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In the past years, Domain Decomposition Methods (DDM) emerged as ad-
vanced solvers in several areas of Computational Mechanics. In particular,
during the last decade, in the area of Solid and Structural Mechanics, they
reached a considerable level of advancement and were shown to be more ef-
ficient than popular solvers, like advanced sparse direct solvers. The present
contribution follows the lines of a series of recent publications by the authors
on DDM. In these papers, the authors developed a unified theory of primal
and dual methods and presented a family of DDM that were shown to be
more efficient than previous methods. The present paper extends this work,
presenting a new family of related DDM, thus enriching the theory of the
relations between primal and dual methods.

1 Introduction

In the last decade Domain Decomposition Methods (DDM) have undergone
a significant progress leading to a large number of methods and techniques,
capable of giving solution to various problems of Computational Mechanics. In
the field of Solid And Structural Mechanics, in particular, this fruitfull period
led to the extensive parallel development of two large families of methods: (a)
the Finite Element Tearing and Interconnecting (FETI) methods and (b) the
Balancing Domain Decomposition (BDD) methods. Both introduced at the
beginning of the 90s [FR91,Man93], these two categories of methods today
include a large number of variants. However, their distinct theories led to
the lack of extensive studies to interconnect them in the past. Thus, in the
present decade two studies [KW01,FP03] attempted to determine the relations
between the two methods.
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In particular, the studies [FP03,FP04] set the basis of a unified theory
of primal and dual DDM. This effort also led to the introduction of a new
family of methods, under the name “Primal class of FETI methods”, or in
abbreviation “P-FETI methods”. These methods are derived from the Dirich-
let preconditioned FETI methods. They, thus, inherit the high computational
efficiency properties of these methods, while their primal flavour gives them
increased efficiency and robustness in ill-conditioned problems. However, so
far there has not been presented a primal alternative for the lumped precon-
ditioned FETI methods. Filling this hole is the object of the present study
and even though the new formulations do not appear to share the same ad-
vantages as the P-FETI formulations, they serve the purpose of diversifying
our knowledge of the relations of primal and dual methods.
This paper, thus, presents the primal alternatives of the lumped precon-

ditioned FETI methods and is organised as follows: Section 2 presents the
base formulation of the introduced methods and section 3 transforms the al-
gorithms in a more economical form. Section 4 presents numerical results for
comparing the new formulation with previous ones and section 5 gives some
concluding statements.

2 Basic formulation of the primal alternatives of the
FETI methods equipped with the lumped preconditioner

The P-FETI methods were built on the concept of preconditioning the Schur
complement method with the first estimate of displacements obtained during
the FETI methods. Accordingly, the primal counterparts of the lumped pre-
conditioned methods will be obtained by similarly preconditioning the intact
global problem. Thus, the following equation

Ku = f ⇔ LT KsLu = LT fs (1)

will be preconditioned with the first displacement estimate of a FETI method.
In eq. (1), K, u, and f represent the global stiffness matrix, displacement and
force vectors, respectively, while

Ks =

K(1)

. . .
K(ns)

 , us =

u(1)

...
u(ns)

 , fs =

 f (1)

...
f (ns)

 (2)

are the matrix block-diagonal assemblage of the correponding quantities of
subdomains s = 1, ..., ns and L is a Boolean restriction matrix, such that
us = Lu. Using the original FETI formulation, usually refered to as “one-
level FETI” or “FETI-1”, the following preconditioner for (1) is derived (this
equation is obtained following an analysis almost identical to [FP03, section
6]):
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Ã−1 = LT
p Ãs−1Lp (3)

where:

Ãs−1 = HT Ks+H , H = I −BT QG(GT QG)−1RsT

, G = BRs (4)

Here, Rs andKs+ are the block-diagonal assemblage of subdomain zero energy
modes and generalized inverses of subdomain stiffness matrices, respectively,
B is a mapping matrix such that null(B) = range(L), Q is a symmetric
positive definite matrix used in the FETI-1 coarse projector (see for instance
[BDF+00]), while Lp and Bp are scaled variants of L and B (see the expres-
sions gathered from various DDM papers in [FP03]). Similar ideas lead to
the corresponding preconditioners that are derived from other FETI variants.
Comparing the lumped preconditioned FETI-1 method with the method of
this section, it is noted that the present method has a significantly higher
computational cost, because it operates on the full displacement vector u of
the structure and also needs multiplications with the full stiffness matrices of
the subdomains. In order to diminish its cost, this algorithm will be trans-
formed into a more economical version, by respresenting its primal variables
with dual variables.

3 Change of variables

The primal variables of the algorithm of the previous section will be repre-
sented with dual variables, based on the theorem: If the initial solution vector
of the PCG algorithm applied for the solution of eq. (1) , with the precondi-
tioner of eq. (3), is set equal to (In the following of this section we use the
notation and steps of Algorithm 1):

u0 = Ã−1f (5)

then there exist suitable vectors (denoted below with the subscript “1”), such
that the following variables of the PCG can be written in the forms (k =
0, 1, ...):

zk = −LT
p Ãs−1BT zk

1 , pk = −LT
p Ãs−1BT pk

1 (6)

rk = LT KsBT
p rk
1 , qk = LT KsBT

p qk
1 (7)

Eqs. (6) - (7) allow expressing the PCG vectors, which have the size of the
total number of degrees of freedom (d.o.f.), with respect to vectors whose size
is equal to the row size of matrix B (which in turn is equal to the number of
Lagrange multipliers used in dual DDM). They thus allow reducing the cost of
the algorithm. The relatively small length of the present paper does not allow
a full description of the proof for the above theorem. This proof is obtained
by following the steps of the PCG and thus proving recursively the eqs. (6)
- (7) (The full proof can be found in a larger version of this paper [FP05]).
Using eqs. (6) - (7) and the definitions:
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• Initialize

r0 = f −Ku0 , z0 = Ã−1r0 , p0 = z0 , q0 = Kp0 , η0 = p0
T

r0

p0T q0

• Iterate k = 1, 2, ... until convergence

uk = uk−1 + ηk−1pk−1 , rk = rk−1 − ηk−1qk−1 , zk = Ã−1rk

pk = zk −
k−1∑
i=0

zkT
qi

piT qi
pi , qk = Kpk , ηk = pkT

rk

pkT qk

Algorithm 1. The PCG algorithm for solving system Ku = f preconditioned
with Ã−1 (full reorthogonalization)

zk
2 = BÃs−1BT zk

1 , zk
3 = BpK

sBT
p zk
2 (8)

pk
2 = BÃs−1BT pk

1 , pk
3 = BpK

sBT
p pk
2 (9)

rk
2 = BpK

sBT
p rk
1 , rk

3 = BÃs−1BT rk
2 (10)

qk
2 = BpK

sBT
p qk
1 , qk

3 = BÃs−1BT qk
2 (11)

it is thus shown following the proof of the above theorem that the PCG al-
gorithm for solving eq. (1) with preconditioner of eq. (3) is transformed into
Algorithm 2 (in the case of full reorthogonalization). In Algorithm 2, it is
worth noting that even though the formulation is primal, the final algror-
ithm is very similar to the algorithm of the FETI-1 method with the lumped
preconditioner. In particular:

• The matrices BÃs−1BT and BT
pb

Ks
bbB

T
pb
that are used during the iterations

are equal to the FETI-1 matrix operator and lumped preconditioner, re-
spectively.

• The algorithm iterates on vectors of the size of the Lagrange multipliers.
• The residual vanishes in internal d.o.f. of the subdomains, when these d.o.f.
are not adjucent to the interface, again as in FETI-1 with the lumped
preconditioner.

On the other hand, each iteration of the present algorithm requires more lin-
ear combinations of vectors than a dual algorithm. These operations become
important in the case of reorthogonalization. In this case, the required dot
products zkT

1 (q
i
3−qi

1), i = 0, ..., k−1 imply the same computational cost as in
FETI-1, because at each iteration qk

3 − qk
1 is computed and stored. However,

compared to FETI-1, this algorithm requires twice as many linear combina-
tions for computing the vectors pk

1 and pk
2 , that represent the direction vectors

pk. In total, in this algorithm reorthogonalization requires 50% more floating
point operations than in FETI-1. In addition, while FETI-1 reorthogonaliza-
tion requires storing two vectors per iteration, here it is required to store the
three vectors pk

1 , p
k
2 and qk

3 − qk
1 , which implies 50% higher memory require-

ments for reorthogonalization in Algorithm 2.
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• Initialize

u0 = LT
p Ãs−1Lpf , ũ0 = 0 , r01 = BÃs−1Lpf

r0 =

[
LT

b Ks
bb

Ks
ib

]
BT

pb
r01 , p01 = z01 = BT

pb
Ks

bbB
T
pb

r01

q01 = p02 = r03 = z02 = BÃs−1BT z01 , q0 =

[
LT

b Ks
bb

Ks
ib

]
BT

pb
q01

p03 = q02 = BT
pb

Ks
bbB

T
pb

q01 , η0 = (p0
T

3 −p0
T

1 )r
0
1

(p0T

3 −p0
T

1 )q
0
1

• Iterate k = 1, 2, ... until convergence (
∥∥rk

∥∥ < ε)

ũk
1 = ũk

1 + ηk−1pk−1
1 , rk = rk−1 − ηk−1qk−1 , rk

1 = rk−1
1 − ηk−1qk−1

1

zk
1 = rk

2 = rk−1
2 − ηk−1qk−1

2 , rk
3 = zk

2 = BÃs−1BT zk
1

qk−1
3 =

(
1
/
ηk−1) (

rk−1
3 − rk

3

)
, pk

1 = zk
1 −

k−1∑
i=0

zkT

1 (qi
3−qi

1)

piT

1 (q
i
3−qi

1)
pi
1

qk
1 = pk

2 = zk
2 −

k−1∑
i=0

zkT

1 (qi
3−qi

1)

piT

1 (q
i
3−qi

1)
pi
2 , qk =

[
LT

b Ks
bb

Ks
ib

]
BT

pb
pk
2

pk
3 = qk

2 = BT
pb

Ks
bbB

T
pb

pk
2 , ηk = (pkT

3 −pkT

1 )r
k
1

(pkT

3 −pkT

1 )q
k
1

• After convergence

uk = u0 − LT
p Ãs−1BT ũk

1

Algorithm 2: The primal alternative of the FETI-1 method with the lumped
preconditioner (full reorthogonalization)

4 Numerical results

We have implemented the FETI-1 and FETI-DP methods with the lumped
preconditioner and their primal alternatives in our Matlab code and we con-
sider the 3-D elasticity problem of Fig. 1. This cubic structure is composed
of five layers of two different materials and is discretized with 28 × 28 × 28
8-node brick elements. Additionally, it is pinned at the four corners of its
left surface. Various ratios EA/EB of the Young modulus and ρA/ρB of the
density of the two materials are considered in the paper, while their Poisson
ratio is set equal to νA = νB = 0.30. Two decompositions P1 and P2 of this
heterogeneous model of 73, 155 d.o.f. in 100 subdomains, are considered (see
[FP03] for details).
Table 1 presents the iterations required by primal and dual formulations of

the lumped preconditioned FETI-1 method. The results show that like in the
case of comparing dual and primal formulations of the Dirichlet preconditioned
FETI methods, the iterations of the two formulations of the lumped precondi-
tioned FETI-1 methods are comparable. More precisely, it is noted that in the
more ill-conditioned cases the primal method performs slightly less iterations
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(up to 11%) than the dual one. In fact, judging also from many other tests
that we have performed comparing the two formulations of FETI-1 and FETI-
DP with the lumped preconditioner, it appears that the difference between
the number of iterations of primal and dual formulations in ill-conditioned
problems is more pronounced in the case of the lumped preconditioner than
in the case of the Dirichlet preconditioner. A probable explanation is that the
lumped preconditioned methods lead by themselves to more ill-conditioned
systems than the Dirichlet ones.
On the other hand, bearing in mind that the primal formulation implies a

50% higher reorthogonalization cost, we conclude that statistically the primal
formulation will be probably slower than the dual one in well-conditioned
problems and probably faster in ill-conditioned problems with relatively low
reorthogonalization cost. In addition, in the case of the lumped preconditioner,
our results do not show the increased robustness (measured in terms of the
maximum achievable solution accuracy in ill-conditioned problems) of the
primal formulation that has been seen in the case of the P-FETI formulations.
A probable explanation of this observation is given by the increased operations
required in each iteration of the primal algorithm as oposed to the dual one
and also by the fact that due to setting the initial solution vector equal to eq.
(20), the initial residual of the primal methods is equal to the initial residual
of the dual methods (see the expression of the residual r0 in Algorithm 2,
which is equal to the initial residual of the FETI-1 method). Thus, contrary
to the P-FETI formulations, the residuals of the primal formulations of the
lumped preconditioned FETI methods begin from relatively high values, as
in the dual formulations.

5 Conclusions

The roots of the presented in this paper work can be traced back to the paper
[FP03]. This paper introduced the P-FETI methods, as the primal alternatives
of the Dirichlet preconditioned FETI methods. Compared to the original FETI
formulations, the P-FETI methods present the advantage of being more robust
and faster in the solution of ill-conditioned problems. [FP03] also introduced
an open question of the existence or not of a primal alternative for the lumped
preconditioned FETI methods. In the last years it has become clear that
the the lumped preconditioner leads to faster solutions, in the cases where a
problem needs to be decomposed in a relatively small number of subdomains.
This case and also the case where the lumped precondtioner leads to less
memory consumption (in large problems where memory consumption can be
the main issue), appear to be the uses of the lumped preconditioner in modern
DDM practice.
The present work introduces the primal alternatives of the lumped precon-

ditioned FETI methods. These new formulations do not appear to present the
advantages of the P-FETI formulations, since they are slightly slower or faster
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Fig. 1. A cubic structure composed of two materials

Table 1. Number of iterations (Tolerance:10−3) of the lumped Preconditioned
FETI-1 method and its primal alternative for the solution of the example of Fig. 1

Ratio of Young
moduli

Type of decom-
position

Dual formulation Primal formula-
tion

100 P1 25 24
103 P1 44 41
103 P2 25 24
106 P1 30 26
106 P2 53 47

than their dual counterparts depending on the problem and do not exhibit
higher robustness properties than the dual methods. Their principal value lies
in the fact that they add a new level of completion to the theory of the re-
lations of primal and dual methods. The fact that a primal algorithm can be
turned to an algorithm which uses dual operators and vectors appears to be
new in DDM literature. It is also worth noting that the same transformations
used in this paper can be used in the P-FETI and the BDD methods in order
to transform them into algorithms that operate on dual quantities. This and
many other recent studies [KW01,MDT03] show more and more that primal
and dual formulations are closely connected.
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