
A Domain Decomposition for a Parallel
Adaptive Meshing Algorithm

Randolph E. Bank?

Department of Mathematics University of California, San Diego La Jolla,
California 92093-0112. rbank@ucsd.edu

Summary. We describe a domain decomposition algorithm for use in the parallel
adaptive meshing paradigm of Bank and Holst. Our algorithm has low communi-
cation, makes extensive use of existing sequential solvers, and exploits in several
important ways data generated as part of the adaptive meshing paradigm. Numeri-
cal examples illustrate the effectiveness of the procedure.

1 Bank-Holst Algorithm

In [4, 5], we introduced a general approach to parallel adaptive meshing for
systems of elliptic partial differential equations. This approach was motivated
by the desire to keep communications costs low, and to allow sequential adap-
tive software (such as the software package pltmg used in this work) to be
employed without extensive recoding. Our discussion is framed in terms of
continuous piecewise linear triangular finite element approximations used in
pltmg, although most ideas generalize to other approximation schemes.

Our original paradigm, called Plan A in this work, has three main com-
ponents:

Step I: Load Balancing. We solve a small problem on a coarse mesh,
and use a posteriori error estimates to partition the mesh. Each subregion
has approximately the same error, although subregions may vary consid-
erably in terms of numbers of elements or gridpoints.
Step II: Adaptive Meshing. Each processor is provided the complete
coarse mesh and instructed to sequentially solve the entire problem, with
the stipulation that its adaptive refinement should be limited largely to

? The work of this author was supported by the National Science Foundation under
contract DMS-0208449. The UCSD Scicomp Beowulf cluster was built using funds
provided by the National Science Foundation through SCREMS Grant 0112413,
with matching funds from the University of California at San Diego.

2 Randolph E. Bank

its own partition. The target number of elements and grid points for each
problem is the same. At the end of this step, the mesh is regularized such
that the global mesh described in Step III is conforming.
Step III: Global Solve. The final global mesh consists of the union
of the refined partitions provided by each processor. A final solution is
computed using domain decomposition.

With this paradigm, the load balancing problem is reduced to the numerical
solution of a small elliptic problem on a single processor, using a sequential
adaptive solver such as pltmg without requiring any modifications to the
sequential solver. The bulk of the calculation in the adaptive meshing step
also takes place independently on each processor and can also be performed
with a sequential solver with no modifications necessary for communication.
The only parts of the calculation requiring communication are (1) the initial
fan-out of the mesh distribution to the processors at the beginning of adaptive
meshing step, once the decomposition is determined by the error estimator
in load balancing; (2) the mesh regularization, requiring communication to
produce a global conforming mesh in preparation for the final global solve in
Step III; and (3) the final solution phase, that requires communicating certain
information about the interface system (see Section 2).

In [2], we considered a variant of the above approach in which the load
balancing occurs on a much finer mesh. The motivation was to address some
possible problems arising from the use of a coarse grid in computing the load
balance. In particular, we assume in Plan A that Nc � p where Nc is the size
of the coarse mesh and p is the number of processors. This is necessary to allow
the load balance to do an adequate job of partitioning the domain into regions
with approximately equal error. We also assume that Nc is sufficiently large
and the mesh sufficiently well adapted for the a posteriori error estimates
to accurately reflect the true behavior of the error. For the second step of
the paradigm, we assume that Np � Nc where Np is the target size for the
adaptive mesh produced in Step II of the paradigm. Taking Np � Nc is
important to marginalize the cost of redundant computations.

If any of these assumptions is weakened or violated, there might be a cor-
responding decline the effectiveness of the paradigm. In this case, we consider
the possibility of modifying Steps I and II of the paradigm as follows. This
variant is called Plan B in this work.

Step I: Load Balancing. On a single processor we adaptively create a
fine mesh of size Np, and use a posteriori error estimates to partition the
mesh such that each subregion has approximately equal error, similar to
Step I of the original paradigm.
Step II: Adaptive Meshing. Each processor is provided the complete
adaptive mesh and instructed to sequentially solve the entire problem.
However, in this case each processor should adaptively coarsen regions
corresponding to other processors, and adaptively refine its own subregion.
The size of the problem on each processor remains Np, but this adaptive

Parallel Adaptive Meshing 3

rezoning strategy concentrates the degrees of freedom in the processor’s
subregion. At the end of this step, the mesh is regularized such that the
global mesh is conforming.
Step III: Global Solve. This step is the same as Plan A.

With Plan B, the initial mesh can be of any size. Indeed, our choice of
Np is mainly for convenience and to simplify notation; any combination of
coarsening and refinement could be allowed in Step II. Allowing the mesh in
Step I to be finer increases the cost of both the solution and the load balance
in Step I, but it allows flexibility in overcoming potential deficiencies of a very
course mesh in Plan A.

2 A Domain Decomposition Algorithm

In developing a domain decomposition solver appropriate for Step III, we
follow a similar design philosophy. In particular, our DD solver has low com-
munications costs, and recycles the sequential solvers employed in the Steps
I and II. Furthermore, we use the existing partially refined global meshes dis-
tributed among the processors as the basis of local subdomain solves. This
results in an overlapping DD algorithm in which the overlap is global, and
provides a natural built-in coarse grid space on each processor. Thus no spe-
cial coarse grid solve is necessary. Finally, a very good initial guess is provided
by taking the fine grid parts of the solution on each processor.

The DD algorithm is described in detail in [7, 9]; some convergence analysis
for a related algorithm in the symmetric, positive definite case can be found
in [6]. To simplify the discussion, we initially consider the case of only two
processors. We imagine the fine grid solutions for each of the two regions glued
together using Lagrange multipliers to impose continuity along the interface.
This leads to a block 5× 5 system

A11 A1γ 0 0 0
Aγ1 Aγγ 0 0 I
0 0 Aνν Aν2 −I
0 0 A2ν A22 0
0 I −I 0 0

δU1

δUγ

δUν

δU2

Λ

 =

R1

Rγ

Rν

R2

Uν − Uγ

 . (1)

Here U1 and U2 are the solutions for the interior of regions 1 and 2, while Uγ

and Uν are the solutions on the interface. R∗ are the corresponding residuals.
The blocks A11, A22 correspond to interior mesh points for regions 1 and
2, while Aγγ , Aνν correspond to the interface. Λ is Lagrange multiplier; the
identity matrix I appears because global mesh is conforming.

In a similar fashion, we can imaging the fine grid on processor 1 glued to
the coarse grid on processor 1 using a similar strategy. This results in a similar
block 5× 5 system

4 Randolph E. Bank
A11 A1γ 0 0 0
Aγ1 Aγγ 0 0 I
0 0 Āνν Āν2 −I
0 0 Ā2ν Ā22 0
0 I −I 0 0

δU1

δUγ

δŪν

δŪ2

Λ

 =

R1

Rγ

Rν

0
Uν − Uγ

 (2)

where the barred quantities (e.g. Ā22) refer to the coarse mesh. The right hand
side of (2) is a subset of (1), except that we have set R̄2 ≡ 0. If local solves
in Step II of the procedure were done exactly, then the initial guess would
produce zero residuals for all interior points in the global system (1). We thus
assume R1 ≈ 0, R2 ≈ 0 at all steps. This approximation substantially cuts
communication and calculation costs.

Next, on processor 1 we reorder the linear system (2) as
0 −I 0 I 0
−I Āνν 0 0 Āν2

0 0 A11 A1γ 0
I 0 Aγ1 Aγγ 0
0 Ā2ν 0 0 Ā22

Λ
δŪν

δU1

δUγ

δŪ2

 =

Uν − Uγ

Rν

R1

Rγ

0

and formally eliminate the upper 2× 2 block. The resulting local Schur com-
plement system is given byA11 A1γ 0

Aγ1 Aγγ + Āνν Āγ2

0 Ā2ν Ā22

 δU1

δUγ

δŪ2

 =

 R1

Rγ + Rν + Āνν(Uν − Uγ)
0 + Ā2ν(Uν − Uγ)

 . (3)

The system matrix in (3) is just the stiffness matrix for the conforming
mesh on processor 1. To solve this system, processor 1 must receive Rν , and
Uν from processor 2 (and in turn send Rγ , and Uγ to processor 2). With
this information, the right hand side can be computed and the system solved
sequentially with no further communication. We use δU1 and δUγ to update
U1 and Uγ ; we discard δŪ2. The update could be local (U1 ← U1 + δU1,
Uγ ← Uγ + δUγ) or could require communication. In pltmg, the update
procedure is a Newton line search. Here is a summary of the calculation on
processor 1.

1. locally compute R1 and Rγ .
2. exchange boundary data (send Rγ and Uγ ; receive Rν and Uν).
3. locally compute the right-hand-side of the Schur complement system (3).
4. locally solve the linear system (3) via the multigraph iteration.
5. update U1 and Uγ using δU1 and δUγ .

We now consider the case of the global saddle point system in the general
case of p processors. Now the global system has the form

Parallel Adaptive Meshing 5
Ass Asm Asi I
Ams Amm Ami −Zt

Ais Aim Aii 0
I −Z 0 0

δUs

δUm

δUi

Λ

 =

Rs

Rm

Ri

ZUm − Us

 . (4)

Here Ui are the interior unknowns for all subregions, and Aii is a block di-
agonal matrix corresponding to the interiors of all subregions; as before we
expect Ri ≈ 0. For the interface system, we (arbitrarily) designate one un-
known at each interface point as the master unknown, and all others as slave
unknowns; there will be more than one slave unknown at cross points (where
more than 2 subregions share a single interface point). As before we impose
continuity at interface points using Lagrange multipliers; Z 6= I in general
due to cross points. If we reorder (4) and eliminate the Lagrange multipliers
and slave unknowns, the resulting Schur complement system is

(
Amm + AmsZ + ZtAsm + ZtAssZ Ami + ZtAsi

Aim + AisZ Aii

) (
δUm

δUi

)
=(

Rm + ZtRs − (Ams + ZtAss)(ZUm − Us)
Ri −Ais(ZUm − Us)

)
. (5)

The system matrix is just the stiffness matrix for the global conforming fi-
nite element space. The right hand side is the conforming global residual
augmented by some “jump” terms arising from the Lagrange multipliers.

The situation on processor k is analogous; we imagine gluing the fine sub-
region on processor k to the p − 1 coarse subregions on processor k. The
resulting saddle point problem has the form

Āss Āsm Āsi I
Āms Āmm Āmi −Z̄t

Āis Āim Āii 0
I −Z̄ 0 0

δŪs

δŪm

δŪi

Λ

 =

R̄s

R̄m

R̄i

Z̄Ūm − Ūs

 . (6)

The matrix Āii and the vector Ūi are fine for region k and coarse for the
p − 1 other regions. The residual R̄i corresponds to Ri on region k, and is
zero for the coarse subregions. Master interface variables are chosen from
region k if possible; this part of the local interface system on processor k
corresponds exactly to the global interface system. For other parts of the local
interface system, master unknowns can be chosen arbitrarily; in pltmg, they
are actually defined using arithmetic averages, but that detail complicates the
notation and explanation here. The vectors R̄m and R̄s are subsets of Rm and
Rs, respectively.

A local Schur complement system on processor k is computed analogously
to (5). This system has the form

6 Randolph E. Bank(
Āmm + ĀmsZ̄ + Z̄tĀsm + Z̄tĀssZ̄ Āmi + Z̄tĀsi

Āim + ĀisZ̄ Āii

) (
δŪm

δŪi

)
=(

R̄m + Z̄tR̄s − (Āms + Z̄tĀss)(Z̄Ūm − Ūs)
R̄i − Āis(Z̄Ūm − Ūs)

)
. (7)

As in the 2 processor case, the system matrix is just the conforming finite
element stiffness matrix for the partially refined global mesh on processor k.
To compute the right hand side of (7), processor k requires interface solution
values and residuals for the global interface system. Once this is known, the
remainder of the solution can be carried out with no further communication.
To summarize, on processor k, one step of the DD algorithm consists of the
following.

1. locally compute R̄i and parts of Rs and Rm from subregion k.
2. exchange boundary data, obtaining the complete fine mesh interface vec-

tors Rm, Rs, Um and Us.
3. locally compute the right-hand-side of (7) (using averages).
4. locally solve the linear system (7) via the multigraph iteration.
5. update the fine grid solution for subregion k using subsets of δŪi, δŪm.

3 Numerical Experiments

We now present several numerical illustrations; the details of the example
problems are summarized below.

Example 1: Our first example is the Poisson equation

−∆u = 1 in Ω, (8)
u = 0 on ∂Ω,

where Ω is the domain shown in Figure 1.

Fig. 1. The domain (left) and solution (right) for the Poisson equation (8).

Example 2: Our second example is the convection-diffusion equation

Parallel Adaptive Meshing 7

−∆u + βuy = 1 in Ω,

u = 0 on ∂Ω, (9)

β = 105,

where Ω is the domain shown in Figure 2.

Fig. 2. The domain (left) and solution (right) for the convection-diffusion equation
(9).
.

Example 3: Our third example is the anisotropic equation

−a1uxx − a2uyy − f = 0 in Ω, (10)
(a1ux, a2uy) · n = c− αu on ∂Ω,

where Ω is the domain shown in Figure 3. Values of the coefficient functions
are given in Table 1.

Region a1 a2 f side c α

1 25 25 0 left 0 0
2 7 0.8 1 top 1 3
3 5.0 10−4 1 right 2 2
4 0.2 0.2 0 bottom 3 1
5 0.05 0.05 0

Table 1. Coefficient values for equation (10). Region numbers refer to Figure 3.

Example 4: Our fourth example is the optimal control problem

8 Randolph E. Bank

Fig. 3. The domain (left) and solution (right) for the anisotropic equation (10).
.

min
∫

Ω

(u− u0)2 + γλ2 dx such that

−∆u = λ in Ω ≡ (0, 1)× (0, 1), (11)
u = 0 on ∂Ω,

1 ≤ λ ≤ 10, γ = 10−4,

u0 = sin(3πx) sin(3πy).

This problem is solved by an interior point method described in [3, 1]. Three
finite element functions are computed; the state variable u, the Lagrange
multiplier v, and the optimal control λ.

Our Linux cluster consists of 20 dual 1800 Athlon-CPU nodes with 2GB of
memory each, with a dual Athlon 1800 file server, also with 2GB of memory.
Communication is provided via a 100Mbit CISCO 2950G Ethernet switch.
The cluster runs the NPACI Rocks version of Linux, using Mpich.

In the case of the original paradigm, Plan A, in Step I for each problem
we created an adaptive mesh with N ≈ 10000 vertices. This mesh was then
partitioned for p = 8, 16, 32, 64, 128 processors, and the coarse problem was
broadcast to all processors2. In Step II of the paradigm, we adaptively created
a mesh with N ≈ 100000 vertices. In particular, we first adaptively refined to
N ≈ 40000, solved that problem, adaptively refined to N ≈ 100000, and then
regularized the mesh. In Step III, pltmg first solved the local problem with
N ≈ 100000, in order to insure that interior residuals were small and validate
the assumption that coarse interior residuals could be set to zero in the DD
solver. This local solve was followed by several iterations of the DD solver.

In the case of the variant paradigm, Plan B, in Step I we created an
adaptive mesh with N ≈ 100000. As in Plan A, this mesh was then partitioned
for p = 8, 16, 32, 64, 128 processors, and broadcast to all processors. In Step
II, through a process of adaptive unrefinement/refinement, each processor

2 Since our cluster had only 20 nodes, the results are simulated using Mpich for the
larger values of p.

Parallel Adaptive Meshing 9

Fig. 4. The state variable (left,top), Lagrange multiplier (right, top) and optimal
control (bottom) for equation (11).
.

transferred approximately 50000 vertices from outside its subregion to inside,
so that the total number of vertices remained N ≈ 100000. This mesh was
them made conforming as in Step II of Plan A. In Step III, the local problem
was solved, followed by several iterations of the DD solver.

For both Plan A and Plan B, the convergence criteria for the DD iteration
was

||δUk||G
||Uk||G

≤ max
(
||δU0||G
||U0||G

,
||∇eh||L2

||∇uh||L2

)
× 10−1

||Rk||G−1

||R0||G−1
≤ 10−2

Here G is the diagonal of the finite element mass matrix, introduced to account
for nonuniformity of the global finite element mesh. uh and eh are the finite
element solution and a posteriori error estimate, respectively, introduced to
include the approximation error in the convergence criteria. The norms in
various terms are different, but we have not observed any difficulties arising
as a result. For the multigraph iteration on each processor, the convergence
criteria was

||Rj ||`2
||R0||`2

≤ 10−3.

10 Randolph E. Bank

The stronger criteria was to insure that the approximation on coarse interior
residuals by zero remained valid.

p N DD Breakpoints

Step I Step II Step III

Poisson Equation: Plan A

8 657464 2 2.8 20.1 (17.2-21.3) 61.6 (58.2-65.4)
16 1240805 2 3.0 19.6 (16.4-21.3) 62.4 (56.7-67.0)
32 2329953 2 3.2 20.4 (17.4-22.5) 67.8 (58.1-72.7)
64 4361844 2 3.3 20.0 (15.5-21.8) 68.5 (56.1-76.9)
128 8057638 3 3.5 20.0 (15.2-22.2) 77.0 (59.8-88.7)

Poisson Equation: Plan B

8 478398 1 75.0 92.7 (90.2-95.2) 123.5 (121.2-126.2)
16 827827 1 82.4 98.8 (97.4-103.0) 130.9 (126.2-136.0)
32 1472509 1 87.2 106.1 (103.0-109.2) 139.9 (133.0-145.0)
64 2626624 1 90.1 109.1 (105.0-112.1) 143.8 (136.6-150.9)
128 4641395 1 97.9 116.7 (113.4-119.6) 151.6 (143.7-157.9)

Table 2. Numerical results for problem (8).

p N DD Breakpoints

Step I Step II Step III

Convection Diffusion Equation: Plan A

8 698859 2 3.3 18.7 (17.2-19.7) 47.4 (45.7-49.7)
16 1345203 2 3.5 18.9 (16.6-21.1) 47.5 (45.4-50.1)
32 2543913 2 3.8 18.9 (16.6-21.0) 49.3 (43.5-54.8)
64 4665741 2 4.0 19.0 (16.6-21.3) 51.1 (46.0-63.1)
128 8547289 2 4.2 19.3 (16.0-22.4) 53.1 (44.6-65.0)

Convection Diffusion Equation: Plan B

8 493182 2 66.7 79.5 (77.2-82.4) 105.1 (100.5-111.3)
16 872605 2 76.4 89.0 (86.6-91.7) 115.8 (111.6-119.1)
32 1598504 1 81.4 94.3 (91.6-97.6) 118.8 (113.7-123.7)
64 2941956 1 84.8 97.6 (95.3-100.6) 122.6 (118.9-126.5)
128 5305634 2 83.8 96.6 (94.3-100.3) 128.0 (122.0-132.6)

Table 3. Numerical results for problem (9).

In Tables 2-5 we summarize the results of our computations. In these
tables, p is the number of processors, N is the number of vertices on the final
global mesh, and DD is the number of domain decomposition iterations used
in Step III. Execution times, in seconds, at the end of Steps I, II, and III are
also reported. Step I is done on a single processor. For Steps II and III, average

Parallel Adaptive Meshing 11

p N DD Breakpoints

Step I Step II Step III

Anisotropic Equation: Plan A

8 646293 1 3.0 20.7 (19.3-22.0) 49.7 (46.0-54.5)
16 1169837 1 3.3 20.7 (19.0-22.6) 49.8 (44.9-54.8)
32 2038184 2 3.6 21.6 (18.7-23.2) 59.9 (48.0-68.5)
64 3500678 2 3.8 21.9 (19.4-24.6) 61.4 (51.6-71.8)
128 5729057 2 4.0 22.1 (19.5-24.9) 62.2 (53.8-75.6)

Anisotropic Equation: Plan B

8 484972 1 56.5 73.7 (71.4-77.0) 100.7 (97.1-106.7)
16 832360 1 62.5 79.2 (76.6-82.2) 105.8 (101.4-111.1)
32 1460881 1 68.0 86.3 (83.0-89.3) 115.1 (109.9-119.8)
64 2512231 1 74.8 92.9 (89.7-95.4) 122.7 (116.4-130.5)
128 4102960 1 81.4 99.3 (96.2-103.1) 129.8 (123.7-140.4)

Table 4. Numerical results for problem (10).

p N DD Breakpoints

Step I Step II Step III

Optimal Control Problem: Plan A

8 677913 1 6.0 31.8 (29.8-35.6) 109.9 (101.2-114.3)
16 1297918 1 6.3 32.1 (29.0-37.7) 119.3 (106.1-131.3)
32 2421235 1 6.5 33.3 (29.0-38.3) 131.3 (110.4-141.9)
64 4514511 1 6.6 33.8 (30.4-38.3) 137.3 (105.9-157.3)
128 8324507 2 7.0 34.2 (29.9-42.2) 173.6 (135.5-212.5)

Optimal Control Problem: Plan B

8 481309 1 139.0 156.7 (155.0-159.0) 215.6 (205.5-229.5)
16 830641 1 143.0 160.2 (157.0-163.1) 221.0 (210.6-236.7)
32 1482322 1 150.8 168.2 (164.0-171.1) 235.9 (220.1-248.4)
64 2600084 2 154.9 172.5 (169.0-175.6) 256.7 (242.0-275.6)
128 4507853 2 143.0 160.7 (156.5-166.0) 249.4 (230.3-268.3)

Table 5. Numerical results for problem (11).

times across all processors are reported; the range of times is also included in
parentheses.

• The times for Step I are much larger for Plan B than Plan A due to the
larger size of the problem. The increase in time with increasing p is due
mostly to eigenvalue problems that are solved are part of the spectral
bisection load balancing scheme.

• The distribution of times in Steps II and III is due mainly to differences
in the local sequential algorithms, for example using one instead of two
multigraph V-cycles in a local solve.

12 Randolph E. Bank

• The DD algorithm in [6] is shown to converge independently of N , which
was empirically verified in [7] for the version implemented here. There is
some slight, empirically logarithmic, dependence on p.

• For the convection-diffusion problem a multigraph preconditioned Bi-CG
algorithm was used, while for the Poisson equation and the anisotropic
equation regular preconditioned CG was used. Details of the multigraph
solver are given in [8].

• For the optimal control problem, the block linear systems were of order
3N , and each iteration required the solution of four linear systems with
the N ×N finite element stiffness matrix, and one system with an N ×N
matrix similar to the finite element mass matrix. See [1] for details.

In viewing the results as a whole, both paradigms scale reasonably well
as a function of p; since Step III is a very costly part of the calculation, it is
clearly worthwhile to try to make the convergence rate independent of p as
well as N , or at least to reduce the dependence on p. This is a topic of current
research interest.

References

1. R. E. Bank, PLTMG: A software package for solving elliptic partial differential
equations, users’ guide 9.0, tech. report, Department of Mathematics, University
of California at San Diego, 2004.

2. , Some variants of the Bank-Holst parallel adaptive meshing paradigm, Com-
puting and Visualization in Science, (accepted).

3. R. E. Bank, P. E. Gill, and R. F. Marcia, Interior methods for a class
of elliptic variational inequalities, in Large-scale PDE-constrained Optimization,
L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders,
eds., vol. 30 of Lecture Notes in Computational Science and Engineering, Berlin,
Heidelberg and New York, 2003, Springer-Verlag, pp. 218–235.

4. R. E. Bank and M. J. Holst, A new paradigm for parallel adaptive meshing
algorithms, SIAM J. on Scientific Computing, 22 (2000), pp. 1411–1443.

5. , A new paradigm for parallel adaptive meshing algorithms, SIAM Review,
45 (2003), pp. 292–323.

6. R. E. Bank, P. K. Jimack, S. A. Nadeem, and S. V. Nepomnyaschikh,
A weakly overlapping domain decomposition preconditioner for the finite element
solution of elliptic partial differential equations, SIAM J. on Scientific Computing,
23 (2002), pp. 1817–1841.

7. R. E. Bank and S. Lu, A domain decomposition solver for a parallel adaptive
meshing paradigm, SIAM J. on Scientific Computing, 26 (2004), pp. 105–127
(electronic).

8. R. E. Bank and R. K. Smith, An algebraic multilevel multigraph algorithm,
SIAM J. on Scientific Computing, 25 (2002), pp. 1572–1592.

9. S. Lu, Parallel Adaptive Multigrid Algorithms, PhD thesis, Department of Math-
ematics, University of California at San Diego, 2004.

