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Summary. The linear systems arising in lattice QCD pose significant challenges for tradi-
tional iterative solvers. For physically interesting values of the so-called quark mass, these
systems are nearly singular, indicating the need for efficient preconditioners. However, multi-
level preconditioners cannot easily be constructed because the Dirac operator associated with
these systems has multiple near-kernel components that need to be approximated. Moreover,
these components are generally both oscillatory and not known a priori. This paper presents
the application of adaptive smoothed aggregation, αSA [2], to this Dirac system. Heuristic
arguments and numerical results are provided to demonstrate that this recently developed ex-
tension of the smoothed aggregation methodology can be used to overcome the challenges
posed by the Dirac system.

1 Introduction

In the field of particle physics, the so-called “Standard” model accounts for the inter-
actions between the elementary particles that make up matter. The Standard model is
completely described by two theories: the Electroweak theory for weak interactions,
and the widely accepted Quantum Chromodynamics (QCD) theory for strong inter-
actions. The interactions between these constituents of matter are well understood
for Electroweak theory, where they can be analyzed analytically using perturbation
theory. For strong interactions between fermions (quarks), the coupling forces are
so strong that a perturbation theory analysis becomes increasingly complex and ul-
timately breaks down. In the early 1970’s, Wilson proposed simulating these strong



2 J. Brannick et. al.

interactions numerically using Lattice Gauge Theory (LGT), effectively discretiz-
ing QCD [4]. LGT is now the primary means for modeling such strong interactions.
However, a major obstacle remains: current LGT simulations require enormous com-
putations that become prohibitively expensive for physically interesting choices of
parameters (e.g., quark mass and temperature of the physical system), even on to-
day’s supercomputers. Hence, the understanding of strong interactions is still very
limited.

The majority of the computations in these numerical simulations is dedicated to
solving the linear Dirac systems

H(Ui)f = b,

where H , a complex-valued matrix, is the fermionic propagator (Dirac Operator),
Ui is a discrete configuration of the gauge field, and f denotes the fermionic field
(located at sites on a four-dimensional space-time lattice). This is due to the fact that,
in current state-of-the-art simulations, the solvers used are limited to Krylov meth-
ods with preconditioners that are suboptimal for interesting choices of the physical
parameters [1, 3]. In addition, the system must be solved for various configurations,
Ui, and multiple vectors b for each given configuration.

Developing an appropriate preconditioner for these systems has been a topic of
intense research for many years. In the 1990’s, various multigrid approaches were
explored [1, 3]. More recently, in [6], the use of an alternating Schwarz precondi-
tioner was studied. While these efforts have lead to significant improvements, none
of the approaches completely eliminate the so-called “critical slowing down” that
results from the fact that the Dirac operator becomes increasingly ill conditioned as
the masses of the quarks approach physically interesting values.

An additional difficulty associated with the Dirac operator is the oscillatory local
character of its near-kernel (the so-called “algebraically smooth error” not reduced
by relaxation). Standard multigrid preconditioners commonly rely in their design on
geomtric smoothness of the near-kernel and, thus are not immediately suitable for
the Dirac system.

This paper considers a simplified 2D Schwinger model exhibiting similar chal-
lenges to those of the four-dimensional problem of interest. We explore the use of
an adaptive algebraic multigrid preconditioner for solving the corresponding system
of equations. The method is a recently developed extension of smoothed aggrega-
tion [8], referred to as αSA [2], in which good convergence properties are achieved
in situations where explicit knowledge of the near-kernel components may not be
available. Preliminary results with our 2D model problems suggest that this ap-
proach yields typical multigrid-like performance with convergence factors bounded
uniformly below one for realistic choices of quark mass and gauge-field randomness.

The remaining sections are organized as follows. In §2, we present the 2D Her-
mitian Dirac-Wilson Operator. In §3, we discuss the properties of the 2D operator.
Numerical results demonstrating the effectiveness of our approach are given in §4.
In §5, we give some concluding remarks.
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Fig. 1. Local numbering of the unknowns f and gauge field coefficients, u, used in the defini-
tion of the discrete equations for H .

2 2D Hermitian Dirac-Wilson formulation

Following [7], we describe here the 2D Dirac-Wilson operator, H , and the attendant
system of linear equations,

H(u)f = b. (1)

Here the gauge variables, u, are unitary, complex, and scalar valued; thus, values of
u are given as eiθ, where phase θ is chosen randomly. The distribution of θ depends
on the “temperature” of the physical system, prescribed by parameter β. For β → ∞,
corresponding to a cold temperature of the physical system, the distribution is smooth
(limβ→∞ u ≡ 1). For realistic values of β, between 2 and 6, the system temperature
is said to be hot, and the gauge field is random.

The domain of interest is a 2D periodic N × N uniform lattice (grid), where the
lattice sites (gridpoints) are distance h = 1 apart. Larger systems are, thus, obtained
by enlarging N , the length of the domain in both coordinate directions and not by
moving lattice points closer together. The fermionic degrees of freedom are defined
at the gridpoints on the lattice, while the gauge variables are defined on the lattice
edges, as shown in Figure 1. At every gridpoint, x, the unknown function is a vector
of length 2:

f(x) =

(

f(x, s = 1)
f(x, s = 2)

)

=

(

v(x)
w(x)

)

,

where s = 1, 2 are spin indices, with spin corresponding to angular momentum.
Let m̂ be the unit vector in coordinate direction m = 1, 2 and u(x, m) be the

gauge variable located at the link associated with gridpoints x and x + m̂. Then the
action of H is defined in terms of the covariant difference operators,

(∇+
mf)(x, s) = u(x, m)f(x + m̂, s) − f(x, s) (2)

(∇−

mf)(x, s) = f(x, s) − u(x − m̂, m)∗f(x − m̂, s), (3)

and the Pauli matrices,
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σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 = −iσ1σ2 =

(

1 0
0 −1

)

.

The action of the Pauli matrices are denoted by σmf . Explicitly,

(σmf)(x, s) =
∑

s′

(σm)s,s′ f(x, s′).

With these definitions, H is defined implicitly by its action on f(x, s) at lattice site
x:

(Hf)(x, s) = σ3

[ 2
∑

m=1

1

2h
σm(∇+

m + ∇−

m)f(x, s) (4)

+
1

2h

2
∑

m=1

(−∇+
m + ∇−

m)f(x, s) + ρf(x, s)

]

,

where ρ is the quark mass and h = 1. Here, h is included to emphasize the compara-
son to familiar matrices from PDEs, and will be used later in §3 to scale the matrix.
Note that, due to the σ3 term in (4), H is Hermitian and indefinite.

The corresponding system of linear equations can be written in the following
2 × 2 block form:

(

−ρI − A B

B∗ ρI + A

)(

v

w

)

=

(

b1

b2

)

.

Operators A, B ∈ Cn×n, n = N×N , are defined by their actions on the components
of f , corresponding to spin indices s = 1, 2. For example, using the local numbering
in Figure 1, the actions of A and B on v are given as follows:

(Av)0 =
1

2h
(u−v− + u+v+ + u−v− + u+v+) −

2

h
v0, (5)

(Bv)0 =
1

2h
(u+v+ − u−v− − iu+v+ + iu−v−). (6)

The right-hand side, b, is called the fermionic source vector and is equal to one at a
given gridpoint x and is zero elsewhere.

3 Spectral properties of the Dirac system

Here, we analyze the properties of the 2D Hermitian Dirac-Wilson operator, H , for
different values of ρ and β. In particular, we consider the dependence of the condi-
tioning of H on ρ, recalling that, as the quark mass approaches its physical value, H

becomes nearly singular.
We begin with an analysis of H in the absence of an external field (i.e., u ≡ 1),

referred to as the “free” case. For u ≡ 1, the covariant difference operators defined in
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(2) and (3) reduce to standard first-order forward and backward difference operators.
It is easy to see that, for u ≡ 1, operators A and B in (5) and (6) have zero-row-sum.
Hence, H is singular for ρ = 0, and H becomes nearly singular for 0 < ρ � 1,
the physical value of ρ for u ≡ 1. Recall that operator H is indefinite. Considering
a (preconditioned) conjugate gradient algorithm, the equivalent system of normal
equations,

H∗Hf = H∗b, (7)

can be solved instead. Given an eigenpair, (λ,x), of H , we have H∗Hx = λ2x, and,
so, the normal form also becomes increasingly ill conditioned as ρ → 0, since the
maximum eigenvalue remains O(1) for all ρ. Clearly, CG is inefficient as a stand-
alone solver for this system. However, classical multigrid provides a suitable precon-
ditioner in this “free” case, as can be easily seen by relating H2 to a decoupled 2× 2
system of partial differential equations (PDEs) as follows.

Consider the equivalent system, where the problem is rescaled such that h → 0
on a fixed domain. For u ≡ 1, A = h

2
∆h and B∗B = BB∗ = −∆h, where ∆h

is the five-point discrete Laplacian obtained using second-order central differences.
Thus, H∗H has the following 2 × 2 block diagonal form:

H∗H =

(

−ρI − A B

B∗ ρI + A

)2

=

(

(ρI + h
2
∆h)2 − ∆h 0
0 (ρI + h

2
∆h)2 − ∆h

)

.

Denoting the diagonal blocks by C, for ρ = 0 we have C = −∆h(I− h2

4
4h). Since

σ(−∆h) ⊆ [0, 8

h2 ], then σ(I − h2

4
∆h) ⊆ [1, 3], and we have that C is spectrally

equivalent to −∆h. The theory of equivalent preconditioning [5] then suggests that
preconditioning C with a standard multigrid method for the Laplacian would be
efficient. In practice, if we apply AMG preconditioned CG, we observe good solver
performance for physical values of the quark mass (i.e., 0 < ρ � 1) as well.
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Fig. 2. Real (left) and complex (right) algebraically smooth error of H2 for mq = .05, β = 3

and N = 16. This error was computed using 200 Gauss-Seidel iterations on H2
f = 0 with a

random initial guess for f .

We now focus on the more challenging case with the presence of the gauge field,
when H2 is no longer a block diagonal system. Unfortunately, in the presence of an
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external field, where u is random (e.g., β ∈ [2, 6]), H2 does not appear to be related
to a system of PDEs. Similar to the free case, H is indefinite and H2 becomes ill
conditioned as ρ approaches its so-called critical value. More precisely, take ρ = 0
for H defined in (4) and let Ĥ = σ3H . Ĥ is then non-Hermitian and has eigenvalues
with positive real part. The critical value of the quark mass, ρcr, is then defined by
ρcr = mini |<(λi(Ĥ))|. For physical values of ρ, the mass gap, mq := ρ − ρcr,
tends to zero, and H2 becomes near-singular. This is the primary reason that all
existing local algorithms grow in computational complexity for the Dirac system, a
phenomenon referred to as critical slowing down.

An additional difficulty, not encountered in the free case, is that the local char-
acter of the near-kernel components is oscillatory. This is demonstrated in Figure 2,
where plots of the real and imaginary parts of a near-kernel component, computed
using 200 iterations of Gauss-Seidel on the homogeneous problem, are given. Our
experiments indicate that this oscillatory local character of near-kernel components
is dependent on the distribution of the gauge field, which is itself randomly specified.

In order to successfully solve the Dirac system for the random case, it is there-
fore imperative that our iterative solver be able to efficiently attenuate such error
components. Standard geometric and algebraic multigrid methods typically construct
coarse-level corrections based on the assumption that the error not effectively re-
duced by the multigrid relaxation procedure is locally constant or, in general, smooth
in the geometric sense, and, thus, would not be immediately suitable as a solver for
the random case.

Smoothed aggregation multigrid (SA) [8] was designed to allow efficient attenu-
ation of error in a subspace characterized locally by a given set of error components,
regardless of whether these are smooth or oscillatory in nature. The Dirac system
poses an additional difficulty for the iterative solver, in that we do not have a priori
knowledge of these near-kernel components. For this reason, we use the recently de-
veloped adaptive version of the smoothed aggregation multigrid method (αSA, [2]),
which allows its setup procedure to identify the requisite error components and mod-
ify the method to ensure they can be efficiently eliminated. The αSA setup procedure
is a multilevel scheme based on the power method for the error propagation opera-
tor of the method itself. In the interest of brevity, we refer for details of the method
to [2].

4 Numerical results

In this section, we present numerical results for various solvers applied to the 2D
Dirac system defined in §2. Instead of (1), we solve the equivalent normal system of
equations, (7), reformulated as a 2 × 2 block real system,

[

X −Y

Y X

] [

x

y

]

=

[

c1

c2

]

, (8)

where X, Y are real-valued matrices and satisfy H∗H = X + iY , f = x + iy, and
H∗b = c1 + ic2.
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Results of our numerical experiments are given in Table 1. The experiments were
carried out on the problem with b = 0 and random initial guesses for [x,y]T . For the
αSA preconditioner, we used V (2, 2)-cycles with an SOR-type relaxation. We note
that, due to the more aggressive coarsening used in smoothed aggregation multigrid,
V (2,2) cycles are commonly used even when solving the Poisson equation. Eight
near-kernel components were computed in the adaptive setup and used to define
the transfer operators. For our αSA preconditioned CG results, one iteration of the
resulting V (2, 2)-cycle was used as a preconditioner in the conjugate gradient iter-
ation. The Krylov solver used for comparison in Table 1 was a standard diagonally
preconditioned conjugate gradient iteration.

In current state-of-the-art QCD simulations, typical problem sizes are N =
32 and 64. As already mentioned, the asymptotic convergence factors of existing
solvers, applied to the Dirac system, quickly tend towards one for critical choices of
mass and temperature. This is demonstrated in Table 1 for diagonally preconditioned
CG. Further, the numerical results in Table 1 suggest that when using eight computed
near-kernel components in defining interpolation, the asymptotic convergence factor
of αSA remains uniformly bounded away from one for β ∈ [2.0, 6.0] and ρ → ρcr.
This is the main result of this paper, and the first such result to date.

To obtain a more complete picture of the overall effectiveness of our multigrid
iteration, we examine also operator complexity, defined as the number of nonzero
entries stored in the operators on all levels divided by the number of non-zero entries
in the finest-level matrix. The operator complexity can be viewed as indicating how
expensive the entire V -cycle is compared to performing only the finest-level relax-
ations of the V -cycle. Even though we use eight near-kernel components to define
prolongation, the operator complexity in our experiments stayed bounded by 3.0.
These low values result from the fact that the problem size is aggressively reduced
in forming the smoothed aggregation coarse problems.

One drawback of using the adaptive version of SA is the nontrivial cost associated
with identifying the error components on which we base the transfer operators in
SA. Of course, the hope is that this cost is optimal in that it is proportional to the
number of degrees of freedom in the problem. Our experiments suggest that this
is so. In addition, a QCD simulation requires solving the system of equations for
many right-hand sides. The setup is performed only once, with the resulting method
used to solve the system with many right-hand sides. We demonstrate that, even
with the cost of the adaptive setup, the resulting method is more efficient than a
diagonally preconditioned conjugate gradient algorithm when solving with a small
number (O(1)) of right-hand sides. Indeed, for the experiments given in Table 1,
only four right-hand sides need be solved to justify the cost of the adaptive setup for
the smallest value of mass gap (mq = .01), i.e., the most ill conditioned system. For
β = 3 and mq = .01, the CPU time required for the adaptive setup was 13.7 seconds
and the CPU time needed to reduce the relative residual by a factor of 105 for a single
right-hand side, using αSA preconditioned CG, was 0.8 seconds. Solving the same
system using diagonally preconditioned CG required 4.7 sec CPU time.
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Problem size 4096 Problem size 16384
β / mq .01 .05 .1 .3

2 .25 / .98 .27 /.96 .24 /.91 .22 /.83
3 .29 /.98 .27 /.94 .26 /.92 .27 /.84
5 .28 /.96 .29 /.95 .26 /.92 .25 /.81

β / mq .01 .05 .1 .3
2 .33 /.99 .31 /.96 .31 /.94 .31 /.85
3 .42 /.98 .42 /.97 .40 /.93 .31 /.86
5 .31 /.99 .31 /.96 .29 /.92 .28 /.83

Table 1. Average convergence factors for αSA preconditioned CG and diagonally precondi-
tioned CG applied to (8) for two problem sizes and various choices of ρ and β.

5 Conclusions

Our experiments demonstrate that the αSA algorithm provides an efficient solver
for the 2D lattice QCD problems considered. It remains to be verified whether the
favorable convergence properties carry over to the full 4D case. Note that the cost of
each iteration critically depends on the ratio of the number of degrees of freedom on
the fine level to that on the coarse level. The coarsening for our 2D problem was very
aggressive, leading to acceptable operator complexities even with eight adaptively
computed near-kernel components.
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