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Summary. The focus of this paper is a penalty-based strategy for preconditioning
elliptic saddle point systems. As the starting point, we consider the regularization
approach of Axelsson in which a related linear system, differing only in the (2,2)
block of the coefficient matrix, is introduced. By choosing this block to be negative
definite, the dual unknowns of the related system can be eliminated resulting in a
positive definite primal Schur complement. Rather than solving the Schur comple-
ment system exactly, an approximate solution is obtained using a preconditioner.
The approximate primal solution together with the recovered dual solution then de-
fine the preconditioned residual for the original system. The approach can be applied
to a variety of different saddle point problems.

Although the preconditioner itself is symmetric and indefinite, all the eigenval-
ues of the preconditioned system are real and positive if certain conditions hold.
Stronger conditions also ensure that the eigenvalues are bounded independently of
mesh parameters. An interesting feature of the approach is that conjugate gradients
can be used as the iterative solution method rather than GMRES.

The effectiveness of the overall strategy hinges on the preconditioner for the
primal Schur complement. Interestingly, the primary condition ensuring real and
positive eigenvalues is satisfied automatically in certain instances if a Balancing
Domain Decomposition by Constraints (BDDC) preconditioner is used. Following an
overview of BDDC, we show how its constraints can be chosen to ensure insensitivity
to parameter choices in the (2,2) block for problems with a divergence constraint.
Examples for different saddle point problems are presented and comparisons made
with other approaches.

1 Introduction

We consider linear systems »
A BT

B −C

– »
u
p

–
=

»
b
0

–
(1)

arising from finite element discretizations of saddle point problems. The matrix A
is assumed to be symmetric and positive definite on the kernel of B. The matrix
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B is assumed to have full rank and C is assumed to be symmetric and positive
semidefinite. The primal and dual vectors are denoted by u ∈ Rn and p ∈ Rm,
respectively. For example, in the case of Stokes flow and incompressible elasticity, the
primal and dual variables are associated with velocity–pressure and displacement–
pressure, respectively.

Several preconditioners for (1) have been investigated. Many approaches are
based on preconditioning the dual Schur complement C + BA−1BT by a matrix
that is spectrally equivalent to the dual mass matrix. Examples include block di-
agonal preconditioners [17], block triangular preconditioners [9], and inexact Uzawa
approaches [7]. Reformulation of the saddle point problem in (1) as a symmetric
positive definite system was considered in [3] that permits an iterative solution
using the conjugate gradient algorithm. Overlapping Schwarz preconditioners in-
volving solutions of both local and coarse saddle point problems were investigated
in [10]. More recently, substructuring preconditioners based on balancing Neumann-
Neumann methods [15, 8] and FETI-DP [11] were studied.

Our approach builds on the idea of preconditioning indefinite problems using a
regularization approach [1] introduced by Axelsson. Preconditioning based on reg-
ularization is motivated by the idea that the solution of a penalized problem is
close to that of the original constrained problem. We present theory and numeri-
cal results that extends [1] to cases where the penalized primal Schur complement
SA = A + BT C̃−1B is preconditioned rather than factored directly. Here, C̃ is a
symmetric positive definite penalty counterpart of C in (1).

The preconditioner for (1) is most readily applied to discretizations employing
discontinuous interpolation of the dual variable. In such cases the dual variable can
be eliminated at the element level and SA has the same sparsity structure as A.
Consequently, preconditioning strategies available for A can also be used for SA. As
will be shown, the effectiveness of the overall approach hinges on the preconditioner
for SA.

Significant portions of this paper are based on two recent technical reports [6, 5].
Material taken directly from [6] includes a statement, without proof, of its main
result in Section 2 and a form of the preconditioner suited for conjugate gradents
in Section 3. New material related to [6] includes additional theory for the special
case of C = 0 in Section 2 and an extension of numerical results in Tables 5.1 and
5.2 of the cited reference in Section 6. An overview of the BDDC preconditioner
is provided in Section 4. In Section 5 we show how to choose the constraints in
BDDC to accommodate problems with a divergence constraint. Numerical examples
in Section 6 confirm the theory and demonstrate the excellent performance of the
preconditioner. Comparisons are also made with block diagonal and block triangular
preconditioners for saddle point systems.

2 Preconditioner and Theory

The penalized primal Schur complement SA is defined as

SA = A + BT C̃−1B (2)

where C̃ is symmetric and positive definite. Since A is assumed to be positive definite
on the kernel of B, it follows that SA is positive definite. We consider a preconditioner
M of the form
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M =

»
I BT C̃−1

0 −I

– »
ŜA 0

0 −C̃

– »
I 0

C̃−1B −I

–
(3)

where ŜA is a preconditioner for SA. The action of the preconditioner on a vector r
(with primal and dual subvectors ru and rp) is»

zu

zp

–
=

»
I 0

C̃−1B −I

– »
Ŝ−1

A 0

0 −C̃−1

– »
I BT C̃−1

0 −I

– »
ru

rp

–
(4)

leading to the two step application of M−1r as

1. Solve ŜAzu = ru + BT C̃−1rp for zu,
2. Solve C̃zp = Bzu − rp for zp.

Each application of the preconditioner requires two solves with C̃ and one solve with
ŜA.

Consider the eigenvalues ν of the generalized eigenproblem

Az = νMz (5)

where A is the coefficient matrix in (1). Using a coordinate transformation, these
eigenvalues are identical to those of the generalized eigenproblem

AM−1Hw = νHw (6)

where H is defined as

H =

»
SA − ŜA 0

0 C̃ − C

–
. (7)

The following theorem is taken from [6].

Theorem 1. If α1 > 1, 0 ≤ β1 < β2 < 1, γ1 > 0, and

α1x
T ŜAx ≤ xT SAx ≤ α2x

T ŜAx ∀x ∈ Rn, (8)

β1y
T C̃y ≤ yT Cy ≤ β2y

T C̃y ∀y ∈ Rm, (9)

γ1y
T BŜ−1

A BT y ≤ yT C̃y ≤ γ2y
T BŜ−1

A BT y ∀y ∈ Rm, (10)

and
0 < yT C̃y ∀y ∈ Rm, (11)

then the eigenvalues of (6) are real and satisfy

δ1 ≤ ν ≤ δ2

where
δ1 = min{σ2(α1/α2), β1 + σ1(1− β2)(α2γ2)

−1}
δ2 = max{2α2 − σ2, β2 + (1− β1)(2− σ1/α2)γ

−1
1 }

and σ1, σ2 are arbitrary positive constants that satisfy σ1 + σ2 = 1.

Notice in (8) that α1 and α2 depend on the preconditioner for SA. In order to
obtain bounds for γ1 and γ2 in (10), it proves useful to express A as

A = BT A1B + BT
⊥A2B⊥ + BT A3B⊥ + BT

⊥AT
3 B

where the columns of B⊥ form an orthonormal basis for the null space of B and
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A1 = (BBT )−1BABT (BBT )−1, A2 = B⊥AB⊥, A3 = (BBT )−1BABT
⊥ .

Using a similar expression for S−1
A and the identity SAS−1

A = I we obtain

BS−1
A BT = (C̃−1 + G)−1 where G = A1 −A3A

−1
2 AT

3 = RT R .

Notice that A2 is nonsingular since A was assumed positive definite on the kernel
of B. In addition, G is at least positive semidefinite since it is independent of C̃
and BS−1

A B is positive definite. Application of the Sherman-Morrison-Woodbury
formula leads to

BS−1
A BT = C̃ − C̃RT (I + RC̃RT )−1RC̃ . (12)

We now consider the special case C = 0 and the parameterization C̃ = ζC̄. The
positive scalar ζ is chosen so that

ζ‖C̄RT (I + ζRC̄RT )−1RC̄‖ < ελmin(C̄) (13)

where ε > 0 and λmin(C̄) is the smallest eigenvalue of C̄. It then follows from (8),
(12), and (13) that

(1/α2)y
T BŜ−1

A BT y ≤ yT C̃y ≤ (1/α1)(1− ε)−1yT BS−1
A BT y ∀y ∈ Rm (14)

Comparison of (10) and (14) reveals that

γ1 ≥ 1/α2 and γ2 ≤ (1/α1)(1− ε)−1 .

Notice from (9) for C = 0 that β1 = 0 and β2 can be chosen arbitrarily close to 0.
The expressions for the eigenvalue bounds with σ1 and σ2 both chosen as 1/2 then
simplify to

δ1 = (1− ε)(α1/α2)/2, δ2 = 2α2 − 1/2 .

For very small values of ε we see that the eigenvalue bounds depend only on the
parameters α1 and α2 which are related to the preconditioner. This result is purely
algebraic and does not involve any inf-sup constants. For α1 and α2 both near 1 we
see that all eigenvalues are bounded between (1 − ε)/2 and 3/2. Numerical results
in Section 6 suggest that these bounds could be made even tighter. In Section 5 we
show how to choose the constraints of a BDDC preconditioner so that α1 and α2

are insensitive to mesh parameters and to values of ε near zero.

3 Preconditioned Conjugate Gradient Algorithm

We now consider a form of the preconditioner suitable for the conjugate gradient
algorithm. The original linear system (1) can be expressed compactly as

Aw = d

where

w =

»
u
p

–
and d =

»
b
0

–
.

The associated residual r is defined as

r = d−Aw .



Saddle Point Preconditioning by Substructuring and Penalty Approach 5

Because the matrices HM−1A and H are both symmetric and positive definite (see
[6] for details), the conjugate gradient algorithm can be used to solve the equivalent
linear system

Ãw = d̃

where
Ã = HM−1A and d̃ = HM−1d

using H as a preconditioner. Since the eigenvalues of (5) and (6) are identical,
it follows that the eigenvalues of the preconditioned system are bounded below
and above by δ1 and δ2. The preconditioned conjugate gradient algorithm for the
equivalent linear system is summarized as follows:

1. w0 = 0, r0 = d, z0 = M−1r0, r̃0 = HM−1r0, and k = 1.
2. If the norm of rk−1 is less than a specified value then exit. Otherwise,
3. βk = (zT

k−1r̃k−1)/(zT
k−2r̃k−2) (β1 = 0).

4. pk = zk−1 + βkpk−1 (p1 = z0).
5. αk = (zk−1r̃k−1)/(pT

kHM−1Apk).
6. wk = wk−1 + αkpk.
7. rk = rk−1 − αkApk.
8. zk = zk−1 − αkM−1Apk.
9. r̃k = r̃k−1 − αkHM−1Apk.

10. Return to Step 2.

The conjugate gradient algorithm described above is somewhat nonstandard in that
two additional recurrences appear in Steps 7 and 8. Application of the algorithm
requires calculations of the form M−1a and HM−1a. For aT =

ˆ
aT

u aT
p

˜
we see

that

M−1a =

»
bu

bp

–
=

»
Ŝ−1

A (au + BT C̃−1ap)

C̃−1(Bbu − ap)

–
and

HM−1a =

»
SAbu − (au + BT C̃−1ap)
Bbu − ap − Cbp

–
.

Notice that no calculations involving ŜA are required. In addition, rk is the residual
of the original linear system at iteration k and can be used to assess convergence.

4 BDDC Preconditioner

A brief overview of the BDDC preconditioner is provided here for completeness.
Additional details can be found in [4, 13, 14]. The domain of a finite element mesh
is assumed to be decomposed into nonoverlapping substructures Ω1, . . . , ΩN so that
each element is contained in exactly one substructure. The assembly of the substruc-
ture contributions to the linear system can be expressed as»

A BT

B −D

– »
u
p

–
=

NX
i=1

ˆ
RT

i P T
i

˜ »
Ai BT

i

Bi −Di

– »
Ri

Pi

– »
u
p

–
=

»
f
0

–
(15)

where each row of Ri and Pi contains exactly one nonzero entry of unity. Throughout
this section several subscripted R matrices with exactly one nonzero entry of unity



6 Clark R. Dohrmann

in each row are used for bookkeeping purposes. For discontinuous pressure elements
and compressible materials the matrices D and Di are positive definite and block
diagonal. Solving the second block of equations in (15) for p in terms of u and
substituting the result back into the first block of equations leads to

Ku = f, p = D−1Bu (16)

where the displacement Schur complement K is given by

K = A + BT D−1B =

NX
i=1

RT
i KiRi (17)

and
Ki = Ai + BT

i D−1
i Bi . (18)

The coarse interpolation matrix Φi for Ωi is obtained by solving the linear system»
Ki CT

i

Ci 0

– »
Φi

Λi

–
=

»
0
I

–
(19)

where Ci is the constraint matrix for Ωi and I is a suitably dimensioned identity
matrix. A straightforward method to calculate Φi from (19) using solvers for sparse
symmetric definite systems of equations is given in [4]. One option for constructing
Ci is also described in [4].

Each row of the constraint matrix Ci is associated with a specific coarse degree
of freedom (dof). Moreover, each coarse dof is associated with a particular set of
nodes in Ωi that appear in at least one other substructure. Let Si denote the set of
all such nodes. The set Si is first partitioned into disjoint node sets Mi1, . . . ,MiMi

via the following equivalence relation. Two nodes are related if the substructures
containing the two nodes are identical. In other words, each node of Si is contained
in exactly one node set, and all nodes in a given node set are contained in exactly
the same set of substructures. Additional node sets called corners are used in [4]
to facilitate the numerical implementation. Each corner is obtained by removing a
node from one of the node sets described above. For notational convenience, we refer
to {Mij}Mi

j=1 as the set of all disjoint node sets for Ωi including corners. Rows of the
constraint matrix Ci associated with node set Mij are given by RijrCi. Similarly,
columns of Ci associated with node set Mij are given by CiR

T
ijc. In this study all

node sets are used in the substructure constraint equations.
Let uci denote a vector of coarse dofs for Ωi. The dimension of uci equals the

number of rows in the constraint matrix Ci. The vector uci is related to the global
vector of coarse dofs uc by

uci = Rciuc . (20)

The coarse stiffness matrix of Ωi is defined as

Kci = ΦT
i KiΦi (21)

and the assembled coarse stiffness matrix Kc is given by

Kc =

NX
i=1

RT
ciKciRci . (22)
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Consistent with (15), the vector of substructure displacement dofs ui are related
to u by

ui = Riu . (23)

Let uIi denote a vector containing all displacement dofs in Ωi that are not shared
with any other substructures. The vector uIi is related to ui by

uIi = RIiui . (24)

In order to distribute residuals to the substructures, it is necessary to define
weights for each substructure dof. In this study, the diagonal substructure weight
matrix Wi is defined as

Wi = RT
IiRIi +

MiX
j=1

αijR
T
ijcRijc (25)

where
αij = trace(RijcKciR

T
ijc)/trace(RijcRciKcR

T
ciR

T
ijc) (26)

and trace denotes the sum of diagonal entries. Notice that the weights of all dofs in
a node set are identical. The substructure weight matrices form a partition of unity
in the sense that

NX
i=1

RT
i WiRi = I . (27)

Given a residual vector r associated with the iterative solution of (16a), the
preconditioned residual is obtained using the following algorithm.

1. Calculate the coarse grid correction v1,

v1 =

NX
i=1

RT
i WiΦiRciK

−1
c rc (28)

where

rc =

NX
i=1

RT
ciΦ

T
i WiRir . (29)

2. Calculate the substructure correction v2,

v2 =

NX
i=1

RT
i Wizi (30)

where »
Ki CT

i

Ci 0

– »
zi

λi

–
=

»
WiRir

0

–
. (31)

3. Calculate the static condensation correction v3,

v3 =

NX
i=1

RT
i RT

Ii(RIiKiR
T
Ii)
−1RIiRir1 (32)

where
r1 = r −K(v1 + v2) . (33)
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4. Calculate the preconditioned residual

M−1r = v1 + v2 + v3 (34)

Residuals associated with displacement dofs in substructure interiors are removed
prior to the first conjugate gradient iteration via a static condensation correction.
These residuals then remain zero for all subsequent iterations.

5 BDDC Constraint Equations

In this section we show how to choose the constraint equations of BDDC so that
it can be used effectively as a preconditioner for the primal Schur complement SA.
Recall at the end of Section 2 the goal of having a preconditioner that is insensitive to
values of ε near zero. For problems with a divergence constraint like incompressible
elasticity, this means that the performance of the preconditioner should not degrade
as the norm of D in (15) approaches zero. Additional details and work related to
this section can be found in [5] and [12].

The choice of constraints is guided by the goal to keep the volume change of
each substructure relatively small in the presence of a divergence constraint. In
particular, the volume change corresponding to a preconditioned residual should
not be too large. Otherwise, the energy associated with the preconditioned residual
will be excessively large and cause slow convergence of a Krylov iterative method.

Using the divergence theorem, the volume change of Ωi resulting from ui to first
order is given by

∆Vi =

Z
Ωi

∇ · u dΩ = aT
i ui (35)

where u is the finite element approximation of the displacement field. The vector ai

can be calculated in the same manner as the vector for a body force by summing
element contributions to the divergence. All entries in ai associated with nodes not
on the boundary of Ωi are zero.

The nodes in node set Mij of substructure i are also contained in one or more
node sets of other substructures. As such, define

Nij = {(k, l) : Mkl = Mij} . (36)

For notational convenience, assume that the rows of Rijc are ordered such that
Rijcui = Rklcuk for all (k, l) ∈ Nij . Let Eij denote the column concatenation of all
vectors Rklcak such that (k, l) ∈ Nij . Consider the singular value decomposition

Ẽij = UijSijV
T

ij (37)

where Ẽij is the matrix obtained by normalizing each column of Eij . Assuming the
singular values sijm on the diagonal of Sij are in descending numerical order, let
mij denote the largest value of m such that sikm/sij1 > tol where in this study
tol = 10−8. The singular values along with tol are used to determine a numerical
rank of Eij . Let Fij denote the matrix obtained by normalizing each column of
(RijrCiR

T
ijc)

T and define

F̃ij = Fij − ŨijŨ
T
ijFij = ŪijS̄ij V̄

T
ij (38)
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where Ũ contains the first mij columns of Uij . The columns of Ũ are orthogonal and
numerically span the range of Eij . The singular values s̄ijm on the diagonal of S̄ij

are assumed to be in descending numerical order and m̄ij denotes the largest value
of m such that s̄ijm > tol. Define

Gij =
ˆ
Ũij Ûij

˜
(39)

where Ûij contains the first m̄ij columns of Ūij . The columns of Û are orthogonal and
numerically span the range of the projection of Fij onto the orthogonal complement
of Ũij . Thus, the columns of Gij are orthogonal. Notice that Gij contains a linearly
independent set of vectors for the zero divergence constraints and the original BDDC
constraints for node set Mij .

Finally, the original constraint matrix Ci is replaced by the row concatenation
of the matrices GT

ijRijc for j = 1, . . . , Mi. Use of the new substructure constraint
matrices ensures that preconditioned residuals will not have excessively large values
of volumetric energy. The final requirement needed to ensure good scalability with
respect to the number of substructures is that the coarse stiffness matrix Kc be
flexible enough to approximate well the low energy modes of K. This requirement
is closely tied to an inf-sup condition, but is not analyzed here. Numerical results,
however, indicate good scalability in this respect.

For 2D problems a node set consists either of a single isolated node called a
corner or a group of nodes shared by exactly two substructures called a face. Fur-
thermore, mij , the number of columns in Ũij , is at most two for a corner and one
for a face. Similarly, for 3D problems mij is at most three for a corner and one for
a face. The value of mij for the remaining 3D node sets, called edges here, depends
on the mesh decomposition as well as the positions of nodes in the mesh. In any
case, performance of the preconditioner should not degrade in the presence of nearly
incompressible materials provided that all the columns of Ũij are included in Gij .
Including columns of Ûij in Gij as well will reduce condition numbers of the precon-
ditioned equations, but is not necessary to avoid degraded performance for nearly
incompressible materials.

Use of the modified constraints does not cause any difficulties when both nearly
incompressible materials (e.g. rubber) and materials with smaller values of Poisson
ratio (e.g. steel) are present. One can exclude the incompressibility constraint for
substructures not containing nearly incompressible materials simply by setting all
entries of ai in (35) to zero. Doing so may lead to a slightly smaller coarse problem,
but is not necessary.

6 Numerical Examples

In this section, (1) is solved to a relative residual tolerance of 10−6 using both right
preconditioned GMRES [16] and preconditioned conjugate gradients (PCG) for an
incompressible elasticity problem. For linear elasticity the shear modulus G and
Lamé parameter λ for an isotropic material are related to the elastic modulus E
and Poisson ratio ν by

G =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
.
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For incompressible problems λ is infinite with the result that C = 0 in (1). All the
elasticity examples in this section use G = 1 and ν = 1/2. We consider two different
preconditioners for SA in order to better understand the saddle point preconditioner.
The first is based on a direct solver where 1.00001ŜA = SA while the second is the
BDDC preconditioner described in the previous two sections. Note that the leading
constant 1.00001 is used to satisfy the assumption α1 > 1. The penalty matrix C̃ for
the elasticity problems is chosen as the negative (2,2) block of the coefficient matrix
in (1) for an identical problem with the same shear modulus but a value of ν less
than 1/2.

Regarding assumption (8), we note that the BDDC preconditioner used for SA

has the attractive property that α1 ≥ 1 and α2 is mesh independent under cer-
tain additional assumptions [14]. For the conjugate gradient algorithm we scale the
preconditioned residual associated with the primal Schur complement by 1.00001
to ensure that H is positive definite. We note, however, that such scaling was not
necessary for any of the examples.

For purposes of comparison, we also present results for block diagonal and block
triangular preconditioners for (1). Given the primal and dual residuals ru and rp,
the preconditioned residuals zu and zp for the block diagonal preconditioner are
given by

zu = Â−1ru and zp = M−1
p rp

where Mp is the dual mass matrix and either Â = A (direct solver) or Â is the
BDDC preconditioner for A. Note that the shear modulus G was chosen as 1 to
obtain proper scaling of zp. Similarly, the preconditioned residuals for the block
triangular preconditioner are given by

zp = −M−1
p rp and zu = M−1

A (ru −BT zp) .

We note that the majority of computations for the block preconditioners occur in
forming and applying the BDDC preconditioner for A. Thus, the setup time and
time for each iteration are very similar for the preconditioner of this study and the
two block preconditioners.

The first example is for a 2D plane strain problem on a unit square with all
displacement degrees of freedom (dofs) on the boundary constrained to zero. The
entries of the right hand side vector b were chosen as uniformly distributed random
numbers in the range from 0 to 1. For this simple geometry the finite element mesh
consists of stable Q2 − P1 elements. This element uses biquadratic interpolation of
displacement and discontinuous linear interpolation of pressure. In 2D the element
has 9 nodes for displacement and 3 element pressure dofs. A description of the
Q2 − P1 discontinuous pressure element can be found in [2].

Results are shown in Table 1 for the saddle point preconditioner (SPP) applied
to a problem discretized by a 32 x 32 arrangement of square elements. Condition
number estimates of the preconditioned equations are shown in parenthesis for the
PCG results. The BDDC preconditioner is based on a regular decomposition of the
mesh into 16 square substructures. The results shown in columns 2-5 are insensitive
to changes in ν near the incompressible limit of 1/2. Notice that the use of a direct
solver to precondition SA results in very small numbers of iterations for values of
ν near 1/2. The final two columns in Table 1 show results for BDDC contraint
equations that are not modified to enforce zero divergence of each substructure.
The condition number estimates grow in this case as ν appoaches 1/2.
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Table 1. Iterations needed to solve incompressible 2D plane strain problem using
the saddle point preconditioner. Results are shown for different values of ν used to
define C̃. Results in parenthesis are condition number estimates from PCG. The
SA = no mod BDDC designation is for BDDC constraint equations that cannot
enforce zero divergence of each substructure.

1.00001ŜA = SA ŜA = BDDC ŜA = no mod BDDC

ν GMRES PCG GMRES PCG GMRES PCG

0.3 8 10 (4.8) 19 23 (16) 19 22 (16)
0.4 7 10 (2.4) 15 17 (7.2) 15 17 (7.1)
0.49 4 5 (1.1) 11 11 (3.0) 13 13 (3.6)
0.499 3 3 (1.01) 10 10 (2.7) 17 18 (8.5)
0.4999 3 3 (1.01) 9 9 (2.7) 23 28 (7.0e1)
0.49999 3 3 (1.01) 9 9 (2.6) 25 44 (6.9e2)

Table 2 shows results for a growing number of substructures with H/h = 4
where H and h are the substructure and element lengths, respectively. Very small
growth in numbers of iterations with problem size is evident in the table for all the
preconditioners. Notice that the iterations required by PCG either equal or are only
slightly larger than those for GMRES. The primary advantage of PCG from a solver
perspective is that storage of all search directions is not required as it is for GMRES.
The SPP preconditioner is clearly superior to the two block preconditioners when
a direct solver is used (1.00001ŜA = SA and Â = A). The performance of the SPP
preconditioner compares very favorably with both of the block preconditioners when
the BDDC preconditioner is used.

Table 2. Iterations needed to solve incompressible plane strain problems with in-
creasing numbers of substructures (N) and H/h = 4. The value of ν used to define C̃
in the SPP preconditioner is 0.49999. Block diagonal and triangular preconditioners
are denoted by Md and Mt, respectively.

N 1.00001ŜA = SA and Â = A ŜA and Â = BDDC

SPP Md Mt SPP Md Mt

GMRES PCG GMRES GMRES GMRES PCG GMRES GMRES

4 3 3 (1.01) 17 9 6 6 (1.8) 26 16
16 3 3 (1.01) 17 9 8 8 (2.1) 30 20
36 3 3 (1.01) 17 9 9 9 (2.6) 35 23
64 3 3 (1.01) 17 9 9 10 (2.9) 38 26
100 3 3 (1.01) 17 9 10 10 (3.0) 40 28
144 3 3 (1.03) 17 9 10 10 (3.1) 42 29
196 3 3 (1.01) 17 9 10 11 (3.1) 45 30
256 3 3 (1.01) 17 9 10 11 (3.1) 47 30
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