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This work is devoted to present a scalable domain decomposition method
to solve nonlinear elastodynamic problems. Large non linear elastodynamic
problems represent an appropriate application field for substructuring meth-
ods which are efficient on parallel computer with the proviso of using spe-
cific preconditioner techniques well adapted to the mechanical modeling. Ac-
cording to this reason, we develop an adapted Balancing domain decomposi-
tion method [Man93, LeT94] appropriated to solve this kind of systems. By
using the theoretical framework of Schwarz additive decomposition method
[LeT94, LMV98] and by using arguments developed in [ABLV00], we propose
a two level Neumann-Neumann preconditioner based on the construction of a
coarse space of "lower energy" modes adapted to finite deformations problems
with dynamic process.

In section 1, nonlinear elastodynamic problems and domain decomposition
frameworks are recalled. The section 2 is devoted to present the definition of
an adapted coarse space by using Schwarz additive formulation. The construc-
tion of the two level Neumann-Neumann preconditioner is detailled in section
3. In last section 4, we test the efficiency of this updated Balancing domain
decomposition method on numerical solutions of an academic non linear dy-
namic problem.

1 Nonlinear elastodynamic problems and domain

decomposition frameworks

Dynamic deformable body systems in large deformations are governed by non
linear time dependent equations. A typical non linear elastodynamic problem
defined in a reference configuration can take the following variational form,

{
Find u ∈ L2(]0; T [; U0) such that for each t ∈]0; T [,∫

Ω
ρü(t).v +

∫
Ω

Π(t) : ∇v −
∫

Ω
f(t).v −

∫
∂gΩ

g(t).v = 0, ∀v ∈ U0
(1)
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where ρ denotes the mass density; Π is the first Piola-Kirchoff tensor; f and
g are the external force densities. A dot superscript indicates the time deriva-
tive. The set U0 = {v ∈ H1(Ω)dim;v = 0 on ∂0Ω} represents the space of
kinematically admissible displacement fields.

The problem (1) can be solved by an energy conservative time integration
scheme [Gon00] which is appropriate due to his long term time integration ac-
curacy and stability. In the following, we consider a collection of discrete times
(tp)p=1..P which define a partition of the time interval [0; T ] =

⋃P
p=1[tp; tp+1]

with tp+1 = tp + ∆t and ∆t = T
P

. By using a second order time integration
scheme (adapted midpoint scheme) [Gon00], the weak form (1) integrated
between the times tp and tp+1 gives the following system,

{
Find up+1 ∈ U0 such that
1

∆t

∫
Ω

ρ(u̇p+1 − u̇p).v +
∫

Ω
Πalgo : ∇v −

∫
Ω

fp+ 1
2
.v −

∫
∂gΩ

gp+ 1
2
.v = 0,

(2)
where �p+ 1

2
= 1

2 (�p + �p+1) and �p denotes the approximation of �(tp).

The energy conservative scheme (2) used in this work, is characterized by the
tensor Πalgo proposed by Gonzalez [Gon00]. After a fully discretization step
(time and space), we deduce the non linear systems defined by

1

∆t
M(u̇p+1 − u̇p) + Galgo(up+1,up) − qp+ 1

2
= 0 (3)

where M comes from the discretization of the inertia term 1
∆t

∫
Ω

ρ(u̇p+1 −
u̇p).v and Galgo is due to the discretization of the hyperelastic part

∫
Ω

Πalgo :
∇v and qp+ 1

2
comes from the discretization of the external forces

∫
Ω

f .v +∫
∂gΩ

g.v. The non linear system (3) can be solved by a iterative linearization

scheme indexed by i which leads to the solution of linear systems:

Kai,p+1∆ui,p+1 = −
1

∆t
M(u̇i,p+1 − u̇p) − Galgo(ui,p+1,up) + qp+ 1

2
(4)

with Kai,p+1 =
2

∆t2
Ma + Ki,p+1 and ∆ui,p+1 = ui+1,p+1 − ui,p+1

where Ma = ∂u̇p+1
M represents the mass matrix and Kai,p+1 = ∂up+1

Galgo

the hyperelastic tangent matrix. We can insist on the fact that the matrix
Kai,p+1 of system (4) is non symmetric; the non symmetry comes from the
form of tensor Πalgo (see [Gon00]).

The linear systems (4) can be solved by a domain decomposition method
[LeT94] which has to be adapted to the non symmetry but also to the pres-
ence of inertia terms. Before giving the adaptations to non linear dynamic
problems (sections 2 and 3), we present briefly now the principal features of
the Balancing domain decomposition method [Man93, LeT94]. We choose to
adopt a primal Schur complement method written with displacement vari-
ables. The basic idea in nonoverlapping domain decomposition methods is to
split the domain Ω of study into N small nonoverlapping subdomains Ωn
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and interfaces Γ n (n = 1, N). The Schur complement method consist then
in reducing the global system to an interface problem by a block Gaussian
elimination of internal degrees of freedom. The interface problem can take the
following variational form:

∃ū ∈ V̄ / < Si,p+1ū, v̄ >=< f̄i,p+1, v̄ > ∀v̄ ∈ V̄ = tr(V )|Γ , (5)

where V is the discrete set defined from the space U0 and Γ =
⋃N

n=1 Γ n. The

matrices Si,p+1 =
∑N

n=1 RnSn
i,p+1(R

n)t denote the global Schur complement
matrices defined on Γ ; (Rn)t is the restriction operator which goes from Γ to
Γ n. The local Schur complement matrices Sn

i,p+1 are defined on Γ n by

Sn
i,p+1 = K̄a

n

i,p+1 − (Bn
i,p+1)

t(K̊a
n

i,p+1)
−1Bn

i,p+1. (6)

To do that, we have considered the subdomain stiffness matrix formulated

by Kan
i,p+1 =

(
K̊a

n

i,p+1 Bn
i,p+1

(Bn
i,p+1)

t K̄a
n

i,p+1

)
. The blocks K̊a

n

i,p+1 and K̄a
n

i,p+1 cor-

respond respectively to the internal and interface degrees of freedom. The
matrix Bn

i,p+1 represents the contribution connecting Γ n to Ωn. The interface
problem (5) can be solved by a GMRES method (non symmetric cases) with
the multilevel Neumann-Neumann preconditioner [LeT94, ABLV00]. This it-
erative technique needs to form the matrix vector products Sp̄ and M−1r̄

by solving independent auxiliary Dirichlet and Neumann problems on the lo-
cal subdomains and a global coarse problem defined on a space of singular
(rigid body) motions. The adaptation of the Balancing Method to solve linear
systems issued from non linear elastodynamic problems [Bar05] can be real-
ized by using the theoritical frameworks of Schwarz additive decomposition
method with introduction of an adapted coarse space.

2 Schwarz additive formulation: towards a definition of

an adapted coarse space

The two-level Neumann-Neumann preconditioner may be interpreted as a
standard additive Schwarz algorithm [LeT94]. This method consists in de-
composing the interface space V̄ into a coarse and a fine component: V̄G and
V̄f . The coarse space V̄G =

∑N
n=1 DnZn (Dn is a given partition of unity

defined on the interface,
∑N

n=1 DnRn = Id|V̄ ) can be defined by adding local
lower energy components and the fine space V̄f is defined by duality as follows:

V̄f =
N∑

n=1

DnV̄ n
f where V̄ n

f = {v̄n
f ∈ V̄ n, < SRnv̄n,Rnzn >= 0, ∀zn ∈ Zn}.

(7)
The key point is the construction of the local spaces Zn of rigid motions. This
construction must, if that is necessary, regularize local Neumann problems
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but more especially set the constants or the lower energy modes (like rigid
body motions) to zero in the solution of local Neumann problems. For more
details on the presentation of the Schwarz additive method, we can refer to
[LeT94, LMV98] for symmetric cases and [ABLV00] for non symmetric cases.

With finite deformations and dynamic problems, some lower energy modes
cannot be detected in the factorization step of the local tangent matrices of
Neumann problems [Bar05]. These drawbacks come from the finite deforma-
tions modeling but also from the regularizing contribution of the mass ma-
trix. Moreover, we also need to improve the continuity between subdomains
by taking into account specific modes (like corners modes ...). So we have to
introduce a specific construction of these lower energy modes.

In the following, we present in detail the construction of the coarse space
V̄G for non linear dynamic problems. The orthogonality relation used in (7)
characterizing the space V̄ n

f permits to obtain informations in order to define
the local coarse space Zn. Indeed the expansion of this orthogonality relation
by using Si,p+1 =

∑N
n=1 RnSn

i,p+1(R
n)t involves only terms issued from the

subdomains neighbouring to the nth and one term from the nth itself,

neigh(n)∑

l=1

< v̄n , (Rn)tRl(Sl
i,p+1)

t(Rl)tRnzn >

︸ ︷︷ ︸
(8i)

+ < v̄n , (Sn
i,p+1)

tzn >
︸ ︷︷ ︸

(8ii)

= 0

(8)
The relation (8) can be verified by imposing the terms (8i) and (8ii) to zero.
Let us see now what the use of these relations imply:

- use of the term (8ii): this term may be eliminated by imposing that the
kernel of (Sn

i,p+1)
t is included in the local coarse space Zn, (Ker(Sn

i,p+1)
t ⊂

Zn). Such a choice leads to the same simplification than those obtained with
the kernel of Sn for the more common symmetric case [LeT94]. For non sym-
metric cases, this choice leads to the introduction of Dual Rigid Modes (DRM)
defined through the kernel of (Sn

i,p+1)
t (see [ABLV00] for more precisions). In

a pratical point of view and according to the form Sn
i,p+1 given in (6), the dual

rigid modes (noted by vn
Gα) defined on Ωn can be calculated through the local

matrices (Kan
i,p+1)

t by the solution of this following Neumann systems:

vn
Gα ∈ V n / (Kan

i,p+1)
tvn

Gα = 0, α = 1, nbDRMn. (9)

where nbDRMn represents the total number of dual rigid modes of subdo-
mains Ωn. One can easily prove that the modes vn

Gα ∈ Ker(Kan
i,p+1)

t are
connecting to the elements zn ∈ Ker(Sn

i,p+1)
t by the relation zn = v̄n

Gα

(where v̄n
Gα represents the contribution of vn

Gα on Γ n).
- contribution of the term (8i): a simple manner to cancel the term (8i) is

to fix all the terms of the sum to zero; the elements zn of Zn could then be
caracterized by the solution of (Rn)tRl(Sl

i,p+1)
t(Rl)tRnzn = 0. That makes

it possible to ensure the continuity of the coarse space elements through the
interface Γ n of Ωn by considering the contributions relating to corners, edges
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and faces of the neighbouring subdomains Ωl. Indeed, the elements zn can be
found respectively by these following relations :

zl ∈ Z l / (Sl
i,p+1)

tzl = 0 ∀ l = 1, neigh(n) (10)

zn ∈ Zn / (Rl)tRnzn = zl ∀ l = 1, neigh(n) (11)

The use of the (8ii) and (10) permits to calculte the dual rigid modes of the
subdomains Ωn and his neighbours Ωl; furthermore the relation (11) repre-
sents the continuity constraint of dual modes through the interface (corners,
edges and faces) between Ωn and Ωl. This last point makes it possible to
connect this approach with the Balancing Domain Decomposition Method
with Constraints [MD03]; the enforcement of these kind of constraint leads to
expensive computational cost. An inexpensive way, inspired by [LMV98] and
[MD03] would be to impose only the continuity on the corners of subdomains
Ωn. That can be done by the computation of the nbDCMn Dual Corner
Modes (DCM) of subdomains Ωn by enforcing a same arbitrary Dirichlet
boundary value on the corner interface degrees of freedom for all concerned
subdomains Ωn and Ωl (where nbDCMn is the total number of DCM).

In conclusion, the coarse space Zn can be generated by considering the
nbDRMn dual rigid modes defined by solutions of the systems (12) and par-
ticulary by the nbDCMn dual corner modes given by the systems (13) (see
the next section 3 for more details on the computation of these modes).

3 Adaptation of the 2-level Neumann-Neumann

preconditionner

According to the definition of the coarse space introduced in section 2, we
propose an adapted construction of the two level Neumann-Neumann precon-
ditioner based on the following steps:

1. Preliminary step : We identify the local internal degrees of freedom
{Prn

α; α = 1, nbDRMn} which cancel all nbDRMn rigid motions of sub-
domain Ωn. This detection can be realized during the factorization of the
stiffness matrix (Kn

e ) coming from the linear elastostatic system associ-
ated to the non linear elastodynamic problem (3). Notice that we can also
make arbitrary this detection.

2. For each Newton iteration i of each time step p

a) We construct the local regularized matrices K̃a
n

i,p+1 by using the de-
grees of freedom {Prn

α} detected in step (1). These matrices can be
written by using the contributions according to internal and interface
degrees of freedom; then only the internal contribution K̊a

n

i,p+1 of the

matrix Kan
i,p+1 is regularized by using the matrix Q̊n

α:

˜̊
Ka

n

i,p+1 = K̊a
n

i,p+1 + Q̊n
α where (Q̊

n

α)jk =

{
BV if j = k = Prn

α

0 else
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where BV is an arbitrary big value (like 1030 for example). This regu-
larization is not necessary for dynamic problems due to the contribu-
tion of the inertia terms 2

∆t2
Ma which ensures the matrices Kan

i,p+1

to be non singular. On the other hand, we need to construct the regu-

larized matrices ˜̄Ka
n

i,p+1 in order to impose the boundary conditions
on the corners degrees of freedom noted by {Pcn

γ ; γ = 1, nbDCMn}:

˜̄Ka
n

i,p+1 = K̄a
n

i,p+1 + Q̄n
γ where (Q̄n

γ )jk =

{
BV if j = k = Pcn

γ

0 else

b) We compute the dual rigid modes {vn
Gα; α = 1, nbDRMn} by solving

the (regularized) local Neumann problems set on the space V n of
subdomain displacements functions,

(
˜̊
Ka

n

i,p+1 Bn
i,p+1

(Bn
i,p+1)

t K̄a
n

i,p+1

)(
v̊n

Gα

v̄n
Gα

)
=

(
e̊n

α

0

)
; α = 1, nbDRMn (12)

where the jth component (̊en
α)j of the vector e̊n

α is equal to the arbi-
trary big value BV if j = Prn

α and to the value zero if not.
c) We compute the dual corner modes {vn

Gγ ; γ = 1, nbDCMn} by solv-
ing local Neumann problems in which the continuity of modes on cor-
ners can be realized by enforcing the same arbitrary Dirichlet bound-
ary value (1 for example) on the corners interface degrees of freedom
{Pcn

γ ; γ = 1, nbDCMn} for all concerned subdomains Ωn :

(
K̊a

n

i,p+1 Bn
i,p+1

(Bn
i,p+1)

t ˜̄Ka
n

i,p+1

)(
v̊n

Gα

v̄n
Gα

)
=

(
0

ēn
γ

)
; γ = 1, nbDCMn (13)

where the jth component (ēn
γ )j of the vector ēn

γ is equal to the arbi-
trary big value BV if j = Pcn

γ and to the value zero if not.
3. We define the local coarse space by:

Zn = vect
(
{v̄n

Gα; α = 1, nbDRMn}, {v̄n
Gγ ; γ = 1, nbDCMn}

)
.

With this construction of lower energy modes, the two-level Neumann-Neumann
preconditioner is classically defined for each time step p and each Newton it-
eration i by

M−1
i,p+1 = PG +

N∑

n=1

(I − PG)Dn
i,p+1(S̃

n
i,p+1)

−1(Dn
i,p+1)

t(I − PG)t, (14)

where (S̃n
i,p+1)

−1 is the regularized Schur inverse matrix and PG denotes the

orthogonal S-projection of V̄ on V̄G.
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4 A nonlinear dynamic problem: the cantilever beam

In this section, we illustrate numerically the previous adaptations in the case
of the solution of a 2-dimensional non linear elastodynamic problem. The
application relates to the dynamic evolution of a cantilever beam in plane
displacements. To do that, we consider an elastic beam clamped on one of

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
�� g

hyperelastic beam

domain decomposition interfaces

subdomains corners

Fig. 1. Deformed sequence of a cantilever
beam.

Fig. 2. Substructuration of the beam
in 40 subdomains.

its tips and an external time independent loading g on the opposite tip. The
compressible material response considered is governed by an Ogden consti-
tutive law. The mesh and its deformed configurations during the time are
presented in figure 1. From this numerical experiment, we analyse the scal-
ability of the interface solver (GMRES) with some versions of the two-level
Neumann-Neumann preconditioners. The considered preconditioners are :
- the non symmetric Neumann-Neumann preconditioner given in [ABLV00]
(curve H) without non linear dynamic adaptations,
- the non symmetric Neumann-Neumann preconditioner given in [Bar05]
(curve �) presented in section 3 but without dual corner modes (step (c)),
- the improved non symmetric Neumann-Neumann preconditioner introduced
in section 3 (curve •) with all the features (steps (a), (b) and (c)).

The figure 3 gives the evolution of average number of GMRES iterations
(per Newton iterations) for a beam decomposed in 2, 5, 10, 20, 40, 80 and 160
subdomains (see figure 2 for a decomposition in 40 subdomains). We observe
that the number of iterations obtained with the 2-level Neumann-Neumann
preconditioner without adaptations (curve H) grows up with respect to the
number of subdomains. So the interface solver with this preconditioner loses its
classical scalability. We can remark that the preconditioner (curve �) given in
[Bar05] (without corners modes) permits to strongly decrease the solver itera-
tions but the dependence with respect to the number of subdomains is already
present. On the other hand, the improved Neumann-Neumann preconditioner
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N.-N. preconditioner given in [Bar05] (without corner modes)
improved N.-N. preconditioner (presented in section 3)

cantilever beam

   2      5      10      20      40      80      160   
number of
subdomains

N.-N.
preconditioners

▼ ▼    11     14     25      48      95     188      359   

   7      10     15      21      41       62        84   
   5        7       7        9        7         8          7   

Fig. 3. Numerical scalability with Neumann-Neumann (N.-N.) preconditioners.

(curve •) leads to recover the numerical scalability properties i.e. the inde-
pendence of the solver iterations with respect to the number of subdomains.
Furthermore, the performances of this preconditioner are pratically the same
as the ones obtained to solve linear elastostatic problems. Indeed, the average
number of iterations is equal to 7 for a decomposition in 160 subdomains (see
table in figure 3) and if we consider the associated linear elastostatic problem
the number of iterations is equal to 6. In order to validate these performances,
we must test this preconditioner on other less academic simulations.
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