Fault Tolerant Domain Decomposition for
Parabolic Problems

Marc Garbey and Hatem Ltaief

Department of Computer Science, University of Houston, Houston, TX 77204 USA
garbeyQcs.uh.edu, ltaief@cs.uh.edu

1 Introduction

The objective of this paper is to present some numerical schemes for the
time integration of parabolic problems that can recover from a failure of the
computer system. We construct an algorithmic solution of the problem in the
context of domain decomposition and distributed computing.

Our model problem is the heat equation:

0

6—1: = Au+ F(z,t), (z,t) € 2x(0,T), upo = g(x), u(z,0) =us(zx). (1)
We suppose that the time integration is done by a first order implicit Euler
scheme,

U7L+1 _ Un
dt
and that {2 is partitioned into N subdomains {2;, j = 1..N. The computa-
tion of these subdomains is distributed among N Processing Units (PUs) or
computers.

We anticipate that one or several PUs may stall or get disconnected. We
complement the distributed architecture of these N PUs, with S additional
PUs called spare processing units.

The problem in designing a Fault Tolerant (FT) code that can survive to
several failures of PUs decomposes as follows:

= AU 4 Pz,), (2)

e (Pb 1) guaranty that if one or several PUs get disconnected the code can
still be executed.

e (Pb 2) provide an algorithm that can restart the time integration from the
data that are available in the distributed memory or file system.

While FT is not so critical for a standard application running for few hours
on a medium scale parallel system, it becomes a real issue for long time runs on

2 Marc Garbey and Hatem Ltaief

a large system or grid computing architecture. In both cases the probability of
failures of computing units becomes almost certain, and parallel input/output
are not as efficient as ordinary check point procedures may require.

Pb1 is solved by middlewares, like FT-MPI [1, 2] for example, which en-
sure the application goes on while some processors have failed. On the other
hand, the application should be FT as well because these middlewares do not
guaranty to get the correct numerical solution after a failure.

In this paper we focus on the design of numerical algorithms that solved
(Pb2) without using global check pointing.

Global checkpointing does not scale on large parallel system and is im-
practical on a grid of computers. Indeed, as the number of nodes and the
problem size increases, the cost of checkpointing and recovery increases, while
the mean time between failures decreases.

The approach we have taken is as follows: spare processors are used to
efficiently store the subdomain data of the application during execution in
local asynchronous mode in their local memory. In case of failure, a spare
processor takes over for the failed processor without the entire system having
to roll back to a globally consistent checkpoint.

The numerical problem that we address can be defined as follows:

e We assume that spare processors have stored copies of all subdomain data
U;L(J),j = 1..N, in their local memory. A priori the time step n(j) # n(k)
for j # k.

e We look for a (parallel) reconstruction process of UM at a common time
step M € (min;{n(j)},maz;{n(j)}), from subdomains data U;l(]),j =
1..N, at different but nearby time steps.

The code can then restart from UM . Because the time interval between two
asynchronous back ups is small, we are looking for a numerical procedure
that is completely explicit and does not require the complexity of a standard
parameter identification method.

In the next section, we will discuss several algorithmic ideas to solve this
problem.

2 The Fault Tolerant algorithms

For the simplicity of the presentation, we will restrict ourselves to the one
dimensional heat equation problem 2 = (0,1), discretized on a regular Carte-
sian grid:
gt vy Upi -apteup 3
dt B h? i
and we assume that dt ~ h.
However, most of the ideas presented here should be generalized easily to
higher space dimension. We will review progressively few numerical methods

Fault Tolerant Domain Decomposition for Parabolic Problems 3

to reconstruct a uniform approximation of UM, from disparate data U") in
each subdomain £2;.

2.1 Interpolation method

Let M = % Yji—1.n n(j). We look for an approximation of U]M in (2.
We assume that we have at our disposal U"U) and U™U) at two time steps
n(j) < m(j), in each subdomain {2;.

Then, if ||[U™) —U™U)||q, is below some tolerance number, we may use a
second order interpolation/extrapolation in time to get an approximation of
UM . The numerical error should be of order ((m(j) — n(j))dt)?. This simple
procedure reduces the accuracy of the scheme and introduces small jump at
the interfaces between subdomains. This method is perfectly acceptable when
one is not interested in accurately computing transient phenomena. However,
this method is not numerically efficient in the general situation.

2.2 Forward Time Integration

Let us assume that for each subdomain, we have access to U™, For simplic-
ity we suppose that n(j) is a monotonically increasing sequence. We further
suppose that we have stored in the memory of spare processors the time his-
tory of the artificial boundary conditions I7" = (2; N §2;4, for all previous
time steps n(j) < m < n(j+1).

We can then reconstruct with the forward time integration of the original
code, the solution U™ as follows:

e Processor one advances in time u} from time step n(1) to time step n(2)
using boundary conditions I7%, n(1) <m < n(2).

e Then, Processors one and two advance in parallel v} and u% from time step
n(2) to n(3) using neighbor’s interface conditions, or the original interface
solver of the numerical scheme.

e This process is repeated until the global solution u™") is obtained.

This procedure can be easily generalized in the situation of Figure 1 where
we do not assume any monotonicity on the sequence n(j). The thick line
represents the data that needs to be stored in spare processors, and the interval
with circles are the unknowns of the reconstruction process.

The advantage of this method is that we can easily reuse the same al-
gorithm as in the standard domain decomposition method, but restricted to
some specific subsets of the domain decomposition. We reproduce then the
exact same information UM as the process had no failures. The main draw-
back of the method is that saving at each time step the artificial boundary
conditions may slow down the code execution significantly. To illustrate this
difficulty, we have implemented a 3D benchmark code with a very simple ex-
plicit/ITmplicit domain decomposition procedure for (1). We refer to [3] for a

4 Marc Garbey and Hatem Ltaief

more sophisticated method along these lines. We use a Krylov method to im-
plicit the time stepping per domain and impose explicitly the boundary values
on the artificial boundaries. The domain of computation 2 = (0,1)3 is dis-
tributed on a two dimensional grid of p, x p, processors. This two dimensional
grid is extended with an additional row of p, spare processors.

We have implemented a totally asynchronous back up of the subdomains
every K time steps. We have also the option to back up in addition all two
dimensional artificial interfaces generated in the sequence of K —1 consecutive
time steps in between two back ups of all subdomains. The communication
between active processors and spare processors is done by non-blocking com-
munication, and the back up data are small enough to fit in the main memory
of spare processors.

t=n(3}

a Cc A space avis BE D 1

Fig. 1. Illustration of the reconstruction procedure with the forward method.

Figures 2 and 3 report on the numerical experiment with 36 PUs and 6
spare processors on two different architectures. Each processor has a block of
18 x 18 x 98 grid points. The first system used in figure 2 is a beowulf cluster
with dual AMD 32 bit processors and a gigabit ethernet network, while the
second system used in figure 3 is a dual Itanium cluster that has a Myrinet
network. While the penalty to back up the subdomain on spare processors is
particularly high with the system that uses Gigabit ethernet, it can be seen
that saving the artificial boundary conditions every time step significantly
slows down the application on both computer architecture systems.

We will now discuss a reconstruction method that produces an approxi-
mate solution without using the time series of artificial boundary conditions.

2.3 Backward Integration and Space Marching

Let us suppose now that we asynchronously store only the subdomain data,
and not the chronology of the artificial interface condition. To be more specific,

Fault Tolerant Domain Decomposition for Parabolic Problems 5

5 save u(.)
—&— save u(.t) and BC

9 time used in saving

1 2 3 4 5 6 7 8 9 10 1 2 3 a 5 6 7 8 9 10
Back up Frequency Back up Frequency

Fig. 2. Overhead with Dual Fig. 3. Overhead with dual Tta-
AMD/Gigabit Ethernet nium/Myrinet Network

we suppose that we have access for each subdomain to the solution at two
different time steps n(i), m(:) with m(i) —n(i) = K >> 1.

The Forward Implicit scheme provides an explicit formula when we go
backward in time:

n+1 n+1 n+1
Ur = U-n+1 — dt Uj“rl B 2UJ + Uj*l
J h2

J
The existence of the solution is granted by the forward integration in time.
Two difficulties are first the instability of the numerical procedure and second
the fact that one is restricted to the cone of dependence as shown in Figure 4.

- an+la (4)

=2

=2}

tirme axis

t=n{t}

o c A space axis B D 1

Fig. 4. Illustration in one space dimension of the problem with the third solution.

‘We have in Fourier modes

up = 6 Up,

6 Marc Garbey and Hatem Ltaief

with 9 N
O ~ =7 (cos(k 2w h) = 1), [k| < 5.

The expected error is at most in the order ;% where v is the machine precision
and K the time step. Therefore, the backward time integration is still accurate

up to time step K with 5

2
To stabilize the scheme, one can use the Telegraph equation that is a
perturbation of the heat equation:

0?u 0*u Ou

— — ==+ = =F(z,t),z € (0,1),t € (0, T 5
oy~ oo = Pz € (0,1),t€ (0.7) (5)
The asymptotic convergence can be derived from [4] after time rescaling. The
general idea is then to use the previous scheme (4) for few time steps and
pursue the time integration with the following one

n+1 n n—1 n n n n+1 n
Uit -20p 4+ URT U —2Up b, UPT U
it i a0

€

Let us notice that the time step dt should satisfy the stability condition dt <
€'/2h. We take in practice dt = dt/p where p is an integer. The smaller is e,
the more unstable is the scheme (6) and the flatter is the cone of dependence.
The smaller is €, the better is the asymptotic approximation. We have done
a Fourier analysis of the scheme and Figure 5 shows that there is a best
compromise for € to balance the error that comes from the instability of the
scheme and the error that comes from the perturbation term in the telegraph
equation. We have obtained a similar result in our numerical experiments.

To construct the solution outside the cone of dependencies we have used a
standard procedure in inverse heat problem that is the so called space march-
ing method [5]. This method may require a regularization procedure of the
solution obtained inside the cone using the product of convolution

ps * u(xw, t),
where

_ie (_ﬁ)
P = 5w P T2

The following space marching scheme:

+1 -1
f - 207 + UR, U - UR

h2 2 dt +E (7)

is unconditionally stable, provided § > \/27‘“.

The last time step U™+ to be reconstructed uses the average

Fault Tolerant Domain Decomposition for Parabolic Problems 7

N=100 ; h=pi/100

100 q

Heat equation
10° L / 4

10" q

Asymptotic
100 L \ i

dt =h

_ Telepgraph Equation
10k / pgraph Eq

100 10

Optimum epsilon

Fig. 5. Stability and error analysis with Fourier

Un(z) + Un(i)+2
-T2

pn(i)+1

We have observed that filtering as suggested in [5] is not necessary in our
reconstruction process.

Figure 6 illustrates the numerical accuracy of the overall reconstruction
scheme that combines (4) and (7) for 2 = (—m,7), dt = h = 0.0314,
K =7 and F such that the exact analytical solution is cos(q z)(sin(gs t) +
1cos(ga t)), q1 = 2.35,¢> = 1.37.

In this specific example our method gives better results than the interpo-
lation scheme provided that K < 7. For larger K we can use the scheme (6)
for time steps below m(i) — 7. However the precision may deteriorate rapidly
in time.

3 Conclusion

We have presented the problem of FT algorithm for a parabolic operator. We
have reviewed several procedures to reconstruct the solution in each subdo-
main from a set of subdomain solutions given at disparate time steps. This
problem is quite challenging because it is very ill posed. We found a satis-
factory solution by combining explicit reconstruction techniques that are a
backward integration with some stabilization terms and space marching. We
are currently applying these ideas to multi-dimensional parabolic problems.

8 Marc Garbey and Hatem Ltaief

x107*

45
a4k 4
35 i
3 4
£ 25F =
S
=4
S
2l 4
15F -
—— forward error
backward error in the cone
1k —+— global error i
—7— error based on interpolation
0.5 i
/(//
//1\ ! ! ! !
0 0.05 0.1 0.15 0.2 0.25

Time

Fig. 6. Numerical accuracy of the overall reconstruction scheme

Acknowledgement Research reported here was supported by Award 0305405
from the National Science Foundation.

References

1. Gabriel, E., Fagg, G., Bukovsky, A., Angskun, T., Dongarra, J., A Fault-Tolerant
Communication Library for Grid Environments, 17th Annual ACM Interna-
tional Conference on Supercomputing (ICS’03) International Workshop on Grid
Computing and e-Science, San Francisco (2003)

2. Gropp and Lusk, Fault Tolerance in Message Passing Interface Programs, In-
ternational Journal of High Performance Computing Applications, 18: 363-372
(2004)

3. C.Dawson and T.Dupont, Explicit/Implicit, Conservative Domain Decomposi-
tion Procedures for Parabolic Problems Based on Block-Centered Finite Differ-
ences, Sinum Vol 31, Issue 4, pp 1045-1061 (1994)

4. W.Eckhaus and M.Garbey, Asymptotic analysis on large time scales for singular
perturbation problems of hyperbolic type, STAM J. Math. Anal. Vol 21, No 4,
pp867-883 (1990)

5. D.A.Murio, The Mollification Method and the Numerical Solution of Ill-posed
Problems, Wiley, New York (1993)

