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1 Introduction

An important indicator of the efficiency of a domain decomposition precon-
ditioner is the condition number of the preconditioned system. Upper bounds
for the condition numbers of the preconditioned systems have been the focus
of most analyses in domain decomposition [21, 20, 23]. However, in order to
have a fair comparison of two preconditioners, the sharpness of the respective
upper bounds must first be established, which means that we need to derive
lower bounds for the condition numbers of the preconditioned systems.

In this paper we survey lower bound results for domain decomposition
preconditioners [7, 3, 8, 5, 22] that can be obtained within the framework of
additive Schwarz preconditioners. We will describe the results in terms of the
following model problem.

Find uh ∈ Vh such that
∫

Ω

∇uh · ∇v dx =

∫

Ω

fv dx ∀ v ∈ Vh, (1)

where Ω = [0, 1]2, f ∈ L2(Ω), and Vh is the P1 Lagrange finite element space
associated with a uniform triangulation Th of Ω. We assume that the length
of the horizontal (or vertical) edges of Th is a dyadic number h = 2−k.

We recall the basic facts concerning additive Schwarz preconditioners in
Section 2 and present the lower bound results for one-level and two-level addi-
tive Schwarz preconditioners, Bramble-Pasciak-Schatz preconditioner and the
FETI-DP preconditioner in Sections 3–6. Section 7 contains some concluding
remarks.

2 Additive Schwarz Preconditioners

Let V be a finite dimensional vector space and A : V −→ V ′ be an SPD
operator, i.e., 〈Av1, v2〉 = 〈Av2, v1〉 ∀ v1, v2 ∈ V and 〈Av, v〉 > 0 for any
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v ∈ V \ {0}, where 〈·, ·〉 denotes the canonical bilinear form between a vector
space and its dual.

The ingredients for an additive Schwarz preconditioner B for A are (i)
auxiliary finite dimensional vector spaces Vj for 1 ≤ j ≤ J , (ii) SPD op-
erators Aj : Vj −→ V ′

j and (iii) connection operators Ij : Vj −→ V . The
preconditioner B : V ′ −→ V is then given by

B =

J
∑

j=1

IjA
−1
j It

j ,

where It
j : V ′ −→ V ′

j is the transpose of Ij , i.e. 〈It
jφ, v〉 = 〈φ, Ijv〉 ∀φ ∈ V ′

and v ∈ Vj .

Under the condition V =
∑J

j=1 IjVj , the operator B is SPD and the
maximum and minimum eigenvalues of BA : V −→ V are characterized by
the following formulas [26, 1, 25, 14, 21, 8, 23]:

λmax(BA) = max
v∈V \{0}

〈Av, v〉

min
v=

∑J
j=1

Ijvj

vj∈Vj

J
∑

j=1

〈Ajvj , vj〉
, (2)

λmin(BA) = min
v∈V \{0}

〈Av, v〉

min
v=

∑J
j=1

Ijvj

vj∈Vj

J
∑

j=1

〈Ajvj , vj〉
. (3)

3 One-Level Additive Schwarz Preconditioner

Let Ah : Vh → V ′
h be defined by

〈Ahv1, v2〉 =

∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vh.

We can precondition the operator Ah using subdomain solves from an over-
lapping decomposition, which is created by (i) dividing Ω into J = H−2

nonoverlapping squares (H is a dyadic number � h) and (ii) enlarging the
nonoverlapping subdomains by an amount of δ (≤ H) so that each of the
overlapping subdomains Ω1, . . . , ΩJ is the union of triangles from Th (cf. Fig-
ure 1). We take the auxiliary space Vj ⊂ H1

0 (Ω) to be the finite element space
associated with the triangulation of Ωj by triangles from Th, and define the
SPD operator Aj : Vj −→ V ′

j by

〈Ajv1, v2〉 =

∫

Ωj

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vj .
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The space Vj is connected to Vh by the trivial extension map Ij and the
one-level additive Schwarz preconditioner [19] BOL for Ah is defined by

BOL =

J
∑

j=1

IjA
−1
j It

j . (4)

δ

Fig. 1. An overlapping domain decomposition

It is well-known that the preconditioner BOL does not scale. Here we give
a lower bound for the condition number κ(BOLAh) that explains this phe-
nomenon. We use the notation A . B (B & A) to represent the inequality
A ≤ (constant)B, where the positive constant is independent of h, J , δ and
H . The statement A ≈ B is equivalent to A . B and A & B.

Theorem 1. Under the condition δ ≈ H, it holds that

κ(BOLAh) = λmax(BOLAh)/λmin(BOLAh) & J. (5)

Proof. Since the connection maps Ij preserve the energy norm (in other words,
〈AhIjv, Ijv〉 = 〈Ajv, v〉 ∀ v ∈ Vj), it follows immediately from (2) that

λmax(BOLAh) ≥ 1. (6)

Let v∗ ∈ H1
0 (Ω) be the piecewise linear function with respect to the tri-

angulation of Ω of mesh size 1/4 such that v∗ equals 1 on the four central
squares (cf. the first figure in Figure 2). Since v∗ is independent of h, we have

〈Ahv, v〉 = |v∗|2H1(Ω) ≈ 1 (7)

as h ↓ 0. We will show that, for this function v∗ ∈ Vh, the estimate

J
∑

j=1

〈Ajvj , vj〉 & J〈Ahv∗, v∗〉 (8)

holds whenever

v∗ =
J

∑

j=1

Ijvj and vj ∈ Vj for 1 ≤ j ≤ J. (9)
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It follows immediately from (3), (8) and (9) that

λmin(BOLAh) . 1/J, (10)

which together with (6) implies (5).
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Fig. 2. Subdomains for Theorem 1

In order to derive (8), we first focus on a single subdomain Ωj that overlaps
with the square where v∗ is identically 1 (cf. the second figure in Figure 2), and
without loss of generality, assume that δ = H/4. Condition (9) then implies
vj = 1 in the central area of Ωj (cf. the third figure of Figure 2).

We can construct a weak interpolation operator Π from H1(Ωj) into the
space of functions that are piecewise linear with respect to the triangulation
of Ωj by its two diagonals (cf. the fourth figure of Figure 2). For v ∈ H1(Ω),
we define the value of Πv at the four corners of Ωj to be the mean of v on ∂Ω
and the value of Πv at the center of Ωj to be the mean of v on the central area
of Ωj . It follows that Πvj equals 1 at the center of ΩJ and vanishes identically
on ∂Ωj . A simple calculation shows that |Πvj |2H1(Ωj)

≈ 1. On the other hand,

the weak interpolation operator satisfies the estimate |Πvj |H1(Ω) . |vj |H1(Ω).
We conclude that

〈Ajvj , vj〉 = |vj |2H1(Ωj)
& 1. (11)

Since there are J/4 such subdomains, the estimate (8) follows from (7) and
(11).

Remark 1. The estimate (5) implies that, for a given tolerance, the number
of iterations for the preconditioned conjugate gradient method grows at the
rate of O(

√
J) = O(1/H), a phenomenon that has been observed numerically

[21].

4 Two-Level Additive Schwarz Preconditioner

To obtain scalability for the additive Schwarz overlapping domain decompo-
sition preconditioner, Dryja and Widlund [10] developed a two-level additive
Schwarz preconditioner by introducing a coarse space.

Let TH be a coarse triangulation of Ω obtained by adding diagonals to the
underlying nonoverlapping squares whose sides are of length H (cf. the second
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figure in Figure 1) and VH ⊂ H1
0 (Ω) be the corresponding P1 finite element

space. The coarse space VH is connected to Vh by the natural injection IH ,
and AH : VH −→ V ′

H is defined by

〈AHv1, v2〉 =

∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ VH .

The two-level preconditioner BT L : V ′
h −→ Vh is then given by

BT L = IHA
−1
H
It

H
+BOL = IHA

−1
H
It

H
+

J
∑

j=1

IjA
−1
j It

j . (12)

It follows from the well-known estimate [11]

κ(BT LAh) . 1 +
H

δ
(13)

that BT L is an optimal preconditioner when δ ≈ H (the case of generous
overlap). However, in the case of small overlap where δ � H , the number
1 + (H/δ) becomes significant and it is natural to ask whether the estimate
(13) can be improved. That the estimate (13) is sharp is established by the
following lower bound result [3].

Theorem 2. In the case of minimal overlap where δ = h, it holds that

κ(BT LAh) &
H

h
. (14)

We will sketch the derivation of (14) in the remaining part of this section and
refer to [3] for the details.

First observe that, by comparing (4) and (12), the estimate

λmax(BT LAh) ≥ λmax(BOLAh) ≥ 1 (15)

follows immediately from (2) and (6).
In the other direction, it suffices to construct a finite element function

v∗ ∈ Vh such that, for any decomposition v∗ = IHvH +
∑J

j=j Ijvj where
vH ∈ VH and vj ∈ Vj ,

H

h
〈Ahv∗, v∗〉 . 〈AHvH , vH〉 +

J
∑

j=1

〈Ajvj , vj〉. (16)

The estimate λmin(BT LAh) . h/H then follows from (3) and (16), and to-
gether with (15) it implies (14).

Since the subdomains are almost nonoverlapping when δ = h, we can
construct v∗ using techniques from nonoverlapping domain decomposition.
Let Ω̂j (1 ≤ j ≤ J) be the underlying nonoverlapping decomposition of Ω
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(cf. the second figure in Figure 1) from which we construct the overlapping

decomposition, and Γ =
⋃J

j=1 ∂Ω̂j \ ∂Ω be the interface of Ω̂1, . . . , Ω̂J . The
space Vh(Γ ) of discrete harmonic functions is defined by

Vh(Γ ) = {v ∈ Vh :

∫

Ω

∇v · ∇w dx = 0 ∀w ∈ Vh, w
∣

∣

Γ
= 0}.

We will choose v∗ from Vh(Γ ). Note that a discrete harmonic function is
uniquely determined by its restriction on Γ .

Let E be an edge of length H shared by two nonoverlapping subdomains
Ω̂1 and Ω̂2. Let g be a function defined on E such that (i) g is piecewise
linear with respect to the uniform subdivision of E of mesh size H/8, (ii) g
is identically zero within a distance of H/4 from either one of the endpoints
of E, (iii) g is L2(E)-orthogonal to all polynomials on E of degree ≤ 1. (It is
easy to see that such a function g exists by a dimension argument.) We then
define v∗ ∈ Vh(Γ ) to be g on E and 0 on Γ \E.

It follows from property (ii) of g and standard properties of discrete har-
monic functions [2, 6, 23] that

〈Ahv∗, v∗〉 = |v∗|2H1(Ω) ≈
2

∑

j=1

|v∗|2H1/2(∂Ω̂j)

≈ |g|2H1/2(E) ≈
1

H
‖g‖2

L2(E) =
1

H
‖v∗‖2

L2(E). (17)

Suppose v∗ = IHvH +
∑J

j=1 Ijvj where vH ∈ VH and vj ∈ Vj for 1 ≤ j ≤ J . Let
Ec be the set of points in E whose distance from the endpoints of E exceed
H/4. Since vH

∣

∣

E
is a polynomial of degree ≤ 1, property (iii) of g implies that

‖v∗‖2
L2(Ec)

≤ ‖v∗ − v0‖2
L2(Ec)

= ‖
J

∑

j=1

vj‖2
L2(Ec)

= ‖v1 + v2‖2
L2(Ec)

, (18)

where we have also used the fact that vj = 0 on Ec for j 6= 1, 2 because δ = h.
Finally, since v1 (resp. v2) vanishes on ∂Ω1 (resp. ∂Ω2) which is within

one layer of elements from E, a simple calculation shows that

‖vj‖2
L2(Ec)

. h|vj |2H1(Ωj ) = h〈Ajvj , vj〉 for j = 1, 2. (19)

The estimate (16) follows from (17)–(19).

Remark 2. Theorem 2 also holds for nonconforming finite elements [7] and
mortar elements [22]. It can also be extended to fourth order problems [8, 7]
in which case the right-hand side of (14) becomes (H/h)3.
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5 Bramble-Pasciak-Schatz Preconditioner

Let Γ be the interface of a nonoverlapping decomposition of Ω and Vh(Γ )
be the space of discrete harmonic functions as described in Section 4. By a
parallel subdomain solve, we can reduce (1) to the following problem.

Find ūh ∈ Vh(Γ ) such that

〈Shūh, v〉 =

∫

Ω

fv dx ∀ v ∈ Vh(Γ ),

and the Schur complement operator Sh : Vh(Γ ) −→ Vh(Γ )′, defined by

〈Shv1, v2〉 =

∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vh(Γ ),

is the operator that needs a preconditioner.
The auxiliary spaces for the Bramble-Pasciak-Schatz preconditioner [2] are

the coarse space VH introduced in Section 4, and the edge spaces V` = {v ∈
Vh(Γ ) : v = 0 on Γ \ E`} associated with the edges E` of the interface Γ .
The space VH is equipped with the SPD operator AH introduced in Section 4,
and is connected to Vh(Γ ) by the map IH that maps v ∈ VH to the discrete
harmonic function that agrees with v on Γ . The edge space V` is connected to
Vh(Γ ) by the natural injection Ij , and is equipped with the Schur complement
operator S` : V` −→ V ′

` defined by

〈S`v1, v2〉 =

∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ V`.

The preconditioner BBP S : Vh(Γ )′ −→ Vh(Γ ) is then given by

BBP S = IHA
−1
H IH +

L
∑

`=1

I`S
−1
` It

` .

The sharpness of the well-known estimate [2]

κ(BBP SSh) .
(

1 + ln
H

h

)2

(20)

follows from the following lower bound result [8].

Theorem 3. It holds that

κ(BBP SSh) &
(

1 + ln
H

h

)2

. (21)

Since the natural injection I` preserves the energy norm, it follows imme-
diately from (2) that

λmax(BBP SSh) ≥ 1. (22)
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To complete the proof of (21), it suffices to construct v∗ ∈ Vh(Γ ) such that, for

the unique decomposition v∗ = IHvH +
∑L

`=1 v` where vH ∈ VH and v` ∈ V`,

〈AHvH , vH〉 +

L
∑

`=1

〈S`v`, v`〉 &
(

1 + ln
H

h

)2

〈Shv∗, v∗〉, (23)

which together with (3) implies that λmin(BBP SSh) .
(

1 + ln H
h

)−2

and

thus, in view of (22), completes the proof of (21). Below we will sketch the
construction of v∗ and refer to [8] for the details.

Since the derivation of (20) depends crucially on the discrete Sobolev
inequality [2, 6, 23], v∗ is intimately related to piecewise linear functions on
an interval with special property with respect to the Sobolev norm of order
1
2 . Let I = (0, 1). A key observation in this direction is that

|v|2
H

1/2

00
(I)

≈
∞
∑

n=1

n|vn|2 ∀ v ∈ H
1/2
00 (I), (24)

where
∑∞

n=1 vn sin(nπx) is the Fourier sine-series expansion of v.
Let Tρ (ρ = 2−k) be a uniform dyadic subdivision of I and Lρ ⊂ H1

0 (I) be
the space of piecewise linear functions on I (with respect to Tρ) that vanish
at 0 and 1. The special piecewise linear functions that we need come from the
functions SN (N = 2k = ρ−1) defined by

SN (x) =

N
∑

n=1

( 1

4n− 3

)

sin
(

(4n− 3)πx
)

. (25)

From (24) and (25) we find

|SN |2
H

1/2

00
(I)

≈ lnN ≈ | ln ρ|, (26)

and a direct calculation shows that

|SN |2H1(I) ≈ 1. (27)

Now we define σρ ∈ Lρ to be the nodal interpolant of SN . It follows from
(26), (27) and an interpolation error estimate that

|σρ|2H1/2

00
(I)

≈ | ln ρ|. (28)

Remark 3. Since ‖σρ‖L∞(I) = σρ(1/2) = SN (1/2) ≈ lnN = | ln ρ|, the esti-
mate (28) implies the sharpness of the discrete Sobolev inequality.

Let σI
ρ be the piecewise linear interpolant of SN with respect to the coarse

subdivision {0, 1/2, 1} of I . Then a calculation using (24) yields
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|σρ − σI

ρ|2H1/2

00
(0,1/2)

= |σρ − σI

ρ|2H1/2

00
(1/2,1)

≈ | ln ρ|3. (29)

Finally we take ρ = h/2H and g(x) = σρ

(

(x+H)/2H
)

. Then g is a continuous
piecewise linear function on [−H,H ] with respect to the uniform partition of
mesh size h. Note that SN is symmetric with respect to the midpoint 1/2
and hence g is symmetric with respect to 0. We can now define v∗ ∈ Vh(Γ )
as follows: (i) v∗ vanishes on Γ except on the two line segments P1P2 and
P3P4 (each of length 2H) that form the interface of the four nonoverlapping
subdomains Ω1, . . . , Ω4 (cf. the first figure in Figure 3), and (ii) v∗ = g on
P1P2 and P3P4.

P P

P4

1 2

P3

Ω1

Ω4

Ω2

Ω

Ω12Ω

43 Ω3 Ω

1Ω E

E

E

E
2

4

3

Ω

Ω Ω

12

3 4

Fig. 3. The four subdomains associated with v∗

It is clear that v∗ = 0 outside the four subdomains and, by the symmetry
of g, v∗ = g on one half of ∂Ωj (represented by the thick lines in the second
figure in Figure 3) and vanishes at the other half, for 1 ≤ j ≤ 4. Therefore,
we have, from (28) and standard properties of discrete harmonic functions,

〈Shv∗, v∗〉 =

4
∑

j=1

|v∗|2H1(Ωj)
≈

4
∑

j=1

|v∗|2H1/2(∂Ωj)

≈ |g|2
H

1/2

00
(−H,H)

= |σρ|2H1/2

00
(0,1)

≈ | ln ρ| ≈ ln
H

h
. (30)

The function v∗ admits a unique decomposition v∗ = IHvH +
∑4

`=1 v`,
where vH ∈ VH , v` ∈ V (E`) and E` (1 ≤ j ≤ 4) are the interfaces of Ω1, . . . , Ω4

(cf. the third figure in Figure 3). On each E`, v` = v−IHvH agrees with g−gI,
where gI is the linear polynomial that agrees with g at the two endpoints of
E`. Therefore it follows from (29) that

〈S`v`, v`〉 ≈ | ln ρ|3 ≈
(

ln
H

h

)3

for 1 ≤ ` ≤ 4, (31)

and the estimate (23) follows from (30) and (31).

6 FETI-DP Preconditioner

Let Ω1, . . . , ΩJ be a nonoverlapping decomposition of Ω aligned with Th (cf.
the first two figures in Figure 4) and Ṽh = {v ∈ L2(Ω) : v is a standard P1



10 Susanne C. Brenner

finite element function on each subdomain, v is not required to be continuous
on the interface Γ except at the cross points and v = 0 on ∂Ω}. In the Dual-
Primal Finite Element Tearing and Interconnecting (FETI-DP) approach [13],
the problem (1) is rewritten as

J
∑

j=1

∫

Ωj

∇uh · ∇v dx+ 〈φ, v〉 =

∫

Ω

fv dx ∀ v ∈ Ṽh,

〈µ, uh〉 = 0 ∀µ ∈Mh,

(32)

whereMh ⊂ Ṽ ′
h is the space of Lagrange multipliers that enforce the continuity

of v along the interface Γ . More precisely, for each node p on Γ that is not
a cross point, we have a multiplier µp ∈ Ṽ ′

h defined by 〈µp, v〉 = (v|ΩJ )(p) −
(v|Ωk

)(p), where Ωj and Ωk are the two subdomains whose interface contains
p, and the space Mh is spanned by all such µp’s.
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Fig. 4. FETI

By solving local SPD problems (associated with the subdomains) and a
global SPD problem (associated with the cross points), the unknown uh can
be eliminated from (32), and the resulting system for φ involved the operator

Ŝh : Mh −→ M ′
h defined by Ŝh = RtS̃−1

h R, where R : Mh −→ [Ṽh(Γ )]′ is the

restriction map, Ṽh(Γ ) is the subspace of Ṽh consisting of discrete harmonic
functions, and S̃h : Ṽh(Γ ) −→ Ṽh(Γ )′ is the corresponding Schur complement
operator.

Let Vj (1 ≤ j ≤ J) be the space of discrete harmonic functions on Ωj

that vanish at the corners of Ωj and Sj : Vj −→ V ′
j be the Schur complement

operator (which is SPD). The dual spaces V ′
j are the auxiliary spaces of the

additive Schwarz preconditioner for Ŝh developed in [18]. Each V ′
j is connected

to Mh by the operator Ij defined by 〈Ijψ, ṽ〉 = 1
2 〈ψ, v〉 ∀ v ∈ Vj , where ṽ ∈ Ṽh

is the trivial extension of v. The preconditioner of Mandel and Tezaur is given
by

BDP =
J

∑

j=1

IjSjI
t
j ,

and the condition number estimate

κ(BDP Ŝh) .
(

1 + ln
H

h

)2

(33)
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was established in [18]. The sharpness of (33) is a consequence of the following
lower bound result [4].

Theorem 4. It holds that

κ(BDP Ŝh) &
(

1 + ln
H

h

)2

.

Since the operator BDP Ŝh is essentially dual to the operator BBP SSh, The-
orem 4 is derived using the special piecewise linear functions from Section 5
and duality arguments. Details can be found in [4].

7 Concluding Remarks

We present two dimensional results in this paper for simplicity. But the gen-
eralization of the results of Sections 3 and 4 to three dimensions is straight-
forward, and the results in Section 5 have been generalized [5] to three di-
mensions (wire-basket algorithm [9]) and Neumann-Neumann algorithms [12].
Since the balancing domain decomposition by constraint (BDDC) method has
the same condition number as the FETI-DP method [17, 15], the sharpness of
the condition number estimate for BDDC [16] also follows from Theorem 4.

We would also like to mention that the special discrete harmonic function
v∗ constructed in Section 5 has been used in the derivation of an upper bound
for the three-level BDDC method [24].
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Science Foundation under Grant No. DMS-03-11790.
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