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Summary. This paper presents an adaptive algebraic multigrid method for the
solution of positive definite linear systems arising from the discretizations of ellip-
tic partial differential equations. The proposed method uses compatible relaxation
to adaptively construct the set of coarse variables. The nonzero supports for the
coarse-space basis is determined by approximation of the so-called two-level “ideal”
interpolation operator. Then, an energy minimizing coarse basis is formed using an
approach aimed to minimize the trace of the coarse-level operator. The presented
approach maintains multigrid-like optimality, without the need for parameter tun-
ing, for some problems where current algorithms exhibit degraded performance.
Numerical experiments are presented that demonstrate the efficacy of the approach.
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1 Introduction

We consider solving linear systems of equations,

Au = f , (1)

via algebraic multigrid (AMG), where A ∈ Rn×n is assumed to be symmet-
ric positive definite (SPD). Our AMG approach for solving (1) involves a
stationary linear iterative smoother and a coarse-level correction. The corre-
sponding two-grid method gives rise to an error propagation operator having
the following form,

ETG = (I − P (P tAP )−1P tA)(I −M−1A), (2)

where P : Rnc 7→ Rn is the interpolation operator and M is the approxi-
mate inverse of A that defines the iterative method. If A is symmetric, then
this variational form of the correction step is optimal in the energy norm. A
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multilevel algorithm is given by recursively solving the coarse-level problem,
involving Ac = P tAP , using a two-level method.

The efficiency of such an approach depends on proper interplay between
the smoother and the coarse-level correction. Typically, the AMG smoother is
fixed and the coarse-level correction is formed to compensate for its deficien-
cies. The primary task is, of course, the selection of P . It is quite common to
use only the information from the current level in order to compute P and,
hence, the next coarser space, because such a procedure can be implemented
efficiently and at a low computational cost. A general process for constructing
P is described by the following generic two-level algorithm:

• Choose a set of nc coarse degrees of freedom;
• Choose a sparsity pattern of interpolation P ∈ Rn×nc ;
• Define the weights of the interpolation (i.e., the entries of P ), giving rise

to the next level operator as Ac = P tAP ∈ Rnc×nc .

Standard algebraic multigrid methods use algorithms that rely on heuris-
tics based on properties of M -matrices (e.g., strength of connection and
algebraically-smooth error) in their setup to construct P . Although these tra-
ditional approaches have been shown to be extremely effective for a wide range
of problems [Bra86, TOS01, RS87, VMB96], the use of heuristics based on
M -matrix properties still limits their range of applicability. In fact, the com-
ponents and parameters associated with these approaches are often problem
dependent.

Developing more robust AMG solvers is currently a topic of intense re-
search. General approaches for selecting the set of coarse variables are pre-
sented in [Liv04, BF05, BBM+ar]. These approaches use compatible relax-
ation (CR) to gauge the quality of (as well as construct) the coarse variable
set, an idea first introduced by Brandt [Bra00]. Recent successes in developing
a more general form of interpolation include [BFM+04a, BFM+04b, VZ04,
XZ04]. These methods are designed to allow efficient attenuation of error in a
subspace characterized locally by a given set of error components, regardless of
whether they are smooth or oscillatory in nature. In [BFM+04a, BFM+04b],
the setup procedure computes these error components in a multilevel scheme
based on the power method for the error propagation operator of the method
itself.

The algorithm we propose for constructing P is motivated by the recently
developed two-level theory introduced in [FV03] and [FVZ04]. We explore
the use of this theory in developing a robust setup procedure in the setting of
classical AMG. In particular, as in classical AMG, we assume that the coarse-
level variables are a subset of the fine-level variables. Our coarsening algorithm
constructs the coarse variable set using the CR-based algorithm introduced
by Brannick and Falgout in [BF05]. The notion of strength of connection
we use in determining the nonzero sparsity pattern of the columns of P is
based on a sparse approximation of the so-called two-level ideal interpolation
operator. Given the sparsity pattern of the columns of P , the values of the
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nonzero entries of the columns of P are computed using the trace minimization
algorithm proposed by Wan, Chan, and Smith [WCS00], based on the efficient
implementation by Xu and Zikatanov [XZ04].

The remaining sections are organized as follows. In § 2, we introduce some
notation and give a brief review of the theory motivating our approach. Next,
§ 3 gives a description of our CR-based AMG coarsening algorithm and § 4
describes our more general notion of strength of connection. In § 5 we describe
our trace minimization form of interpolation. We give numerical results for
the proposed method applied to a set of scalar PDE in § 6 and, in §7, we give
some concluding remarks and future directions of our research.

2 Preliminaries and motivation

We begin by introducing notation. Since, in the presented algorithm, the
coarse-level degrees of freedom are viewed as a subset of the fine-level degrees

of freedom, prolongation P has the form P =
[

W
I

]
, where I is the nc × nc

identity and W ∈ Rns×nc , ns = n− nc, contains the rest of the interpolation
weights. In this way the coarse space Vc ⊂ Rn is defined as Range(P ).

In what follows, we use several projections on the Range(P ). These pro-
jections are defined for any SPD matrix X as follows:

πX = P (P tXP )−1P tX,

where, for X = I, we omit the subscript and write π instead of πI . To relate
the construction of interpolation to a compatible relaxation procedure, we
introduce two operators: R = [0, I] and S, where R has the dimensions of
P t and S has the dimensions of P . The fact that the coarse-level degrees of
freedom are a subset of the fine-level degrees of freedom is reflected in the form
of R. The matrix S corresponds to the complementary degrees of freedom, i.e.
fine-level degrees of freedom, and can be chosen in many different ways, as
long as RS = 0. In the approach presented here, we assume that S = [I, 0]t.
With R and S in hand, we define the 2× 2 block splitting of any X ∈ Rn×n

by

X =
[

Xff Xfc

Xcf Xcc

]
, (3)

where Xff = StXS, Xfc = StXRt, Xcf = RXS, and Xcc = RXRt. We
also need the Schur complement of X with respect to this splitting, defined
as S(X) = Xcc −XcfX−1

ff Xfc.
Given the smoother’s M , the F -relaxation form of compatible relaxation

(CR) we use in our algorithm yields an error propagation operator having the
following form:

Ef = (I −M−1
ff Aff ). (4)
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The associated symmetrized smoother is then defined as M̃ := M t(M t +M −
A)−1M , where M t + M − A is assumed to be SPD, a sufficient condition
for convergence. To simplify the presentation here, we also assume that M
is symmetric, in which case 2M − A being SPD is also necessary for the
convergence of the smoothing iteration.

2.1 Some convergence results

The convergence result motivating our approach is a theorem proved in
[FVZ04], giving the precise convergence rate of the two-grid algorithm.

Theorem 1. Let ETG be defined as in (2). Then

‖ETG‖2
A = 1− 1

K(P )
, K(P ) = sup

v

‖(I − πfM )v‖2fM
‖v‖2

A

.

Assuming that the set of coarse degrees of freedom have been selected (i.e. R
is defined), the remaining task is defining a P to minimize K(P ). Finding such
a P is of course not at all straightforward, because the dependence of K(P ) on
P given in Theorem 2 is complicated. To make this more practical we consider
minimizing an upper bound of K, which is easily obtained by replacing πfM
with π, the `2 projection on Range(P ). We then obtain a measure for the
quality of the coarse space defined as follows:

µ(P ) = sup
v

‖(I − π)v‖2fM
‖v‖2

A

.

Note that µ(P ) ≥ K(P ) for all P . Also, this measure suggests that error
components consisting of eigenvectors associated with small eigenvalues (i.e.,
error not effectively treated by relaxation) must be well approximated by P .
The following result from [FV03] gives P? that minimizes µ(P ).

Theorem 2. Assume that R, S, and µ are defined as above. Then

µ(P?) = min
P

µ(P ), where P? =
[
−At

fcA
−1
ff , I

]t

.

Moreover, the asymptotic convergence factor of CR provides an upper bound
for the above minimum as follows (see Theorem 5.1 in [FV03]).

Theorem 3. If the number of non-zeros per row in A is bounded, then there
exists a constant c, such that

µ(P?) ≤
c

1− ρf
, ρf = ‖Ef‖2

Aff
.

A conclusion that follows immediately from this theorem is that ρf provides
a computable measure of the quality of the coarse space, that is, a measure of
the ability of the set of coarse variables to represent error not eliminated by
relaxation.

The main ideas of our algorithm, described next, are based on observations
and conclusions drawn from the above results.
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3 Compatible relaxation based coarsening

In this section, we give more details on the first step of the algorithm, selecting
the coarse degrees of freedom. The quality of the set of coarse-level degrees of
freedom, C, depends on two conflicting criteria:

C1: algebraically-smooth error should be approximated well by some vec-
tor interpolated from C, and

C2: C should have substantially fewer variables than on the fine level.

In our adaptive AMG solver, the set of coarse variables is selected using the
CR-based coarsening approach developed in [BF05]. This coarsening scheme
is based on the two-level multigrid theory outlined in § 2: for a given splitting
of fine-level variables Ω into C and F , F denoting the fine-level only variables,
if CR is fast to converge, then there exists a P such that the resulting two-
level method is uniformly convergent. The algorithm ties the selection of C
to the smoother. The set of coarse variables is constructed using a multistage
coarsening algorithm, where a single stage consists of: (1) running several
iterations of CR (based on the current C) and (2) if CR is slow to converge,
adding an independent set of fine-level variables (not effectively treated by
CR) to C. Steps (1) and (2) are applied repeatedly until the convergence of
CR is deemed sufficient, giving rise to a sequence of coarse variable sets:

∅ = C0 ⊆ C1 ⊆ ... ⊆ Cm,

where, for the accepted coarse set C := Cm, convergence of CR is below a
prescribed tolerance. Hence, this algorithm constructs C so that C1 is strictly
enforced and C2 is satisfied as much as possible. The details of this algorithm
are given in [BF05].

An advantage of this approach, over the two-pass algorithm employed in
classical AMG, is the use of the asymptotic convergence factor of compatible
relaxation as a measure of the quality of C and, thus, the ability to adapt
C when necessary. An additional advantage of this approach is that the al-
gorithm does not rely on the notion of strength of connections to form C,
instead, only the graph of matrix A and the error generated by the CR pro-
cess are used to form C. This typically results in more aggressive coarsening
than in traditional coarsening approaches, especially on coarser levels where
stencils tend to grow. Additionally, this approach has been shown to work for
a wide range of problems without the need for parameter tuning [BF05].

We conclude this section by proving the following proposition relating the
spectral radii of Ef to the condition number of Aff .

Proposition 1. Consider compatible relaxation defined by Ef and let

ρ(Ef ) ≤ a < 1. (5)

Then
κ(Aff ) ≤ κ(Mff )

1 + a

1− a
.
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Proof. Let λ be any eigenvalue of M−1
ff Aff . Then 1 − λ is an eigenvalue of

(I −M−1
ff Aff ). From (5) we have that

|1− |λ|| ≤ |1− λ| ≤ a, implying 1− a ≤ |λ| ≤ 1 + a.

Thus κ(M−1
ff Aff ) ≤ (1 + a)/(1− a). From the assumption on the CR rate, it

follows that Mff is positive definite. The smallest eigenvalue of Aff is then
estimated as follows:

λmin(Aff ) = inf
x6=0

(Affx, x)
(x, x)

≥
λmin(M−1/2

ff AffM
−1/2
ff )

λmax(M−1
ff )

=
λmin(M−1

ff Aff )

λmax(M−1
ff )

≥ (1− a)λmin(Mff ).

Estimating the maximum eigenvalue of Aff in a similar fashion leads to the
inequality

λmax(Aff ) ≤ (1 + a)λmax(Mff ). (6)

The proof is then completed by using the last two inequalities in an obvious
way.

Hence, fast-to-converge CR and Mff being well conditioned imply that Aff

is well conditioned. Many problems that arise from PDE discretizations, Mff

is very well conditioned. This, together with the result from the next section,
shows that fast convergence of CR indicates the existence of a sparse and
local approximation to the inverse of Aff and, hence, a good approximation
to the two-level ideal interpolation operator. When M is ill conditioned, simple
rescaling can sometimes be used to reduce the problem to the well-conditioned
case. For example, replacing A by D−1/2AD−1/2 and M byD−1/2MD−1/2,
where D is the diagonal of A, may produce a well conditioned Mff so that
the above conclusions apply.

4 Inverse of sparse matrices and supports of coarse grid
basis vectors

We describe now the part of our algorithm that relate to the choice of the
sparsity pattern of P . Set Ω = {1, . . . , n} and assume that the coarse grid
degrees of freedom are C = {ns + 1, . . . , n}, where ns = n − nc. This leads
to a 2 × 2 splitting of A, as given by (3). We aim to construct a covering of
Ω with nc sets {Ωi}nc

i=1, such that ∪nc
i=1Ωi = Ω contain information on the

non-zero structure of the entries of P . We desribe our approach using some
elementary tools from graph theory.

With matrix Aff , we associate a graph, G, whose set of vertices is Ω \C,
and set of edges is
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E = {(i, j) ∈ Ω \ C if and only if [Aff ]ij 6= 0}.

By graph distance between vertices i and j, denoted by |i− j|G, we mean the
length (i.e., the number of edges) of a shortest path connecting i and j in G.
We assume without loss of generality that G is connected, so that the graph
distance between any i and j is well defined. An important observation (see,
for example, [Gib85]) related to the sparsity of A is that (Ak

ffei, ej) = 0 holds
for all k, i, and j such that 1 ≤ k < |i− j|G. This in turn shows that, for any
polynomial p(x) of degree less than |i− j|G, we have that

[A−1
ff ]ij = (A−1

ff ei, ej) = ((A−1
ff − p(Aff ))ei, ej).

Taking the infimum over all such polynomials and using a standard approxi-
mation theory result for approximating 1/x with polynomials on the interval
[λmin(Aff ), λmax(Aff )], we arrive at the following inequality:

[A−1
ff ]ij ≤ c q|i−j|G−1, (7)

where q < 1 depends on condition number, κ, of Aff and can be taken to

be
κ1/2 − 1
κ1/2 + 1

, and c is a constant. The estimate on the decay of [A−1
ff ]ij given

in (7) was contributed by Vassilevski [Vas04]. It is related to similar results
for banded matrices due to Demko [DMS84]. This reference was also brought
to our attention by Vassilevski [Vas04].

A simple and important observation from (7) is that a polynomial (or close
to polynomial) approximation to the inverse A−1

ff indicates exactly where the
large entries of A−1

ff are. Such an approximation can be constructed efficiently,
since if Aff is well-conditioned, the degree of the polynomial can taken to be
rather small and, hence, the approximation will be sparse.

We use this observation in our algorithm to construct sets Ωi in the follow-
ing way: We first fix the cardinality of each Ωi to be ni (i.e. the number of non-
zeros per column of P ). Then, starting with initial guess W0 = 0 ∈ Rns×nc ,
we iterate towards the solution of AffW = Afc by ` steps of damped Jacobi
iteration (` ≤ 5):

Wk = Wk−1 + ωD−1
ff (Afc −AffWk−1), k = 1, . . . , `. (8)

Since this iteration behaves like a polynomial approximation to A−1
ff , by (7),

it follows that the largest entries in A−1
ff will in fact show as large entries in

W`. Thus to define Ωi we pick the largest ni entries in each column of W`.
There are also other methods that we are currently implementing for ob-

taining a polynomial approximation of A−1
ff , such as a Conjugate Gradient

approximation and also changing ni adaptively. This is ongoing research. We
point out that for the numerical results reported in 6, the approximations are
based on the Jacobi iteration given in (8) with ni fixed at the beginning.
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5 On the best approximation to P? in the trace norm

Since a covering of Ω was constructed in § 4, we proceed with the part of the
algorithm for finding the interpolation weights. From the form of the iteration
given in (8) for the sets {Ωi}nc

i=1, we have the following

Each Ωi contains exactly one index from C. (9)

To explore the relations between P obtained via trace minimization and
the minimizer of µ(·) introduced in § 2 consider the following affine subspaces
of Rn×nc :

X = {Q : Q =
[

W
I

]
, W ∈ Rns×nc},

XH = {Q : Q ∈ X , Qji = 0, for all j /∈ Ωi; Q1c = e}.
(10)

Here, e is an arbitrary nonzero element of Rn (as seen from (9) e is subject
to the restriction that it is equal to 1 at the coarse grid degrees of freedom).

The interpolation that we use in our algorithm is then defined as the
unique solution of the following constrained minimization problem:

P = arg minJ(Q) := trace(QtAQ), Q ∈ XH . (11)

Various relevant properties of this minimizer can be found in the literature.
Existence and uniqueness are shown in [WCS00, XZ04]. A proof that P is
piecewise “harmonic” if e is harmonic can be found in [XZ04]. It is also well
known that the i-th column of the solution to (11) is given by

[P ]i = IiA
−1
i It

i Mae, M−1
a =

nc∑
i=1

IiA
−1
i It

i , (12)

where Ii ∈ Rn×ni and (Ii)kl = δkl if both k and l are in Ωi and zero otherwise,
and Ai = It

i AIi. Associate with each Ωi a vector space, Vi, defined as:

Vi = span{ej , j ∈ Ωi}, dimVi = ni.

where ej is the j-th standard canonical Euclidean basis vectors. Then, in (12),
the matrix M−1

a is the standard additive Schwarz preconditioner for A based

on the splitting
nc∑
i=1

Vi = Rn.

We also have that, for any pair Q1 ∈ X and Q2 ∈ X ,

(Q1 −Q2)tAP? = 0. (13)

From this relation, in the extreme case, when each Ωi contains {1, . . . , ns} and
e = P?1c, we can easily obtain that P? ∈ XH , P? minimizes J(·) and J(P?) =
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trace(S(A)). Remember that S(A) is the Schur complement associated with
the 2× 2 splitting of A.

Since J(Q) is in fact also a norm (equivalent to the usual Frobenius norm
for Q), for convenience, we denote it by |||Q|||2A := J(Q). We have the following
result:

Theorem 4. Let P be the unique solution of (11). Then

|||P? − P |||A = min
Q∈XH

|||P? −Q|||A (14)

Proof. Let Q ∈ XH be arbitrary. We use formula (13) and write

J(Q) = J(P? + (Q− P?)) = trace(S(A)) + |||P? −Q|||2A . (15)

If we take the the minimum on the left side in (15) with respect to all Q ∈ XH ,
then we must also achieve a minimum on the right side. Hence

|||P? − P |||A = min
Q∈XH

|||P? −Q|||A ,

which concludes the proof of the theorem.

In fact, this theorem, provides a way to estimate |||P? − P |||A, and also
to choose e (an error component to be represented exactly on coarser level).
Since, as is well known (and can be directly computed), J(P ) = (Mae, e),
from (15), we have that

|||P? − P |||2A = (Mae, e)− trace(S(A)). (16)

We can now take the minimum with respect to e on both sides of (16) and
arrive at

|||P? − P |||2A = trace[S(Ma)− S(A)], (17)

where S(Ma) is the Schur complement of Ma and this equality holds for

e =
[
−M−1

a,ffMa,fc1c

1c

]
. If we want to estimate the actual error of the best

approximation, we need to estimate both quantities on the right side of (17). In
fact, the first term, trace[S(Ma)], can be obtained explicitly since (9) implies
that S(Ma) is diagonal. This can be easily seen by using the expression for
M−1

a , given in (12), in terms of Ai and Ii, and also the obvious relation

M−1
a =

[
∗ ∗
∗ [S(Ma)]−1

]
. To get an accurate and computable estimate on the

other quantity appearing on the right side of (16), namely, trace(S(A)), we
use the result from § 4 to get the following approximation

trace(S(A)) ≈ trace(Acc −Gcc),

where, as in § 4, Gcc = Acfp(Aff )Afc, and p(x) is a polynomial approximating
x−1 on [λmin(Aff ), λmax(Aff )]. Such estimates and also the relations between
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optimizing the right hand side of (17), CR, and the optimal e (optimal for
the norm |||·|||A), are also subject to an ongoing research. Currently in the
numerical experiments we use an error component, e, obtained during the CR
iteration.

6 Numerical Results

We consider several problems of varying difficulty to demonstrate the effec-
tiveness of our approach. Our test problems correspond to the bilinear finite
element discretization of

−∇ ·D(x, y)∇u(x, y) = f in Ω = [0, 1]× [0, 1] (18)
u(x, y) = 0 on ∂Ω (19)

on a uniform rectangular grid. Our first test problem is Laplace’s equation
(D ≡ 1), a problem for which AMG works well. We consider the more difficult

second problem defined by taking D =
[

1 0
0 10−1

]
. In [BCF+00], numerical

experiments demonstrate the degraded performance classical AMG exhibits
for this problem without appropriate tuning of the strength parameter (θ).
This is an example of the fragility of current AMG methods. For our last
test, we let D = 10−8 in 20 percent of the elements (randomly selected) and
D = 1 in the remaining elements. This type of rough coefficient problem
becomes increasingly difficult with problem size. Classical AMG performance
has been shown to degrade with increasing problem size for this problem as
well [BFM+04a].

To test asymptotic convergence factors, we use f = 0 and run 40 itera-
tions of V (1, 1) cycles with Gauss-Seidel relaxation. The trace minimization
form of interpolation is computed using five iterations of an additive Schwarz
preconditioned Conjugate Gradient solver.

The results in Table 1 demonstrate that our algorithm exhibits multigrid-
like optimality for test problems one and two. Test two points to one advan-
tage of our approach, namely, that our solver maintains optimality without
any parameter tuning being necessary. Although the convergence factor of
our solver grows with increasing problem size for test problem three, this is a
rather difficult problem for any iterative solver, and our results are promising
when compared to existing multilevel algorithms. To obtain a more complete
picture of the overall effectiveness of our multigrid iteration, we examine also
operator complexity, defined as the number of nonzero entries stored in the op-
erators on all levels divided by the number of non-zero entries in the finest-level
matrix. The operator complexity can be viewed as indicating how expensive
the entire V -cycle is compared to performing only the finest-level relaxations
of the V -cycle. We note that the operator complexities are acceptable for all
of the test problems and remain bounded with repsect to problem size.
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N Problem 1 Problem 2 Problem 3

1282 .085 / 5 / 1.29 .110 / 5 / 1.31 .098 / 5 / 1.79

2562 .113 / 6 / 1.31 .124 / 6 / 1.35 .139 / 7 / 1.83

5122 .118 / 7 / 1.33 .125 / 7 / 1.38 .197 / 9 / 1.87

Table 1. Asymptotic convergence factors / number of levels / operator complexities
for test Problems 1-3.

7 Conclusions

Our current approach is only a first step towards developing a more gen-
eral AMG algorithm. Using CR in constructing C and a trace minimization
form of interpolation, we are able to efficiently solve problems arising from
scalar PDEs. For systems of PDEs, there are other approaches that fit quite
well in the framework described here. The CR algorithm can be extended in
a straightforward way to include block smoothers as well as to incorporate
more general algorithms for trace minimization (such as the one described
in [VZ04]). Another attractive alternative is presented by using adaptive
coarse space definition, namely by running simultaneous V-cycle iterations
on the linear system that we want to solve and the corresponding homoge-
neous system (the latter with random initial guess) and using the error of the
homogeneous iteration to define the constraint in the trace minimization for-
mulation. Although expensive (part of the setup process has to be performed
on every iteration), this procedure should be very robust and work in cases
when there are many algebraically smooth error components that need to be
approximated.
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