrixK.Assume then g = (g1; ::; gq�1; 0; ::; 0)T . A similar proedure an be developedto redue the size of the problem, by starting the reurrene in the fatoriza-tion (1.6) from DNx , aseTi = 8<:Di � UiT�1i+1Li for 1 � i < NxDNx for i = Nx;and we an easily obtain the equation for the last row in the redued equationas Lqwq�1 + eTqwq = 0: (1.8)1.3 Optimal interfae onditions for an in�nite layereddomainIn this setion we go bak to problem (1.1), where the domain 
 is in�nitein the x diretion, we onsider a two domain deomposition �
 = �
1 [ �
2,
1 \
2 = ;, where 
1 = R� �Q; 
2 = R+ �Q;and we denote with � = �
1 \ �
2 the ommon interfae of the two subdo-mains. We assume that the visosity oeÆients are layered (i.e. they do notdepend on the x variable), and onsider a disretization on a uniform grid viaa �nite volume sheme with an upwind treatment of the advetive ux.The resulting linear system is given by0�A11 A1� 0A�1 A�� A�20 A2� A22 1A 0�w1w�w2 1A = 0� f1f�f2 1A (1.9)



4 Lua Gerardo-Giorda and Fr�ed�eri Natafwhere wi is the vetor of the internal unknowns in domain 
i (i = 1; 2), andw� is the vetor of interfae unknowns. In order to guarantee the onserva-tivity of the �nite volume sheme, the vetor of interfae unknown onsists oftwo sets of variables, w� = (w� ; w�)T , the �rst one to express the ontinuityof the di�usive ux, the seond to express the ontinuity of the advetive one.If the unknowns are numbered lexiographially, the matrix A is given by
A = 0BBBBBBBBBB�

. . . . . . . . .L1 D1 U1L1 D1� ...0U1� 0� � � � � � 0 L1� D�� U2� 0 � � � � � �0 L2�0... D2� U2L2 D2 U2. . . . . . . . .
1CCCCCCCCCCA ; (1.10)

where the blok D�� is square, whereas the bloks Li� , and Ui� (i = 1; 2)are retangular.By dupliating the interfae variables w� into w�;1 and w�;2, we an de�nea Shwarz algorithm diretly at the algebrai level, as�A11 A1�A�1 T1 ��vk+11vk+1�;1 � = � f 1f� + (T1 �D�� )vk�;2 �A�2vk2 ��A22 A2�A�2 T2 ��vk+12vk+1�;2 � = � f 2f� + (T2 �D�� )vk�;1 �A�1vk1 � : (1.11)As it is well known in literature, if we takeT1 = A�� �A�2A�122 A2� T2 = A�� �A�1A�111 A1� ;the algorithm (1.11) onverges in two iterations. We are in the position togive the following result, the proof of whih will be given in [3℄.Lemma 1. Let A be the matrix de�ned in (1.9), and let T1;1 and T21 besuh that T1;1 = D1 � L1T�11;1U1 and T2;1 = D2 � U2T�12;1L2. We haveA�1A�111 A1� = L1� �D1� � L1 T�11;1 U1��1U1�A�2A�122 A2� = U2� �D2� � U2 T�12;1 L2��1 L2� :Notiing that A�� = D�� , the optimal interfae operators are given byTex1 = D�� � L1� �D1� � L1 T�11;1 U1��1U1�Tex2 = D�� �U2� �D2� � U2 T�12;1L2��1 L2� : (1.12)



1 Algebrai OSM for strongly heterogeneous unsymmetri problems 51.4 Optimized algebrai interfae onditions for anon-overlapping Shwarz methodThe lak of sparsity of the matries Tex1 and Tex2 in (1.12), make them notsuitable to be used in pratie. Thus we hoose for T1 and T2 in (1.11) twosuitable approximations of Tex1 and Tex2 , respetively.At the ost of enlarging the size of the interfae problem, we hoose Tapp1 andTapp2 de�ned as follows:Tapp1 = D�� � L1� �D1� � L1 (T app1;1)�1 U1��1U1�Tapp2 = D�� �U2� �D2� � U2 (T app2;1)�1 L2��1 L2� ; (1.13)where T app1;1 and T app2;1 are suitable sparse approximations of T1;1 and T2;1,respetively. The most natural hoie would be to take their diagonals, but,in order to have a usable ondition, we avoid the omputation of both T1;1and T2;1, whih is too ostly. Notie that if Dj , Lj , and Uj (j = 1; 2) wereall diagonal matries the same would hold also for Tj;1. Moreover, if all thematries involved ommute, or if Lj = UTj , we would haveT1;1 = D12 +r (�L1)1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)1=24 � L1U1:and a similar formula holds for T2;1, with the roles of L2 and U2 exhanged.These onsiderations have led us to onsider the following approximations ofT1;1 and T2;1.Let dj , lj , and uj be the diagonals of Dj , Lj and Uj , respetively.Robin: We hoose in (1.13)T app1;1 = D12 + �opt1 D1;where D1 = diag�pd21�4l1u12 � ; and where the optimized parameter is givenby (�opt1 )2 = max�qr21 + I21 ; qr1R1 � I21� ; (1.14)where we have set r1 := minRe�, R1 := maxRe�, and I1 := max Im�;� 2 � � (�L1)1=2D1(�U1)�1=2(�L1)�1=2D1(�U1)1=24 � L1U1� diag�pd21�4l1u12 ��2,whereas a similar formula holds for T app2;1.Order 2: This ondition is obtained by blending together two �rst orderapproximations, and we haveT app1;1 = L1 �[ eD1;L1℄ + (�1 + �2)L1��1 � eD21 + (�1 + �2) eD1 + �1�2Id�L1U1�



6 Lua Gerardo-Giorda and Fr�ed�eri Natafwhere [:; :℄ is the Lie braket, where eD1 = D�11 D12 , L1 = D�11 L1, U1 = D�11 U1,and where(�1�2)2 = r1 R1 (�1 + �2)2 =q2 (r1 +R1)pr1 R1; (1.15)r1 and R1 being de�ned as before.The tuning of the optimized parameters for both onditions an be foundin [2℄, and a more exhaustive presentation of the onstrution of interfaeonditions and of the numerial tests will be given in a forthoming paper [3℄.The proposed interfae onditions are built diretly at the algebrai level, andare easy to implement. However, thery rely heavily on the approximation ofthe Shur omplement and, if on one hand the extension to a deompositionin strips appears quite straightforward, on the other hand further work needsto be done in order to analyse their salability to an arbitrary deompositionof the omputational domain.Finally, it is easy to prove the following result (see [3℄).Lemma 2. The Shwarz algorithm�A11 A1�A�1 Tapp2 ��vk+11vk+1�;1 � = � f1f� + (Tapp2 �D�� )vk�;2 �A�2vk2 ��A22 A2�A�2 Tapp1 ��vk+12vk+1�;2 � = � f2f� + (Tapp1 �D�� )vk�;1 �A�1vk1 � :onverges to the solution to problem (1.9).1.4.1 SubstruturingThe iterative method an be substrutured in order to use a Krylov typemethod and speed up the onvergene. We introdue the auxiliary variablesh1 = (Tapp2 �D�� ) v�;2�A�2 v2; h2 = �A�1 v1+(Tapp1 �D�� ) v�;1;and we de�ne the interfae operator ThTh : 0�h1h2f 1A 7�! 0��A�1v1 + (Tapp1 �D�� )v�;1(Tapp2 �D�� )v�;2 �A�2v2 1Awhere f = (f1; f� ; f2)T , whereas (v1;v�;1) and (v2;v�;2) are the solutions of�A11 A1�A�1 Tapp2 �� v1v�;1� = � f1f� + h1�and



1 Algebrai OSM for strongly heterogeneous unsymmetri problems 7�A22 A2�A�2 Tapp1 �� v2v�;2� = � f2f� + h2� :So far, the substruturing operator is obtained simply by mathing the on-ditions on the interfae, and in matrix form reads�Id��Th� (h1;h2)T = F; (1.16)where � is the swap operator on the interfae, where F = �Th(0; 0; f), andwhere the matrix Th is given in the following lemma (for proof see [3℄).Lemma 3. The matrix Th in (1.16) is given by0� (Tapp1 �Tex1 ) (Tex1 +Tapp2 �D�� )�1 00 (Tapp2 �Tex2 ) (Tex2 +Tapp1 �D�� )�11A :1.5 Numerial ResultsWe onsider problem (1.1) in 
 = R � (0; 1), with Dirihlet boundary on-ditions at the bottom and a Neumann boundary ondition on the top. Weuse a �nite volume disretization with an upwind sheme for the advetiveterm. We build the matries of the substrutured problem for various inter-fae onditions and we study their spetra. We give in the tables the iterationounts orresponding to the solution of the substrutured problem by a GM-RES algorithm with a random right hand side G, and the ratio of the largestmodulus of the eigenvalues over the smallest real part. The stopping riterionfor the GMRES algorithm is a redution of the residual by a fator 10�10.We onsider both advetion dominated and di�usion dominated ows, anddi�erent kind of heterogeneities. We report here the results for three di�erenttest ases.Test 1: the ow is advetion dominated, the visosity oeÆients are layered,and the subdomains are symmetri with respet to the interfae.Test 2: the ow is di�usion dominated, the visosity oeÆients are layered,but are not symmetri with respet to the interfae.Test 3: the ow is di�usion dominated, the visosity oeÆients are layered,non symmetri w.r.t. the interfae, and anisotropi, with an anisotropy ratioup to order 104.The veloity �eld is diagonal with respet to the interfae and onstant. Thenumerial tests are performed with MATLAB r 6.1. A more detailed desrip-tion of of the test ases as well as futher numerial results an be found in aforthoming paper [3℄.Both onditions perform fairly well, in both terms of iteration ounts andonditioning of the substrutured problem, espeially for the seond orderonditions, that show a good salability with respet to the mesh size.



8 Lua Gerardo-Giorda and Fr�ed�eri Natafp = q = 10 ny 10 20 40 80 160 320Test 1 iter Robin 4 6 8 11 16 23Order 2 4 5 6 8 9 10ond Robin 1.05 1.25 1.68 3.27 6.57 13.51Order 2 1.01 1.02 1.14 1.34 1.61 1.92Test 2 iter Robin 7 10 13 16 19 21Order 2 6 6 8 11 15 19ond Robin 1.61 1.83 2.59 3.52 3.94 4.12Order 2 1.21 1.26 1.30 1.83 2.76 3.68Test 3 iter Robin 9 17 27 35 42 47Order 2 7 10 14 16 19 21ond Robin 5.42 18.27 24.75 31.04 38.32 47.29Order 2 1.54 2.75 4.48 5.92 6.32 6.86Table 1.1. Iteration ounts and ondition number for the substrutured problemin Tests 1-31.6 ConlusionsWe proposed two kind of algebrai interfae onditions for unsymmetri ellip-ti problem, whih appear to be very eÆient and robust in term of iterationounts and onditioning of the problem with respet to the mesh size and theheterogeneities in the visosity oeÆients.Referenes1. B. Engquist and A. Majda. Absorbing boundary onditions for the numerialsimulation of waves. Math. Comp., 31(139):629{651, 1977.2. Lua Gerardo Giorda and Fr�ed�eri Nataf. Optimized Shwarz Methods for un-symmetri layered problems with strongly disontinuous and anisotropi oeÆ-ients. Tehnial Report 561, CMAP (Eole Polytehnique), 2004.3. Lua Gerardo Giorda and Fr�ed�eri Nataf. Optimized Algebrai Shwarz Methodsfor strongly heterogeneous and anisotropi layered problems. Tehnial report,CMAP (Eole Polytehnique) - in preparation, 2005.4. Pierre-Louis Lions. On the Shwarz alternating method. III: a variant for nonover-lapping subdomains. In Tony F. Chan, Roland Glowinski, Jaques P�eriaux, andOlof Widlund, editors, Third International Symposium on Domain Deomposi-tion Methods for Partial Di�erential Equations , held in Houston, Texas, Marh20-22, 1989, Philadelphia, PA, 1990. SIAM.5. F.-X. Roux, F. Magloul�es, S. Salmon, and L. Series. Optimization of interfaeoperator based on algebrai approah. In Ismael Herrera, David Keyes, Olof B.Widlund, and Robert Yates, editors, Domain Deomposition Methods in Sienesand Engineering, pages 297{304. UNAM, 2003. Proeedings from the FourteenthInternational Conferene, January 2002, Cooyo, Mexio.


