
Gumdrop Polyhedra 
 
Equipment:  
 

(1) Spice drops of many colors.  They work best if aged a few days, but this is 
not obligatory 

            
(2) Cocktail toothpicks.  The round ones work best.  
 
For the 'soap bubble' extension (a great activity to do out of doors), you need  
 
(3) Dishwashing detergent 
(4) Glycerine (available in the facial care department of a drug store).  This is 

optional, but stabilizes the soap bubbles you will be making.  
(5) A large bowl or container. 

 
A: Ask students to use three gumdrops of the same color and toothpicks to form an 
equilateral triangle.  Discuss why it is equilateral.  
 
B: Challenge students to add 3 more toothpicks and one more gumdrop—of a different 
color--to create 4 equilateral triangles.  Not every student will see that they must use a 
three-dimensional shape to do this.  But some will, and others will copy them.   
 
The result is a regular tetrahedron: a pyramid with a equilateral triangular base.   
 
At this point, students should get used to the following vocabulary:  
 
Polyhedron (pl. Polyhedra): The three-dimensional analogue of a polygon.  (A more 
precise mathematical definition is not appropriate here.)  A polyhedron has three 
elements: Vertices, Edges, and faces.   
 
In our construction, the vertices are the spice drops and the edges are the toothpicks. The 
faces are not 'made out of' anything: they are the four equilateral triangles originally 
asked about.  
 
Be careful not to use the word 'side', which we use for polygons.  In three dimensions, 
this word is ambiguous.  It might mean edges, or it might mean faces.  We simply do not 
use it.  
 
Point out that the tetrahedron is a pyramid, but not of the 'Egyptian' sort.  It has a 
triangular, rather than a square, base.  
 
Students should also notice that their tetrahedron is a regular figure: its faces, edges and 
vertices are indistinguishable from each other, except for color.  One way to explain this 
is to think of the polyhedron as a huge space station, made up of four 'pods' (represented 
by spice drops) where people live and work, connected by corridors (the toothpicks).  



You cannot tell which pod you are in just by looking at the corridors and pods.  You 
would have to know the color of the pod, the nature of the furnishings inside, and so on.  
The geometry of each vertex is identical.  
 
Also have students notice that any two tetrahedra with three vertices of one color and one 
of another are 'isomorphic'.  Except for the specific color used, the colorings are the 
same.  You can demonstrate this by choosing any two tetrahedra of those the students 
constructed.  If you place each with the single-color vertex pointing up, they will look 
identical except for the particular colors chosen.  
 
Finally, start a chart at the board, tallying the number of faces, edges, and vertices in each 
polyhedron you build.  The chart will look like this initially:  
 
   Faces  Vertices  Edges 
 
regular 4-hedron            4                         4                                6 
 
B: Have students make another tetrahedron, this time with two gumdrops of one color 
and two of another.  Select two of these, and show that they are also 'isomorphic', by 
placing identically colored vertices in the same position.   
 
Students may initially think that there is more than one way to color a tetrahedron with 
pairs of identical gumdrops.  It is important to show them that the figure can be rotated so 
that colorings are identical.  
 
C: Have students take apart one of their tetrahedra and 'add' it to the other.  That is, ask 
them to form a polyhedron made up of two tetrahedra, back-to-back.  The resulting 
polyhedron is made up of six triangles.  (Two of the eight triangles in the original two 
tetrahedra are 'lost' in the construction.)   This is a triangular hexahedron.   
 
Ask students if the triangular hexahedron is a regular figure.  It takes some thought to see 
that it is not.  Some vertices have only 3 edges leading from them, while others have 4.  If 
this were a spaceship, you might prefer a 3-edged pod over a 4-edged pod for some 
reason.   
 
They can enter a new line in their table:  
 
    Faces     Vertices       Edges 
 
regular 4-hedron            4                             4                                   6 
triangular 6-hdron    6                             5                                   9 
 
If there is room, have students leave their hexahedron on the desk.  The count itself is 
good exercise, even if students are looking at the model. 
 
 



D: Ask if they can think of a regular hexahedron, one in which all the vertices look alike.  
This is difficult.  It turns out that the faces cannot be triangles, but must be squares.  Once 
students see (or are told) that, they quickly realize that a 'regular hexahedron' is simply a 
cube, and can easily construct it.  
 
But don't let them construct it right away.  They are familiar with a cube, and we can get 
more out of the experience.  
 
Ask them first to fill in the next row of the table, imagining, but not constructing, a cube:  
 
     Faces     Vertices      Edges 
 
regular 4-hedron           4                             4                                   6 
triangular 6-hdron   6                             5                                   9 
cube     6                             8                                 12 
 
Some students will be surprised to see that cube does not have four of any of its elements.  
 
Then ask them to construct a cube with colored spice drops, so that no two vertices of the 
same color are connected by an edge.  Challenge them to use the fewest number of 
colors.  
 
The cube can be 'correctly' colored with only two colors.  We can think of a bottom 
square with colors alternating along its perimeter, and a top square with the same two 
colors alternating.  The square are connected by vertical edges so that no two pairs of 
vertices of the same color, one from the bottom and one from the top, are connected.   
 
We say that the chromatic number of the cube is 2, because it can be 'correctly' colored 
with 2 colors, and no more are necessary.  Students can be asked about the chromatic 
number of a tetrahedron.  It is 4, since each vertex is connected to every other.  Students 
may be surprised that the simpler figure of a tetrahedron requires more colors than the 
more complex figure of a cube.  The chromatic number depends on how the vertices are 
connected, and not simply on how many there are.  Students can note that the chromatic 
number of the triangular hexahedron is also 4: a tetrahedron 'lives' on the top, and you 
need four colors for its vertices.  The two 3-edged vertices, however, can carry the same 
color.  
 
Looking at a 2-colored cube, students can be asked to visualize the figure formed by the 
vertices of one color, then of another.  These vertices form a regular tetrahedron, and it is 
good exercise for students to identify this.  The edges of the tetrahedron are diagonals of 
the square faces of the cube, so they are all equal.   
 
An advanced question: these two tetrahedra intersect. What is the solid formed by their 
intersection.  (Have students think about, rather than answer, this question.)  
 
 



Another advanced question might be to ask students to visualize the six faces of the 
square extended to form six planes.  Into how many regions do these planes divide space?  
(Answer: 27)  The same question for the tetrahedron is more difficult.   
 
E. Have students construct an “Egyptian” (i.e. square-based) pyramid.  It has five faces, 
and so is a (non-regular) pentahedron.  Ask them about its chromatic number (answer: 3), 
and about the number of faces, edges and vertices:  
 
   Faces  Vertices  Edges 
 
regular 4-hedron           4                             4                                   6 
triangular 6-hdron   6                             5                                   9 
cube     6                             8                                 12 
Egyptian pyramid          5                             5                                  8 
 
F: Now ask students to add a second Egyptian pyramid to the first, back-to-back, as they 
did for the non-regular hexahedra.  Ask them the name of the resulting polyhedron.  Since 
it has eight faces, it is called an octahedron.   (Polyhedra are usually named after the 
number of faces.)  
 
It is a surprising result that this figure is regular: the vertices are identical, and no matter 
how you turn it, you have two Egyptian pyramids, one facing up and one facing down.  
Its chromatic number is 3, and students can count its faces, edges, and vertices:  
 
   Faces  Vertices  Edges 
 
regular 4-hedron           4                             4                                   6 
triangular 6-hdron   6                             5                                   9 
cube     6                             8                                 12 
Egyptian pyramid         5                             5                                  8 
Regular 8-hedron          8                              6                                 12 
 
Students can be asked to visualize the figure formed by taking the centroid (middle) of 
each triangular face and connecting them.  Surprisingly, you get a cube.  If you do the 
same thing for a cube, you get an octahedron.  These two figures are called dual figures 
for this reason.  
 
Students can check that the figure dual to a tetrahedron is another tetrahedron. 
 
G: Euler's Formula.  Students can look at the table they've formed and be asked which are 
there usually the most of?  Answer: edges.   But of faces and vertices, it's difficult to tell 
which there will be more.   
 
  



Next, squeeze in an extra column in the table, without a label:  
 
   Faces  Vertices x Edges 
 
regular 4-hedron           4                             4                  8                 6 
triangular 6-hdron   6                             5                  11                 9 
cube     6                             8                  14              12 
Egyptian pyramid         5                             5                  10                8 
Regular 8-hedron         8                              6                  14              12 
 
Students will quickly notice that you got this column by adding the number of faces and 
the number of vertices, and also that it is two more than the number of edges.  This is 
Euler's formula, an important theorem in what is known as graph theory:  
 
Euler's Formula: For any polyhedron without holes in it, F + V = E + 2.   
 
Students can construct a polyhedron of their own and test this formula.  But they need 
guidelines.  Typically, they will construct a huge mass of toothpicks and spice drops, 
which will have holes, internal 'edges', coplanar 'faces' and so forth.  It is best to give 
them guidance.  (“Add an Egyptian pyramid to a cube;” “Add a tetrahedron to an 
octahedron;” etc.) 
 
A proof of Euler's formula is accessible to these students, if the group is interested.  See 
for example http://www.ams.org/samplings/feature-column/fcarc-eulers-formula. (But in 
fact the proof can be made clearer than this resource demonstrates.) 
 
The formula does not hold for a polyhedron with a hole in it.  It does hold, however, for a 
graph which is a two-dimensional 'map' of the vertices and edges of a polyhedron.  
 
Another fact that can be proved to this group, or just stated, is that there are only five 
regular polyhedra.  There is a regular polygon for any integer N, but not a regular 
polyhedron.  We have already constructed 3 of the regular polyhedra: the tetrahedron, the 
cube, and the octahedron.  The other two are the dodecahedron (12 faces) and the 
icosahedron (20 faces).  The dodecahedron cannot be constructed with spice drops and 
toothpicks.  Its faces are pentagons, and the figure will collapse of its own weight.   
 
The regular icosahedron, however, can be constructed using these materials.  A picture of 
one is easily obtainable on the web.  A good exercise for students is to show them a 
model of a regular icosahedron, and ask them to construct it for themselves, without 
touching the original model.  Laying the model down on a plane will make it hard to see 
the symmetry of the figure, which is more apparent if it is 'balanced' on one of its 
vertices.  This circumstance makes the exercise more valuable.  
 
  



G: Soap bubbles 
 
The polyhedron activities can be used without this step, but it is fun to dip the models in 
soap bubbles and see what happens.   
 
Fill a small pail with water, dishwashing soap, and glycerin.  A good mix is about a 
gallon of water to a pint of dishwashing soap and a cup of glycerine.  (The latter is not 
strictly necessary, but stabilizes the resulting bubbles.)  
 
First hold up a cube, and ask students to predict what the soap bubbles will form.  They 
are likely to think that the bubbles will wrap around the cube.  In fact, they form a surface 
inside the cube, made of planes that intersect at 120 degrees.  
 
What is happening is that the soap bubbles try to find the surface of least area which 
includes the edges of the cube.   
 
Students can then have fun dipping their own polyhedra in the soapy water and seeing 
what surface is formed.   
 
Soap bubbles are a serious subject of investigation by mathematicians.   
 
 


