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Summary. The practical aspect in the parareal algorithm that it consist of using
two solvers over different time stepping, the coarse and fine solvers to produce a rapid
convergent iterative method for multi processors computations. The coarse solver
solve the equation sequentially on the coarse time step while the fine solver use the
information from the coarse solution to solve, in parallel, over the fine time steps.
In this work we discussed the stability of the parareal-inverse problem algorithm for
solving the parabolic inverse problem given by

ut = uxx + p(t)u + φ(x, t), 0 < x < 1, 0 < t ≤ T,
u(x, 0) = f(x), 0 ≤ x ≤ 1,
u(0, t) = g0(t), 0 < t ≤ T,
u(1, t) = g1(t), 0 < t ≤ T,

and subject to the over specification condition at a point x0 in the spatial domain
u(x0, t) = E(t). We derived the stability amplification factor for the parareal-inverse
algorithm and present the stability analysis in accordance to the relation between the
coarse and fine time step and the value of p(t). Some model problems are considered
to demonstrate the necessary conditions for the stability.

1 Introduction

The parallelization with respect to the time variable is not fairly new ap-
proach, the first research article in this area was the article by Nievergelt on
the solution of the ordinary differential equation [N64] and the article by Mi-
ranker and Liniger [ML97] on the numerical integration of ordinary differential
equations.

Recently after the development of the initial algorithm a new form of
algorithm has been proposed which consists of discretizing the problem over
an interval of time using fine time step and coarse time step in away to allow
a combination of accuracy improvement, through an iterative process, and
parallelization over slices of coarse time interval. The algorithm has been re
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setup and then named as Parareal Algorithm by Lion’s et al. [LMT00], also
further modified by Bal and Maday [BM02] to solve unsteady state problem
and evidently established the relation between the coarse and fine time step in
order to define the time gaining in the parallelization procedure. The stability
and the convergence of the algorithm has been further studied by Bal [B03]
and mainly concluding that the algorithm replaces a coarse discretization
method of order m by a higher order dicsretization method, and also Staff
and Ronquist [SR03] presented the necessary condition for the stability of
the parareal algorithm. For further detailed views of the method and further
applications we refer to Baffico et al. [BBMTZ02], Farhat and Chandersis
[FC03], and Maday and Turinici [MT03].

In this article we will emphasize on the stability of the parareal algorithm
to solve the following inverse problem for determining a control function p(t)
in parabolic equation. Find u = u(x, t) and p = p(t) which satisfy

ut = uxx + p(t)u + φ(x, t), 0 < x < 1, 0 < t ≤ T,
u(x, 0) = f(x), 0 ≤ x ≤ 1,
u(0, t) = g0(t), 0 < t ≤ T,
u(1, t) = g1(t), 0 < t ≤ T,

(1)

subject to the over specification condition at the point x0 in the spatial domain

u(x0, t) = E(t), (2)

where f , g0, g1, E and φ are known functions while the functions u and p
are unknown, for −1 < p(t) < 0 for t ∈ [0, T ]. The model problem given by
(1) used to describe a heat transfer process with a source parameter present
and equation (2) represents the temperature at a given point x0 in the spatial
domain at time t. Thus the purpose of solving this inverse problem is to
identify the source control parameter that produces at any given time a desired
temperature at a given point x0 in the spatial domain.

2 Parareal-Inverse Problem Algorithm

The main aspect of the parareal algorithm is to allow a parallelization in time
over slices of coarse time interval using coarse time solver in combination
of accuracy improvements through an iterative method(predictor-corrector
form) using fine and coarse time solvers over each coarse time interval ∆t(∆t =
T/N).

In this article the coarse and fine time step solvers will be denoted by
G∆t, and Fδt, respectively, where δt = ∆t

s , and s is the number of fine time
steps over the coarse interval [tn, tn+1] = [tn, tn + sδt], for n = 0, 1, . . . N − 1.
Through this work we will consider the parareal algorithm scheme in the form
presented by Bal [B03] and also later considered by Staff and Ronquist [SR03],
given by
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un+1
k+1 = G∆t(un

k+1) + Fsδt(un
k )−G∆t(un

k ). (3)

The solution algorithm of the inverse problem (1) by implicit type of meth-
ods, backward Euler’s method, possess an updating of the control function
p(t) and u(x, t), or in another words correction steps at each time level prior
to proceed to the advanced time level (cf. e.g.[CLW92], [DS05]). On the other
hand the solution by the forward Euler’s scheme does not require any correc-
tion for the control function p(t), but in order to apply the parareal algorithm
the updating of the value of p(t) for the fine propagator is required for the
advanced fine solution step using (2).

Since the parareal algorithm posses a correction steps over each coarse time
interval it was observed that, through the coarse solution propagator, for the
correction of the p(t) it is sufficient to perform one iteration only, internally,
over the time step [tn, tn+1] and that is due to the further iterations and
correction of the solution by the parareal algorithm. The generic form of the
parareal algorithm for the solution of the inverse problem is given as follows.

Algorithm 1 Parareal- Inverse Problem Algorithm

1. Over the domain Ω × [tn, tn+1] and for k = 1, consider the coarse propa-
gator i.e.

un+1
1 − un

1

∆t
= (uxx)n+1

1 + p(tn)un+1 n = 1, . . . N − 1,

the solution un+1
1 denoted by G∆t(un

1 ).
p(tn+1) correction: Consider the correction of p(t) by the following relation

p(tn+1) =
E′(tn+1)− (uxx)1|(x0,tn+1) − φ(x0, tn+1)

E(tn+1)
.

2. For k + 1 > 1 and over the domain Ω × [tn, tn+1].
a) Consider the coarse propagator i.e.

un+1
k+1 − un

k+1

∆t
= (uxx)n+1

k+1 + p(tn)un+1
k+1 n = 1, . . . N − 1,

p(tn+1) correction: Consider the correction of p(t) by the following
relation

p(tn+1) =
E′(tn+1)− (uxx)k+1|(x0,tn+1) − f(x0, tn+1)

E(tn+1)
,

the solution un+1
k+1 is denoted by G∆t(un

k+1).
b) Consider the fine propagator solution over Ω× [tn, tn+l], l = 1, s−1.

Solve for

un+l
k − un+l−1

k

δt
= (uxx)n+l−1

k + p(tn+l−1)un+l−1
k .
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The solution un+s
k = un+1

k is denoted by Fsδt(un
k ), and

pn+l =
E′(tn+l)− uxx,k|(x0,tn+l) − φ(x0, tn+l)

E(tn+l)
, for l = 1, . . . s− 1,

where s = ∆t
δt .

Then the solution un+1
k+1 is given by

un+1
k+1 = G∆t(un

k+1) + Fsδt(un
k )−G∆t(un

k ). (4)

3 Stability of The Parareal-Inverse Algorithm

Let u(x, t) be the solution of the model problem

ut = uxx + p(t)u(t), (5)

subject to the following initial and boundary conditions

u(0, t) = 0, u(1, t) = 0 and u(x0, t) = u0, (6)

and with the specified condition u(x0, t) = E(t).
The spatial derivative operator is approximated by the second order central

difference approximation given by

(uxx)(xi,t) ' h−2[u(xi+1, t)− 2u(xi, t) + u(xi−1, t)] +O(h2). (7)

For the stability analysis we will consider the Fourier transform of the discrete
problem, and over the Fourier domain the problem corresponding to (5) is
given by

ût = Q(ξ, t)û(ξ, t), (8)

where Q(ξ, t) = q(ξ) + p̂(t), such that Q(u) = ̂Q(ξ)û(ξ) and q(ξ) =
−2h−2 sin2(ξ/2). Then

Q(ξ) = q(ξ) + p̂(t) = −2h−2 sin2(
ξ

2
) + p̂(t). (9)

The forward and backward Euler’s schemes are considered to be the fine and
coarse solvers for the parareal-inverse algorithm, respectively. The amplifica-
tion factor of the backward Euler’s scheme over the Fourier domain is given
by

ρ(ξ, tn)G∆t
= (1−Q(ξ, tn)∆t)−1 = (1 + (2h−2 sin2(

ξ

2
)− p̂(tn))∆t)−1,

which is unconditional stable for p(t) < 0 [T95], and the corresponding am-
plification factor for the solution by the forward Euler’s scheme over the time
interval [tn, tn + sδt], is given by
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ρ(ξ, tn)Fsδt
=

s∏

i=1

(1+Q(ξ, tn+i−1)δt) =
s∏

i=1

(1+(−2h−2sin2(
ξ

2
)+p̂(tn+i−1))δt),

and its conditional stable scheme according to the forward Euler’s scheme
stability condition for any p(t) [T95].

For the stability analysis we will consider the approach by Staff and Ron-
quist [SR03] and we will present the stability studies for the following cases
case 1- ∆t = sδt (s > 1),
case 2- ∆t = δt (s = 1).

3.1 Case I ∆t = sδt (s > 1)

For this case of the stability analysis the coarse time step ∆t is divided into
s fine subintervals (s > 1) and the iterative solution of (8) by the parareal-
inverse algorithm 1 is given by

ûn+1
k+1 = (1−Q(ξ, tn)∆t)−1ûn

k+1+
s∏

i=1

(1+Q(ξ, tn+i−1)δt)ûn
k−(1−Q(ξ, tn)∆t)−1ûn

k .

(10)
Following the stability analysis by [SR03] then the stability function, the am-
plification factor, for (10) is given by

ρ(ξ, tn) = 2(1−Q(ξ, tn)∆t)−1 −∏s
i=1(1 + Q(ξ, tn)δt,

= (1−Q(ξ, tn)∆t)−1 [2− (1−Q(ξ, tn)∆t)
∏

i=1(1 + Q(ξ, tn+i−1)δt)]
= (1−Q(ξ, tn)∆t)−1τ(ξ, tn)

(11)
For the second term,τ(ξ, tn), in (11) if we perform the multiplication we then
concluding that

τ(ξ, tn) =

[
2− (1−Q(ξ, tn)∆t)

[
1 + δt

s∑

i=1

Q(ξ, tn+i−1) +O(δt2)

]]
,

therefore

τ(ξ, tn) = 2− 1 + Q(ξ, tn)∆t− δt(1−Q(ξ, tn)∆t)
∑s

i=1 Q(ξ, tn+i−1) +O(δt2),
τ(ξ, tn) ' 1 + Q(ξ, tn)∆t− δt

∑s
i=1(−2h−2 sin2(ξ/2) + p(tn+i−1))

≤ 1− 2rc sin2(ξ/2) + ∆tp(tn) +
∑s

i=1

(
2rf sin2(ξ/2)− δtp(tn+i−1)

)
,

where rc = ∆t
h2 , rf = δt

h2 corresponding to the coarse and fine propaga-
tor respectively, and ∆t

δt = s. Hence for −1 < p(tn) < 0 concluding that
|ρ(ξ, tn)| < |(1−Q(ξ, tn)∆t)−1||τ(ξ, tn)| < 1. The above concluded conditions
for the stability of the first case are summarized in the following theorem.

Theorem 2. For the inverse model problem (1) solved by the parareal algo-
rithm 1,
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un+1
k+1 = G∆t(un

k+1) + Fsδt(un
k )−G∆t(un

k ), (12)

where G∆t and Fsδt are the coarse and fine solvers respectively, and for s =
∆t/δt > 1.

If rf = δt/h2 satisfy the fine solver stability condition and p(t) ∈ [−1, 0]
then the stability function ρ(ξ, tn), induced by (10) defined by (11), satisfy

|ρ(ξ, tn)| < 1,

for all rc = ∆t/h2.

3.2 Case II ∆t = δt (s = 1)

For the case when s = 1 the stability amplification factor is given by

ρ(ξ, tn) = (1 + Q(ξ, tn)∆t)− 2(1−Q(ξ, tn)∆t)−1.

Due to the restricted pages limit the main conclusion will be summarized by
the following theorem.

Theorem 3. For the inverse model problem (1) solved by the parareal algo-
rithm 1

un+1
k+1 = G∆t(un

k+1) + Fδt(un
k )−G∆t(un

k ), (13)

where G∆t and Fδt are the coarse and fine solvers, respectively. Then

|ρ(ξ, tn)| < 1,

for all δt
h2 = ∆t

h2 < 1
4 and −1 < p(t) < 0, where ρ(ξ, tn) is the amplification

factor induced by (10) for s = 1 i.e. ∆t = δt.

4 Model problem

For the validation of the stability necessary conditions presented in previous
section we considered the model problems defined by

ut = uxx + p(t)u + φ(x, t) over Ω = [0, 1]× (0, 1),

with exact solution u(x, t) = e−t2(cosπx + sin πx), and φ(x, t) defined in
accordance to different definitions of p(t). We considered p(t) = −1 − t2 < 0
and p(t) = 1 + 2t > 0 for t ∈ (0, 1) respectively. The initial, boundary
conditions and E(t) = u(x0, t) at x0 = 0.5 are defined from the exact solution.
The stability functions (i.e. the amplification factors) are plotted using polar
graphics for different values of the necessary condition.

For the case when s > 1 the plots are presented in figure 1 for different
values of p(t), rc and rf values as well. Figure 1 show how the amplification



Stability of parareal-inverse algorithm 7

factor given by (11) exceeded the desired stability bound for rf > 0.5 and
also same conclusion for −1 < p(t) < 0 and positive values of p(t).

For the case when s = 1 the plots of the amplification factor given by
ρ(ξ, tn) in (11) are presented in figure 2. We considered different values for
r = ∆t/h2 and p(t), the plots shows how the stability amplification factor
comply with the necessary conditions as stated in theorem 3.
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Fig. 1. The stability region for case 1 using different values of rf , rc and p(t)
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Fig. 2. The stability region for case 2 using different values of the ratio r and p(t)
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