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I
The abc conjecture was formulated independently by Joseph Oesterle and David

Masser in 1985. It concerns integer solutions to the very simple equation a+ b = c
(hence the name). In the summer of 2012 Shinichi Mochizuki, a noted Japanese
mathematician, released a series of four papers in which he may have succeeded–by
very advanced methods–in proving this conjecture. As of this writing, the proof is
being checked by the handful of mathematicians around the world with expertise
in this field.

Inspirational note: Mochizuki graduated from Phillips Exeter Academy in New
Hampshire after only two years of attendance. He then entered Princeton University
as an undergraduate at age 16 and received a Ph.D. at age 23. He is now a professor
at the University of Kyoto. You can view his personal website (including a mpg
file demonstrating how to pronounce his name!) at:

http://www.kurims.kyoto-u.ac.jp/ motizuki/top-english.html.

What does the abc conjecture say?

Let us look at the numbers with prime factors only of 2 or 3. The first few are:

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, . . .

Notice how these numbers ’thin out’ pretty quickly. Yet we can find plenty of triples
of numbers (a, b, c) such that a+b = c.

Problem 1. Show that if a, b, and c have prime factors only of 2 or 3, and if
1 < a < b < c, then these three numbers cannot be pairwise prime. Can they be
relatively prime, as a triple of numbers?

Now let us look at those numbers which have prime factors of 2, 3, or 5. The
first few are:

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, . . .

These don’t thin out so quickly. But they do thin out. Certainly there are more
of them between 1 and 10 than there are, say, between 30 and 40. And if we were
to continue listing these numbers, the list would get thinner and thinner. The abc
conjecture describes this thinning out in a very precise way.

As a measure of this thinning, we can look at two of these numbers that add
up to a third. The more the numbers bunch up, the more reasonable it is to expect
that you find three of them, a, b, and c, such that a+b = c.
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This is not quite true. We have the following infinite sequence of a, b, c for
which a + b = c:

9 + 3 = 12

27 + 9 = 36

81 + 27 = 108

243 + 81 = 324

Problem 2. Write the general form of all the numbers above.

We want to eliminate these ’easy’ infinite sequences of triples. We can do this
by requiring that the numbers {a, b, c} be relatively prime.

Problem 3. Suppose that we didn’t require a, b, and c to be relatively prime.
Show that if we have even one triple such that a + b = c, then we have infinitely
many of them.

This is one way to think about the abc conjecture. Another way to think of it
is the following assertion: if the three relatively prime numbers a, b, c are products
of small primes, then a+ b can not be equal to c very often.

A third way is: If a+ b = c, then the primes that divide any one of a, b, and c
cannot all be small.

(We are working our way towards an exact statement of the famous conjecture.)
Yet another way to think about it: If a+ b = c and these positive numbers are

all products of small primes, then c is bounded (and therefore a and b are bounded).
But a formal statement of the conjecture requires a bit more.

Definition: For any number n, rad (n) is the product of one copy of each
prime that divides n.

So, for example rad (3) = 3; rad (3k) = 3k if 3 does not divide k; rad (500) = rad
(53 · 22) = rad (5 · 2) = 10, etc.
Problem 4. Find
a) rad (72)
b) rad (27)
c) rad (100)
d) rad (p3), where p is prime
e) rad(p2q3), where p and q are prime.

Problem 5. For each number below, tell whether or not it could be a value of
rad (n), for some integer n.
(a) 23
(b) 27
(c) 35
(d) 30
(e) 42
(f) 72
(g) 100
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(h) 101
(i) 111

Problem 6. Can you characterize the possible values of rad (n)? For a hint, try
‘simplyifying,’ wherever possible, the following radicals:
(j)
√

8

(k)
√

10

(l)
√

12

(m)
√

242
When can a radical be simplified? When is it already in simplest form?
Problem 7. Show that for any integer a, we have rad (a) ≤ a.
Problem 8. True or false: If a < b then rad(a) <rad(b)?
Problem 9. Show that for any integers a, n, we have rad(an) = rad (a).
Problem 10. Show that for any integers a, b, c, m, n, p, we have rad (anbmcp)
= rad (abc).
Problem 11. Show that if a < c, b < c, then rad (abc) < c3.
Problem 12. Show that the function rad (x) is multiplicative. That is, show that
if a and b are relatively prime, then rad(ab) = rad(a) rad(b). Is the converse of
this statement true?

Mathematicians invented rad(abc) because it is, in some sense, a measure of all
the primes that divide a or b or c. If all are products of 2 or 3, then rad (abc) =
2 · 3 = 6. If all the numbers are products of 2, 3, or 5, then rad(abc) = 2 · 3 · 5 = 30.

The abc conjecture, formally is about a bound on c. Given this idea, a first
guess might be that c≤ rad (abc). But this guess is wrong.

Problem 13. Show that a = 243, b = 225 is a counter example to the statement
above.

We can even construct infinitely many counter-examples in which rad(abc) is
not bounded by c. That is, we can find an infinite sequence of relatively prime
triples (a, b, c such that a+ b = c and c ≤rad(abc).

To do this, we let a = 1. Then we let c = 3, 32, 34, 38, . . . 3(2
n). We can show

that each value of c generates a counter-example. To complete our triple, we must
have b = 3− 1, 32 − 1 3(22)− 1, . . . 3(2

n) − 1 (so that a+ b = c).
That is, we consider the triple (a, b, c) = (1, 3(2

n) − 1, 3(2
n)), for any positive

integer n. What is rad(abc)? Well, a doesn’t contribute anything, and c contributes
only a factor of 3. (See problem 9). So we must look at the prime factors of b. One
of them is certainly 2, and we don’t care how many 2’s there are. There of course
may be other factors in b.

Determining the other factors of b may not be easy. But we don’t need their
numerical value. All we need to show is that c ≤rad(abc) =rad(3b) = 3rad(b) (by
problem 12). So let us try to determine a relationship between c and rad(b).

Problem 14. Simplify the product

(x+ 1)(x2 + 1)(x4 + 1)(x8 + 1) . . . (x64 + 1).

Hint: what happens if you multiply by (x− 1)?
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Problem 15. Show that 3128 − 1 is divisible by 2 · 29.

Problem 16. More generally, show that 2n+2 always divides 32n − 1.

Problem 16 shows that the number c in our triple (a, b, c) is always a multiple
of 2n+2. We use this to relate rad(b) to c. In computing rad(b), we can ignore all
but one of the factors of 2. That is,

rad(b) = rad(32
k

− 1) = 2 · rad

(
32

n − 1

2n+2

)
,

where we’ve divided out all the factors of 2 from b, then multiplied by a single 2.
Further, we have:

32
n − 1

2n+2
<

32
n

2n+2
<

32
n − 1

2n+1
=

c

2n+1
.

(We just keep making the numerator of the fraction larger, and the denominator
smaller.) Thus

rad(b) <
c

2n+1

and

rad(abc) = 3 · rad(b) <
3c

2n+1
.

Turning this ‘backwards’, we find that c >rad (abc) · 2
n+1

3 . So for any n ≥ 1,

the triple (1, 3(2
n) − 1, 3(2

n)) shows that the notion that c is bounded by rad(abc)
is definitely false. It has infinitely many counter-examples.

Problem 17. Show that this argument actually ‘comes true’, by computing
rad(abc) for n = 1 and n = 2.

In fact, we’ve done a bit more damage to the simple notion of bounding c. The

number 2n+1

3 increases without bound as n increases. So even if we thought that
we could bound c by some fixed multiple M of rad(abc), we would be wrong. Just

take n large enough so that 2n+1

3 > M and our hopes are dashed.
We cannot bound c simply by rad(abc). But maybe we can bound c by

(rad(abc))2. In fact, as of this writing we don’t know if this is possible.
But let’s pretend that it is not possible. Let us assume, just for now, that if we

have three relatively prime integers a, b, c such that a+b = c, then c < (rad(abc))2.
Given this assumption, we can already show a connection with Fermat’s Last

Theorem!

Problem 18. Show that if our assumption were true, then Fermat’s Last Theorem
holds for n ≥ 6. That is, suppose x, y, z are relatively prime positive integers such
that xn + yn = zn for some positive integer n ≥ 3. Letting a = xn, b = yn, c = zn

in our assumption, show that n must be smaller than 6.

Yet another way to think about the abc conjecture is that it ‘salvages’ this
whole situation. It gives us a way to bound c by a combination of a multiple of
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rad(abc) and a power of rad(abc).

Formal Statement of the abc conjecture. Take any positive number ε.
Then there is some number k = k(ε) such that if a + b = c, (where a, b, c are
relatively prime), then c ≤ k·rad(abc)1+ε.

So the numbers can’t be too big, and how big depends on how big the primes
are that divide them, as measured by rad(abc).

We can test this formal statement against our earlier formulations: If a+b = c,
then rad (abc) measures the size of the primes dividing a, b, and c. And if we fix
the value of rad(abc), the number c is bounded.

We can now prove Fermat’s Last Theorem(!) assuming the truth of the abc
conjecture. Actually, we’ll prove a variant of Fermat’s Last Theorem (FLT, for
short), called the ’asymptotic form’ of FLT:

FLT, as original stated, says that there are no positive integers x, y, z, such
that for some positive integer n ≥ 3 we will have xn + yn = zn.

Problem 19. If the relationship in FLT holds for some x, y, z, n, show that z > 3.

The asymptotic form of FLT says: There is a number N0 such that FLT is true
for n > N0.

Problem 20. The asymptotic version of FLT says that if there is a counter-
example to the theorem, then it must occur for a value of n smaller than the given
bound. Joe Blogg thinks that this means that we can perform a computer check
to get the usual statement of Fermat’s Last Theorem. That is, he thinks that once
we establish an upper bound on n, we can just check, using a computer, that there
are no solutions to xn + yn = zn, where n is smaller than that upper bound. Is Joe
Blogg correct?

Here’s how the asymptotic form of FLT follows from the abc conjecture.
Clearly, we should at least try letting a = xn, b = yn, c = zn. And in fact this

works.
We also need a number ε. Again this is easy: we let ε = 1.
The abc conjecture then states that there is some constant k = k(1), such that

if a+ b = c, then c < k·rad(abc)2.

Problem 21. Where did the exponent ’2’ come from?

Now let x, y, z, n be positive integers such that xn + yn = zn.
Then (problem 10) rad (xnynzn) = rad (xyz). And (problem 7) rad(xyz) ≤

xyz. Now certainly z > x and z > y, so from problem10, we have rad (xyz) < z3.
Now we (carefully!) harness the abc-conjecture. We have:

zn < k · rad(xnynzn)2 < k(z3)2 = kz6.

Now z is bigger than 3 (problem 19), so this inequality bounds n. Some simple
algebra will make this specific:
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zn−6 < k;

3n−6 < zn−6 ≤ k;

(n− 6) · log 3 < log k;

n <
log k

log 3
+ 6.

That is: if the abc conjecture is true, then there can be no counter-examples
to FLT (no triples x, y, z such that xn + yn = zn) for n greater than a certain
fixed number.

So if we know that the abc conjecture is true, we also know that the asymptotic
form of FLT is true. It has been shown that the asymptotic form of FLT implies
the original form of the theorem–the one Fermat wrote in the margin of his book.

The Catalan Conjecture

This conjecture was actually proven about 10 years ago, before the recent activ-
ity with the abc conjecture. It starts with the observation that 9−8 = 32−23 = 1.
The Catalan conjecture says roughly that this won’t ever happen again: two powers
of natural numbers will never differ by 1.
Definition. The set of powers (of natural numbers) is the set {xn}, for natural
numbers x and n ≥ 2.

The Catalan conjecture says that 8 and 9 are the ONLY consecutive integers
in the set of powers.

We will prove the ’asymptotic’ Catalan conjecture:
There exists some number N0 such that for m, n > N0 the Catalan conjecture

holds.
(That is, there can exist only finitely many pairs of consecutive powers. After

a certain point, there are none at all.)
To show how the abc conjecture implies the Catalan conjecture, we need two

interesting theorems that have been known for a while. While their proofs are
elementary (in the sense of not using high-powered mathematical tools), we will
not give them here.

Theorem I. The only solution of the diophantine equation x2 − y3 = 1, with
x, y > 1, is x = 3, y = 2. In fact, the Diophantine equation x2− yn = 1, for n ≥ 3
has only one solution: x = 3, y=2, n = 3.

So the only square which is one more than a power is 9.
Theorem II. The diophantine equation xm − y2 = 1 has no solutions in

integers.
So there is no square that is 1 less than a power (of an integer). Taken together,

these two theorems tell us that if we’re looking for solutions of the Catalan equation
other than 9 and 8, both m and n have to be greater than 3.

So here’s the proof of the asymptotic Catalan conjecture, assuming the truth
of the abc conjecture:

Suppose there are natural numbers x, y, m, n such that xm − yn = 1 and
m, n ≥ 3.
Problem 22. Show that if there are natural numbers x, y, m, n such that
xm − yn = 1 , then x and y must be relatively prime.
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Problem 23. Show that (in the same situation) both x and y must be greater
than or equal to 2.

How are we going to ‘fit’ this situation into the abc conjecture? It’s not so
obvious as in the case of FLT. But we can write xm−yn = 1 in the form 1+yn = xm,
then let a = 1, b = yn, c = xm, and we have an equation of the form treated by
the abc conjecture.

In the statement of the conjecture, we take ε = 1
4 . (We’ll discuss this choice of

ε later on.) Then the abc conjecture says that there is a number k (which depends

on ε) such that if 1 + yn = xm, then xm ≤ k· rad(1 · x · y)
5
4 .

Again, it’s all algebra from hereon in. We have:

xm ≤ k · rad(xy)
5
4 .

By problem 7, we then have:

xm ≤ k · (xy)
5
4 ;

m log x ≤ log k +
5

4
(log x+ log y).

Now certainly yn < xm, so n log y < m log x and we also have

n log y < log k +
5

4
(log x+ log y).

We add these two inequalities:

m log x+ n log y < 2 log k +
5

2
(log x+ log y).

(Note that ≤ is replaced by <, since yn is strictly less that xm.)

Problem 24. Show that this last equation is equivalent to
(m− 5

2 ) log x+ (n− 5
2 ) log y ≤ 2 log k.

Now (problem 23) x, y ≥ 2, so log x, log y ≥ log 2, and we have

(m− 5

2
) log 2 + (n− 5

2
) log 2 ≤ (m− 5

2
) log x+ (n− 5

2
) log y ≤ 2 log k,

or

(m+ n− 5) log 2 ≤ 2 log k,

and finally:

m+ n ≤ 2 log k

log 2
+ 5.

This bounds the numbers m and n. That is, neither m nor n can be larger than
the number on the right side of this inequality, so if we take N0 to be an integer
slightly greater than 2 log k

log 2 + 5, then xmyn can never equal 1 for m, n larger than

N0.
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Problem 25. There is a logical gap in the argument above. Can you find it before
continuing on? (We’ll give the answer a bit later).

Extensions of the Catalan Conjecture.

We can ask if the equation xm − yn = 3 has solutions in integers, or replace 3
by some other number. It has been proven that if you line up all the integers which
are powers of other integers, the differences of adjacent terms in this sequence
approaches infinity. So for any such equation, there are at most finitely many
solutions in integers.

But many questions like this are actually answered by the argument above, if
you assume the truth of the abc conjecture.

Problem 26. Assuming the truth of the abc conjecture, show that there are only
finitely many solutions in integers to the equation xm − yn = 17.

Hint: In applying the abc conjecture, we have control over ε, and therefore over
k. A judicious choice of ε will get the job done. Why did we choose ε = 1

4 in the

argument above? Well, we need ε small enough so that m− 5
2 would be a positive

number. The number 5
2 is really 2(1 + ε), and 2(1 + ε) < 3, so ε < 1

2 . So we chose
1
4 for safety.

That logical gap referred to above? Well, we wanted to show that the equation
xm − yn = 1 has only finitely many solutions. What we showed was that m and
n are bounded by a certain number N0. But it could happen that there is one of
these small pairs of m and n such that there are infinitely many pairs of number x
and y, and the equation still has infinitely many solutions.

Luckily, this gap is not hard to fill. We have argued that there are only finitely
many pairs of values of m and n. So fix one such pair, say m = m0, n = n0. Then
(m0 − 5

2 ) log x+ (n0 − 5
2 ) log y ≤ 2 log k (by problem 24). This will bound x and y

as well. That is, we have 2 ≤ y, so

(
m0 −

5

2

)
log x+

(
n0 −

5

2

)
log 2 ≤

(
m0 −

5

2

)
log x+

(
n0 −

5

2

)
log y ≤ 2 log k,

or (
m0 −

5

2

)
log x ≤ 2 log k −

(
n0 −

5

2

)
log 2,

or

log x ≤
2 log k − (n0 − 5

2 ) log 2

m0 − 5
2

=
log

(
k2

2n0− 5
2

)
m0 − 5

2

,

which is a bound on log x, and therefore on x. A similar argument shows that y is
also bounded.

This fills the logical gap. So given the truth of the abc conjecture, it really
is true that there can only be finitely many solutions to the equation in Catalan’s
conjecture.
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Do you like this stuff? Do you want to know more?

Here are a few more consequences of the abc conjecture. The proofs of some
of them, if we assume the abc conjecture, are not that difficult.

1. The Fermat-Catalan Equatiion: For relatively prime integers p, q, r, there
are only finitely many solutions to the diophantine equation pa + qb = rc, where
1
a + 1

b + 1
c < 1. The cases where 1

a + 1
b + 1

c ≥ 1 are also interesting, but easier.

2. The existence of non-Weiferich Primes. A Weiferich prime is a prime num-
ber p such that 2p−1 ≡ 1 mod p2. The truth of the abc conjecture implies that
there are infinitely many primes which do not satisfy this condition.

3. (A weak form of the Erdös-Mollin-Walsh conjecture.) Define a powerful
number n to be a number such that if some prime p divides n, then p2 also divides
n. The abc conjecture implies that there are only finitely many triples of consecu-
tive integers, each of which is powerful.

4. There exist only finitely many Brown pairs: pairs of integers m, n such that
m! + 1 = n2.

5. Only finitely many numbers of the form n(n+11)(n+111) are perfect cubes.

6. Only finitely many numbers of the form n! + 1111 are perfect squares.

...and there are many more, whose statements involve more advanced contexts,
and are not as easily given.

SOURCES AND RESOURCES

I am indebted to Melvyn Nathanson, of Lehman College, CUNY for the ma-
jority of the material appearing above. His book Elementary Methods in Number
Theory (Graduate Texts in Mathematics, Vol. 195, Springer-Verlag, New York,
2000) gives a comprehensive but advanced discussion of the more advanced theory
behind the abc conjecture (but was written before recent developments in its proof.)

The following web resources were all accessed in October, 2012:
www.staff.science.uu.nl/ beuke106/ABCpresentation.pdf An interesting and ac-

cessible presentation by mathematician Frits Beukers of the University of Leiden
http://www.math.unicaen.fr/ nitaj/abc.html An excellent index to all kinds of

web resources concerning the abc conjecture.
http://abcathome.com A whole website devoted to results about the abc con-

jecture.


