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Abstract
Quantization has diverse applications in many areas of science and
engineering. In this paper, we present a new nonlinear multilevel al-
gorithm that accelerates existing numerical approaches for finding
optimal quantizers. Both theoretical framework for the convergence
analysis and results of computational experiments are provided.

1 Introduction

A vector quantizer maps N -dimensional vectors in the domain Ω ⊂ RI N

into a finite set of vectors {zi}
k
i=1 . Each vector zi is called a code vector or

a codeword, and the set of all the codewords is called a codebook. A special
quantization scheme is given by the Voronoi tessellation which associates with
each codeword zi , also called a generator, a nearest neighbor region that is
called a Voronoi region {Vi}

k
i=1 . That is, for each i , Vi consists of all points

in the domain Ω that are closer to zi than to all the other generating points,
and a Voronoi tessellation refers to the tessellation of a given domain by
the Voronoi regions {Vi}

k
i=1 associated with a set of given generating points

{zi}
k
i=1 ⊂ Ω .

For a given density function ρ defined on Ω , we may define the centroids,
or mass centers, of regions {Vi}

k
i=1 by

z∗i =
(

∫

Vi

yρ(y) dy
)(

∫

Vi

ρ(y) dy
)−1

. (1)

Then, an optimal quantization may be constructed through a centroidal
Voronoi tessellation (CVT) for which the generators of the Voronoi tessella-
tion themselves are the centroids of their respective Voronoi regions, in other
words, zi = z∗i for all i . Besides providing an optimal least square vector
quantizer design in electrical engineering applications [6],[7],[16], the concept
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of CVT has other diverse applications in many areas of science and engineer-
ing, such as image and data analysis, resource optimization, sensor networks,
and numerical partial differential equations [1],[2],[8],[9],[12],[14]. We refer to
[1] for a more comprehensive review of the mathematical theory and diverse
applications of CVTs.

In the seminal work of Lloyd on the least square quantization [13], one
of the algorithms proposed for computing optimal quantizers is an iterative
algorithm consisting of the following simple steps: starting from an initial
quantization (a Voronoi tessellation corresponding to an old set of generators),
a new set of generators is defined by the mass centers of the Voronoi regions.
This process is continued until certain stopping criterion is met.

Given a set of points {zi}
k
i=1 and a tessellation {Vi}

k
i=1 of the domain,

we may define the energy functional or the distortion value for the pair
({zi}

k
i=1, {Vi}

k
i=1) by:

H
(

{zi}
k
i=1, {Vi}

k
i=1

)

=
k

∑

i=1

∫

Vi

ρ(y)|y − zi|
2 dy .

The minimizer of H , that is, the optimal quantizer, necessarily forms a CVT
which illustrates the optimization property of the CVT [1]. The terms optimal
quantizer and CVT are thus to be used interchangeably in the sequel. It is
also easy to see that the Lloyd algorithm is an energy descent iteration, which
gives strong indications to its practical convergence.

Lloyd’s algorithms sparked enormous research efforts in later years [7],[8],[9]
and their variants have been proposed and studied in many contexts for differ-
ent applications. For modern applications of the CVT concept in large scale
scientific and engineering problems such as data communication and mesh
generation, efficient algorithms for computing the CVTs play crucial roles. In
this short paper, we first discuss some convergence theory recently derived in
[3] on the Lloyd’s algorithm to motivate our ongoing work. Then we outline a
new multilevel approach to the optimal quantization problem introduced re-
cently in [4],[5] which can be used to accelerate the convergence of the Lloyd’s
algorithm. We discuss the idea of a dynamic nonlinear preconditioner and also
give a convergence theorem as well as some numerical results.

2 Convergence properties of the Lloyd’s iteration

Even with their great success in practice, only limited rigorous results on
the convergence properties of Lloyd’s iteration have been obtained and many
important computational issues remain to be explored [1]. Some important
characterizations of convergence for the Lloyd’s scheme have been obtained
recently in [3]. The results stated below demonstrate the global convergence
properties of the Lloyd iteration and its relationship to the critical points of
the energy functional.
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Theorem 2.1 Any limit point of Lloyd algorithm is a fixed point of the Lloyd
map, and this determines a stationary point of H . The set of limit points
share the same distortion value H for a given iteration.

Theorem 2.2 If the iterations in the Lloyd algorithm stay in a compact set
where the Lloyd map T is continuous, then the algorithm is globally conver-
gent to a critical point of H .

We refer to [3] for the proofs and further discussions of related results.
Beyond the study on the global convergence, the characterization of the

convergence rate is often also important in practice. For instance, one may
inquire if a geometric convergence rate can be established. This is indeed
verified in [1] for the constant density function and later in [3] under strong
type of log-concavity conditions, where the established geometric convergence
rate r is shown to be of the order of 1 − ck−2 , so that the Lloyd method
slows down for large values of k , the total number of generators. Even in
the one-dimensional case, both our theoretical estimates and the experiments
indicate that the convergence of Lloyd iterations is at most linear.

3 The new energy-based nonlinear multilevel algorithm

The evidence of slow convergence of the Lloyd iteration and its descent prop-
erties motivated our search for a Lloyd iteration based numerical scheme with
superior convergence properties.

One possible approach to the problem of speeding up convergence for
Lloyd’s method is to use a domain or space decomposition (or multigrid)
strategies ([4],[5],[10],[11]). There are many ways one could implement such
an algorithm in the context of CVTs. However, the problem of constructing
a CVT is nonlinear in nature and hence cannot be analyzed using standard
linear multigrid theory. Without using any type of linearization techniques,
we hope to overcome the difficulties of the nonlinearity by essentially relying
on the energy minimization.

3.1 Description of the algorithm

Our motivation in using the energy minimization approach was the optimality
property of the CVTs mentioned above. The optimality property implies that
at the optimal quantizer ∇H = 0 .

Since the energy functional is in general non-convex, we use a dynamic
nonlinear preconditioner to relate our problem to a convex optimization
problem. More precisely, denote R = diag{R−1

i }, i = 1, . . . , k + 1 where
Ri =

∫

Vi
ρ(y) dy are the masses of the corresponding Voronoi cells. We ar-

rive at an equivalent formulation of the minimization problem: R∇H = 0 , or
min ||R∇H||2 . This preconditioning makes the energy functional convex in a
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large neighborhood of the minimizer and therefore the new formulation has
advantages over the original problem. Hence if we define the set of iteration
points W by

W = {(wi)|
k+1

i=0
| 0 = w0 ≤ wi ≤ wi+1 ≤ wk+1 = 1, ∀0 ≤ i ≤ k} ,

we can base our new multilevel algorithm on the following nonlinear optimiza-
tion problem

min
Z∈W

H̃(Z), where H̃(Z = {zi}
k+1

i=0
) = ||R∇H({zi}

k
i=1, {Vi}

k
i=1)||

2 (2)

where {Vi}
k
i=1 is the Voronoi tessellation corresponding to the generators

{zi}
k
i=1 . For simplicity, consider the CVT on the one-dimensional unit in-

terval [0, 1] . Let Sk be the space of continuous piecewise linear func-
tions with respect to the uniform partition of mesh size 1/(k + 1) with
a hierarchical basis {{ψi

j}
ni

j=1
}H

i=1 , where H is the number of levels. Let

ψ̄i
j = {ψi

j(
m

k+1
)}k+1

m=0 ∈ R
k+2 and set Wi = span{ψ̄i

j}
ni

j=1
. Using the above

notations, we design a multilevel successive subspace correction algorithm as
follows:

Algorithm 3.1 (Successive correction V (ν1, ν2) scheme)
Input:

Ω, the domain of interest; ρ, a probability distribution on Ω;
k, number of generators;

Z = {zi}
k+1

i=0
∈ W, the ends plus the initial set of generators.

Output:

Z = {zi}
k+1

i=0
, the ends plus the set of generators for CVT {Vi}

k
i=1.

Method:
1. For i=H:-1:2

Repeat ν1 times:
given Z, find Z = Z + α0

j ψ̄
i
j ∈ W sequentially for 1 ≤ j ≤ ni

such that H̃(Z + α0
j ψ̄

i
j) = minαj

H̃(Z + αjψ̄
i
j)

endfor
2. Z ←CoarseGridSolve(Z)
3. For i=2:1:H

Repeat ν2 times:
given Z, find Z = Z + α0

j ψ̄
i
j ∈ W sequentially for 1 ≤ j ≤ ni

such that H̃(Z + α0
j ψ̄

i
j) = minαj

H̃(Z + αjψ̄
i
j)

endfor
4. Repeat the procedure 1 to 3 until some stopping criterion is met.

Each step of the procedure outlined above involves solving a system of
nonlinear equations which plays the role of relaxation. Solution at current
iterate is updated after each nonlinear solve by the Gauss-Seidel type pro-
cedure, hence the resulting scheme is successive in nature. The more general
algorithm and convergence results are given in our subsequent works.
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It is worth noting that in the 1-dimensional case the set of basis functions

Qi = [ψ̄i
1, . . . , ψ̄

i
ni

]T ∈ Rni×k

used at each iteration can be pre-generated using the recursive procedure:
Q1 = Ik×k and Qs = (Πs

i=1Pi)Q1 where Pi is the basis transformation
from space Wi+1 to Wi which plays a role of a restriction operator.

Supply W with the following norm:

||y||21,W =
1

k

k+1
∑

i=1

(yi − yi−1)
2

Theorem 3.1 Algorithm 3.1 converges uniformly in W for any density of
the type ρ(x) = 1 + εg(x) , where g(x) is smooth and ε is small. Moreover,
dn = H̃(un) − H̃(u) satisfies

dn ≤ rdn−1, r ∈ (0, 1)

for some constant r = C
1+C , where C = C2

1C2
2L/K3 , independent of the

number of generators or the number of layers.

To prove this result, we follow the framework of [15]. The key steps include
demonstrating that for all densities of the given type there exist constants
K > 0, L > 0, p ≥ q > 1 such that

K||w − v||21,W ≤ (H̃′(w) − H̃′(v), w − v) ≤ L||w − v||21,W,∀w, v ∈ W.

Moreover, the space decomposition (e.g. for the hierarchical basis) satisfies:
1) for any v ∈ W , there exist vi ∈ Wi such that

H
∑

i=1

vi = v , (

H
∑

i=1

||vi||
2
1,W)1/2 ≤ C1||v||1,W ;

2) for any wij ∈ W, ui ∈ Wi, vj ∈ Wj , we have

H
∑

i,j=1

(H̃′(wij + ui) − H̃′(wij), vj) ≤ C2(
H

∑

i=1

||ui||
2
1,Wi

)1/2(
H

∑

j=1

||vj ||
2
1,Wj

)1/2 .

The complete proof is given in [4] and is omitted here.

Corollary 3.2 For the hat basis, we may take C1 = 1 and C2 = 2L , and
when ρ(x) = 1 , C = 4 .

It follows that for a suitable choice of decomposition in 1D the asymptotic
convergence factor of our multilevel algorithm is independent of the size of
the problem and the number of grid levels, which gives a significant speedup
comparing to other methods, like the traditional Lloyd iteration. We justify
this in the numerical examples that follow.
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3.2 Numerical results

Below are the computational results obtained for the V(1,1) multigrid imple-
mentation of the new algorithm in comparison with the regular Gauss-Seidel

performance. We plot the convergence factor ρ ≈
zn+1 − zn

zn − zn−1

for each V(1,1)

cycle with respect to the total number of generators (grid points) involved.
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Fig. 1. Plot of the convergence factor over the number of generators for

the multigrid method vs. regular Gauss-Seidel method for ρ(x) = 1 and

ρ(x) = 1 + 0.1x

Figure 1 justifies the fact that the speed of convergence for the proposed
scheme does not grow with the number of generators, while Table I shows the
stabilization of the number of multigrid cycles V (ν1, ν2, µ) needed to reduce
the error to ε = 10−12 .

k/V (ν1, ν2) V(1,0) V(0,1) V(1,1) V(2,0) V(0,2) V(2,2)

3 7 8 6 6 7 4

5 11 11 8 8 8 6

9 13 14 9 9 9 7

17 18 18 12 12 12 8

33 21 20 13 12 13 8

65 21 22 12 12 12 8

129 21 21 12 12 12 8

257 20 23 12 12 13 7

513 20 22 12 11 13 7

1025 19 22 11 11 13 7

Table I. Number of V (ν1, ν2) cycles needed to reduce the error

to machine zero vs. the number of generators.

The geometric rate of energy and error reduction asserted by the Theo-
rem 3.1 is confirmed by the experiments. Indeed, Figure 2 shows convergence
history of a V (1, 1) -cycle vs. total number of relaxations for the k = 64 case.
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Fig. 2. (a) Convergence history for k = 64 generators (log-normal

scale); (b)Energy reduction for k = 64 generators (log-normal scale)

The results for other nonlinear densities, though not shown here, also com-
ply with the theoretical conclusions reached above (see [4] ). Multidimensional
extensions are discussed in [5] .

4 Applications

CVTs have a rich field of applications in various areas of mathematics as well
as engineering. Here we provide a couple of geometric examples to give a flavor
of the kind of problems that benefit from the study of this concept.

Figure 3 shows tessellations of the sphere for different density functions
and an example of mesh generated by means of CVT. The point distributions

Fig. 3. (a),(b) Examples of CVTs for a sphere; (c) CVT-based mesh for

the cube

generated via CVT can be used for vector quantization, optimal resource al-
location, image compression, mesh generation and in many other applications
[1] . In many of these applications, the efficiency of the numerical scheme plays
a crucial role, so possible new approaches in accelerating existing numerical
methods such as the multilevel approach discussed here are very important.
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5 Conclusion

We introduced a new energy-based multilevel method for the optimal quanti-
zation where a dynamic nonlinear preconditioning is adopted to take advan-
tage of a nonlinear convex optimization setting. Uniform convergence of the
method with respect to the grid size and the number of grid levels and signif-
icant speedup comparing to Lloyd’s method were demonstrated. More works
are under way for the analysis of the multilevel scheme in higher dimensions.
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