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Preface

The study of random matrices, and in particular the properties of their eigenval-
ues, has emerged from the applications, first in data analysis and later as statisti-
cal models for heavy-nuclei atoms. Thus, the field of random matrices owes its
existence to applications. Over the years, however, it became clear that models
related to random matrices play an important role in areas ofpure mathematics.
Moreover, the tools used in the study of random matrices camethemselves from
different and seemingly unrelated branches of mathematics.

At this point in time, the topic has evolved enough that the newcomer, especially
if coming from the field of probability theory, faces a formidable and somewhat
confusing task in trying to access the research literature.Furthermore, the back-
ground expected of such a newcomer is diverse, and often has to be supplemented
before a serious study of random matrices can begin.

We believe that many parts of the field of random matrices are now developed
enough to enable one to expose the basic ideas in a systematicand coherent way.
Indeed, such a treatise, geared toward theoretical physicists, has existed for some
time, in the form of Mehta’s superb book [Meh91]. Our goal in writing this book
has been to present a rigorous introduction to the basic theory of random matri-
ces, including free probability, that is sufficiently self-contained to be accessible to
graduate students in mathematics or related sciences who have mastered probabil-
ity theory at the graduate level, but have not necessarily been exposed to advanced
notions of functional analysis, algebra or geometry. Alongthe way, enough tech-
niques are introduced that we hope will allow readers to continue their journey
into the current research literature.

This project started as notes for a class on random matrices that two of us (G. A.
and O. Z.) taught in the University of Minnesota in the fall of2003, and notes for
a course in the probability summer school in St. Flour taughtby A. G. in the
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xiv PREFACE

summer of 2006. The comments of participants in these courses, and in particular
A. Bandyopadhyay, H. Dong, K. Hoffman-Credner, A. Klenke, D. Stanton and
P.M. Zamfir, were extremely useful. As these notes evolved, we taught from them
again at the University of Minnesota, the University of California at Berkeley,
the Technion and the Weizmann Institute, and received more much appreciated
feedback from the participants in those courses. Finally, when expanding and
refining these course notes, we have profited from the comments and questions of
many colleagues. We would like in particular to thank G. Ben Arous, F. Benaych-
Georges, P. Biane, P. Deift, A. Dembo, P. Diaconis, U. Haagerup, V. Jones, M.
Krishnapur, Y. Peres, R. Pinsky, G. Pisier, B. Rider, D. Shlyakhtenko, B. Solel, A.
Soshnikov, R. Speicher, T. Suidan, C. Tracy, B. Virag and D. Voiculescu for their
suggestions, corrections and patience in answering our questions or explaining
their work to us. Of course, any remaining mistakes and unclear passages are
fully our responsibility.

M INNEAPOLIS, M INNESOTA
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REHOVOT, ISRAEL
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1

Introduction

This book is concerned with random matrices. Given the ubiquitous role that
matrices play in mathematics and its application in the sciences and engineer-
ing, it seems natural that the evolution of probability theory would eventually
pass through random matrices. The reality, however, has been more complicated
(and interesting). Indeed, the study of random matrices, and in particular the
properties of their eigenvalues, has emerged from the applications, first in data
analysis (in the early days of statistical sciences, going back to Wishart [Wis28]),
and later as statistical models for heavy-nuclei atoms, beginning with the semi-
nal work of Wigner [Wig55]. Still motivated by physical applications, at the able
hands of Wigner, Dyson, Mehta and co-workers, a mathematical theory of the
spectrum of random matrices began to emerge in the early 1960s, and links with
various branches of mathematics, including classical analysis and number theory,
were established. While much progress was initially achieved using enumerative
combinatorics, gradually, sophisticated and varied mathematical tools were intro-
duced: Fredholm determinants (in the 1960s), diffusion processes (in the 1960s),
integrable systems (in the 1980s and early 1990s), and the Riemann–Hilbert prob-
lem (in the 1990s) all made their appearance, as well as new tools such as the
theory of free probability (in the 1990s). This wide array oftools, while attest-
ing to the vitality of the field, presents, however, several formidable obstacles to
the newcomer, and even to the expert probabilist. Indeed, while much of the re-
cent research uses sophisticated probabilistic tools, it builds on layers of common
knowledge that, in the aggregate, few people possess.

Our goal in this book is to present a rigorous introduction tothe basic theory
of random matrices that would be sufficiently self-contained to be accessible to
graduate students in mathematics or related sciences who have mastered probabil-
ity theory at the graduate level, but have not necessarily been exposed to advanced
notions of functional analysis, algebra or geometry. With such readers in mind, we
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2 1. INTRODUCTION

present some background material in the appendices, that novice and expert alike
can consult; most material in the appendices is stated without proof, although the
details of some specialized computations are provided.

Keeping in mind our stated emphasis on accessibility over generality, the book
is essentially divided into two parts. In Chapters 2 and 3, wepresent a self-
contained analysis of random matrices, quickly focusing onthe Gaussian ensem-
bles and culminating in the derivation of the gap probabilities at 0 and the Tracy–
Widom law. These chapters can be read with very little background knowledge,
and are particularly suitable for an introductory study. Inthe second part of the
book, Chapters 4 and 5, we use more advanced techniques, requiring more exten-
sive background, to emphasize and generalize certain aspects of the theory, and to
introduce the theory offree probability.

So what is a random matrix, and what questions are we about to study? Through-
out, letF = R orF = C, and setβ = 1 in the former case andβ = 2 in the latter. (In
Section 4.1, we will also consider the caseF = H, the skew-field of quaternions,
see Appendix E for definitions and details.) Let MatN(F) denote the space ofN-

by-N matrices with entries inF, and letH (β )
N denote the subset of self-adjoint

matrices (i.e., real symmetric ifβ = 1 and Hermitian ifβ = 2). One can always

consider the sets MatN(F) andH
(β )

N , β = 1,2, as submanifolds of an appropriate
Euclidean space, and equip it with the induced topology and (Borel) sigma-field.

Recall that a probability space is a triple(Ω,F ,P) so thatF is a sigma-algebra
of subsets ofΩ andP is a probability measure on(Ω,F ). In that setting, arandom
matrix XN is a measurable map from(Ω,F ) to MatN(F).

Our main interest is in theeigenvaluesof random matrices. Recall that the
eigenvalues of a matrixH ∈MatN(F) are the roots of the characteristic polynomial
PN(z) = det(zIN −H), with IN the identity matrix. Therefore, on the (open) set
where the eigenvalues are all simple, they are smooth functions of the entries of
XN (a more complete discussion can be found in Section 4.1).

We will be mostly concerned in this book with self-adjoint matricesH ∈H
(β )

N ,
β = 1,2, in which case the eigenvalues are all real and can be ordered. Thus,

for H ∈ H
(β )

N , we letλ1(H) ≤ ·· · ≤ λN(H) be the eigenvalues ofH. A conse-
quence of the perturbation theory of normal matrices (see Lemma A.4) is that the
eigenvalues{λi(H)} are continuous functions ofH (this also follows from the
Hoffman–Wielandt theorem, Theorem 2.1.19). In particular, if XN is a random
matrix then the eigenvalues{λi(XN)} are random variables.

We present now a guided tour of the book. We begin by considering Wigner
matricesin Chapter 2. These are symmetric (or Hermitian) matricesXN whose
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entries are independent and identically distributed, except for the symmetry con-
straints. Forx∈ R, let δx denote theDirac measure atx, that is, the unique prob-
ability measure satisfying

∫
f dδx = f (x) for all continuous functions onR. Let

LN = N−1 ∑N
i=1 δλi(XN) denote theempirical measureof the eigenvalues ofXN.

Wigner’s Theorem (Theorem 2.1.1) asserts that, under appropriate assumptions
on the law of the entries,LN converges (with respect to the weak convergence
of measures) towards a deterministic probability measure,thesemicircle law. We
present in Chapter 2 several proofs of Wigner’s Theorem. Thefirst, in Section 2.1,
involves a combinatorial machinery that is also exploited to yield central limit the-
orems and estimates on the spectral radius ofXN. After first introducing in Section
2.3 some useful estimates on the deviation between the empirical measure and its
mean, we define in Section 2.4 theStieltjes transformof measures and use it to
give another quick proof of Wigner’s Theorem.

Having discussed techniques valid for entries distributedaccording to general
laws, we turn attention to special situations involving additional symmetry. The
simplest of these concerns theGaussian ensembles, the GOE and GUE, so named
because their law is invariant under conjugation by orthogonal (resp., unitary)
matrices. The latter extra symmetry is crucial in deriving in Section 2.5 an explicit
joint distribution for the eigenvalues (thus effectively reducing consideration from
a problem involving order ofN2 random variables, namely the matrix entries, to
one involving onlyN variables). (The GSE, or Gaussian symplectic ensemble,
also shares this property and is discussed briefly.) A large deviations principle for
the empirical distribution, which leads to yet another proof of Wigner’s Theorem,
follows in Section 2.6.

The expression for the joint density of the eigenvalues in the Gaussian ensem-
bles is the starting point for obtaininglocal information on the eigenvalues. This
is the topic of Chapter 3. The bulk of the chapter deals with the GUE, because
in that situation the eigenvalues form adeterminantal process. This allows one
to effectively represent the probability that no eigenvalues are present in a set
as aFredholm determinant, a notion that is particularly amenable to asymptotic
analysis. Thus, after representing in Section 3.2 the jointdensity for the GUE in
terms of a determinant involving appropriate orthogonal polynomials, theHermite
polynomials, we develop in Section 3.4 in an elementary way some aspects of the
theory of Fredholm determinants. We then present in Section3.5 the asymptotic
analysis required in order to study thegap probability at 0, that is the probabil-
ity that no eigenvalue is present in an interval around the origin. Relevant tools,
such as the Laplace method, are developed along the way. Section 3.7 repeats this
analysis for the edge of the spectrum, introducing along theway the method of
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steepest descent. The link with integrable systems and thePainlev́e equationsis
established in Sections 3.6 and 3.8.

As mentioned before, the eigenvalues of the GUE are an example of a deter-
minantal process. The other Gaussian ensembles (GOE and GSE) do not fall into
this class, but they do enjoy a structure where certain Pfaffians replace determi-
nants. This leads to a considerably more involved analysis,the details of which
are provided in Section 3.9.

Chapter 4 is a hodge-podge of results whose common feature isthat they all
require new tools. We begin in Section 4.1 with a re-derivation of the joint law
of the eigenvalues of the Gaussian ensemble, in a geometric framework based on
Lie theory. We use this framework to derive the expressions for the joint distri-
bution of eigenvalues of Wishart matrices, of random matrices from the various
unitary groups and of matrices related to random projectors. Section 4.2 studies
in some depth determinantal processes, including their construction, associated
central limit theorems, convergence and ergodic properties. Section 4.3 studies
what happens when in the GUE (or GOE), the Gaussian entries are replaced by
Brownian motions. The powerful tools of stochastic analysis can then be brought
to bear and lead to functional laws of large numbers, centrallimit theorems and
large deviations. Section 4.4 consists of an in-depth treatment of concentration
techniques and their application to random matrices; it is ageneralization of the
discussion in the short Section 2.3. Finally, in Section 4.5, we study a family of
tri-diagonal matrices, parametrized by a parameterβ , whose distribution of eigen-
values coincides with that of members of the Gaussian ensembles forβ = 1,2,4.
The study of the maximal eigenvalue for this family is linkedto the spectrum of
an appropriate random Schrödinger operator.

Chapter 5 is devoted tofree probability theory, a probability theory for certain
noncommutative variables, equipped with a notion of independence called free
independence. Invented in the early 1990s, free probability theory has become
a versatile tool for analyzing the laws of noncommutative polynomials in several
random matrices, and of the limits of the empirical measure of eigenvalues of such
polynomials. We develop the necessary preliminaries and definitions in Section
5.2, introduce free independence in Section 5.3, and discuss the link with random
matrices in Section 5.4. We conclude the chapter with Section 5.5, in which we
study the convergence of the spectral radius of noncommutative polynomials of
random matrices.

Each chapter ends with bibliographical notes. These are notmeant to be com-
prehensive, but rather guide the reader through the enormous literature and give
some hint of recent developments. Although we have tried to represent accurately
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the historical development of the subject, we have necessarily omitted important
references, misrepresented facts, or plainly erred. Our apologies to those authors
whose work we have thus unintentionally slighted.

Of course, we have barely scratched the surface of the subject of random ma-
trices. We mention now the most glaring omissions, togetherwith references to
some recent books that cover these topics. We have not discussed the theory of the
Riemann–Hilbert problem and its relation to integrable systems, Painlevé equa-
tions, asymptotics of orthogonal polynomials and random matrices. The interested
reader is referred to the books [FoIKN06], [Dei99] and [DeG09] for an in-depth
treatment. We do not discuss the relation between asymptotics of random matri-
ces and combinatorial problems – a good summary of these appears in [BaDS09].
We barely discuss applications of random matrices, and in particular do not re-
view the recent increase in applications to statistics or communication theory –
for a nice introduction to the latter we refer to [TuV04]. We have presented only a
partial discussion of ensembles of matrices that possess explicit joint distribution
of eigenvalues. For a more complete discussion, including also the case of non-
Hermitian matrices that are not unitary, we refer the readerto [For05]. Finally,
we have not discussed the link between random matrices and number theory; the
interested reader should consult [KaS99] for a taste of thatlink. We further re-
fer to the bibliographical notes for additional reading, less glaring omissions and
references.



2

Real and complex Wigner matrices

2.1 Real Wigner matrices: traces, moments and combinatorics

We introduce in this section a basic model of random matrices. Nowhere do we
attempt to provide the weakest assumptions or sharpest results available. We point
out in the bibliographical notes (Section 2.7) some places where the interested
reader can find finer results.

Start with two independent families of independent and identically distributed
(i.i.d.) zero mean, real-valued random variables{Zi, j}1≤i< j and{Yi}1≤i, such that
EZ2

1,2 = 1 and, for all integersk≥ 1,

rk := max
(

E|Z1,2|k,E|Y1|k
)

< ∞ . (2.1.1)

Consider the (symmetric)N×N matrixXN with entries

XN( j, i) = XN(i, j) =

{
Zi, j/

√
N , if i < j ,

Yi/
√

N , if i = j .
(2.1.2)

We call such a matrix aWigner matrix, and if the random variablesZi, j andYi are
Gaussian, we use the termGaussian Wigner matrix. The case of Gaussian Wigner
matrices in whichEY2

1 = 2 is of particular importance, and for reasons that will
become clearer in Chapter 3, such matrices (rescaled by

√
N) are referred to as

Gaussian orthogonal ensemble (GOE) matrices.

Let λ N
i denote the (real) eigenvalues ofXN, with λ N

1 ≤ λ N
2 ≤ ·· · ≤ λ N

N , and
define theempirical distributionof the eigenvalues as the (random) probability
measure onR defined by

LN =
1
N

N

∑
i=1

δλ N
i

.

Define thesemicircle distribution(or law) as the probability distributionσ(x)dx

6



2.1 TRACES, MOMENTS AND COMBINATORICS 7

onR with density

σ(x) =
1

2π

√
4−x21|x|≤2 . (2.1.3)

The following theorem, contained in [Wig55], can be considered the starting point
of random matrix theory (RMT).

Theorem 2.1.1 (Wigner)For a Wigner matrix, the empirical measure LN con-
verges weakly, in probability, to the semicircle distribution.

In greater detail, Theorem 2.1.1 asserts that for anyf ∈Cb(R), and anyε > 0,

lim
N→∞

P(|〈LN, f 〉− 〈σ , f 〉| > ε) = 0.

Remark 2.1.2The assumption (2.1.1) thatrk < ∞ for all k is not really needed.
See Theorem 2.1.21 in Section 2.1.5.

We will see many proofs of Wigner’s Theorem 2.1.1. In this section, we give
a direct combinatorics-based proof, mimicking the original argument of Wigner.
Before doing so, however, we need to discuss some propertiesof the semicircle
distribution.

2.1.1 The semicircle distribution, Catalan numbers and Dyck paths

Define the momentsmk := 〈σ ,xk〉 . Recall the Catalan numbers

Ck =

(
2k
k

)

k+1
=

(2k)!
(k+1)!k!

.

We now check that, for all integersk≥ 1,

m2k = Ck , m2k+1 = 0. (2.1.4)

Indeed,m2k+1 = 0 by symmetry, while

m2k =

∫ 2

−2
x2kσ(x)dx=

2 ·22k

π

∫ π/2

−π/2
sin2k(θ )cos2(θ )dθ

=
2 ·22k

π

∫ π/2

−π/2
sin2k(θ )dθ − (2k+1)m2k .

Hence,

m2k =
2 ·22k

π(2k+2)

∫ π/2

−π/2
sin2k(θ )dθ =

4(2k−1)

2k+2
m2k−2 , (2.1.5)
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from which, together withm0 = 1, one concludes (2.1.4).

The Catalan numbers possess many combinatorial interpretations. To introduce
a first one, say that an integer-valued sequence{Sn}0≤n≤ℓ is aBernoulli walkof
lengthℓ if S0 = 0 and|St+1−St | = 1 for t ≤ ℓ−1. Of particular relevance here is
the fact thatCk counts the number ofDyck pathsof length 2k, that is, the number
of nonnegative Bernoulli walks of length 2k that terminate at 0. Indeed, letβk

denote the number of such paths. A classical exercise in combinatorics is

Lemma 2.1.3βk =Ck < 4k. Further, the generating function̂β(z) := 1+∑∞
k=1 zkβk

satisfies, for|z| < 1/4,

β̂ (z) =
1−

√
1−4z

2z
. (2.1.6)

Proof of Lemma 2.1.3Let Bk denote the number of Bernoulli walks{Sn} of
length 2k that satisfyS2k = 0, and letB̄k denote the number of Bernoulli walks
{Sn} of length 2k that satisfyS2k = 0 andSt < 0 for somet < 2k. Then,βk =

Bk− B̄k. By reflection at the first hitting of−1, one sees that̄Bk equals the number
of Bernoulli walks{Sn} of length 2k that satisfyS2k = −2. Hence,

βk = Bk− B̄k =

(
2k
k

)
−
(

2k
k−1

)
= Ck .

Turning to the evaluation of̂β(z), considering the first return time to 0 of the
Bernoulli walk{Sn} gives the relation

βk =
k

∑
j=1

βk− jβ j−1 , k≥ 1, (2.1.7)

with the convention thatβ0 = 1. Because the number of Bernoulli walks of length
2k is bounded by 4k, one has thatβk ≤ 4k, and hence the function̂β (z) is well
defined and analytic for|z| < 1/4. But, substituting (2.1.7),

β̂ (z)−1 =
∞

∑
k=1

zk
k

∑
j=1

βk− jβ j−1 = z
∞

∑
k=0

zk
k

∑
j=0

βk− jβ j ,

while

β̂ (z)2 =
∞

∑
k,k′=0

zk+k′βkβk′ =
∞

∑
q=0

q

∑
ℓ=0

zqβq−ℓβℓ .

Combining the last two equations, one sees that

β̂(z) = 1+zβ̂(z)2 ,
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from which (2.1.6) follows (using that̂β (0) = 1 to choose the correct branch of
the square-root). ⊓⊔
We note in passing that, expanding (2.1.6) in power series inz in a neighborhood
of zero, one gets (for|z| < 1/4)

β̂ (z) =
2∑∞

k=1
zk(2k−2)!
k!(k−1)!

2z
=

∞

∑
k=0

(2k)!
k!(k+1)!

zk =
∞

∑
k=0

zkCk ,

which provides an alternative proof of the fact thatβk = Ck.

Another useful interpretation of the Catalan numbers is that Ck counts the num-
ber of rooted planar trees withk edges. (Arooted planar treeis a planar graph
with no cycles, with one distinguished vertex, and with a choice of ordering at
each vertex; the ordering defines a way to “explore” the tree,starting at the root.)
It is not hard to check that the Dyck paths of length 2k are in bijection with such
rooted planar trees. See the proof of Lemma 2.1.6 in Section 2.1.3 for a formal
construction of this bijection.

We note in closing that a third interpretation of the Catalannumbers, particu-
larly useful in the context of Chapter 5, is that they count the non-crossing parti-
tionsof the ordered setKk := {1,2, . . . ,k}.

Definition 2.1.4A partition of the setKk := {1,2, . . . ,k} is calledcrossingif there
exists a quadruple(a,b,c,d) with 1≤ a < b < c < d ≤ k such thata,c belong to
one part whileb,d belong to another part. A partition which is not crossing is a
non-crossing partition.

Non-crossing partitions form a lattice with respect to refinement. A look at Fig-
ure 2.1.1 should explain the terminology “non-crossing”: one puts the points
1, . . . ,k on the circle, and connects each point with the next member ofits part
(in cyclic order) by an internal path. Then, the partition isnon-crossing if this can
be achieved without arcs crossing each other.

It is not hard to check thatCk is indeed the numberγk of non-crossing partitions
of Kk. To see that, letπ be a non-crossing partition ofKk and let j denote the
largest element connected to 1 (withj = 1 if the part containing 1 is the set{1}).
Then, becauseπ is non-crossing, it induces non-crossing partitions on thesets
{1, . . . , j −1} and{ j +1, . . . ,k}. Therefore,γk = ∑k

j=1 γk− jγ j−1. With γ1 = 1, and
comparing with (2.1.7), one sees thatβk = γk.

Exercise 2.1.5Prove that forz∈ C such thatz 6∈ [−2,2], the Stieltjes transform
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Fig. 2.1.1. Non-crossing (left,(1,4),(2,3),(5,6)) and crossing (right,(1,5),(2,3),(4,6))
partitions of the setK6.

S(z) of the semicircle law (see Definition 2.4.1) equals

S(z) =
∫

1
λ −z

σ(dλ ) =
−z+

√
z2−4

2z
.

Hint: Either use the residue theorem, or relateS(z) to the generating function̂β (z),
see Remark 2.4.2.

2.1.2 Proof #1 of Wigner’s Theorem 2.1.1

Define the probability distribution̄LN = ELN by the relation〈L̄N, f 〉 = E〈LN, f 〉
for all f ∈Cb, and setmN

k := 〈L̄N,xk〉. Theorem 2.1.1 follows from the following
two lemmas.

Lemma 2.1.6For every k∈ N,

lim
N→∞

mN
k = mk .

(See (2.1.4) for the definition ofmk.)

Lemma 2.1.7For every k∈ N andε > 0,

lim
N→∞

P
(∣∣∣〈LN,xk〉− 〈L̄N,xk〉

∣∣∣> ε
)

= 0.

Indeed, assume that Lemmas 2.1.6 and 2.1.7 have been proved.To conclude the
proof of Theorem 2.1.1, one needs to check that for any bounded continuous func-
tion f ,

lim
N→∞

〈LN, f 〉 = 〈σ , f 〉 , in probability. (2.1.8)
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Toward this end, note first that an application of the Chebyshev inequality yields

P
(
〈LN, |x|k1|x|>B〉 > ε

)
≤ 1

ε
E〈LN, |x|k1|x|>B〉 ≤

〈L̄N,x2k〉
εBk .

Hence, by Lemma 2.1.6,

limsup
N→∞

P
(
〈LN, |x|k1|x|>B〉 > ε

)
≤ 〈σ ,x2k〉

εBk ≤ 4k

εBk ,

where we used thatCk ≤ 4k. Thus, withB = 5, noting that the left side above is
increasing ink, it follows that

limsup
N→∞

P
(
〈LN, |x|k1|x|>B〉 > ε

)
= 0. (2.1.9)

In particular, when proving (2.1.8), we may and will assume that f is supported
on the interval[−5,5].

Fix next such anf andδ > 0. By the Weierstrass approximation theorem, one
can find a polynomialQδ (x) = ∑L

i=0cixi such that

sup
x:|x|≤B

|Qδ (x)− f (x)| ≤ δ
8

.

Then,

P(|〈LN, f 〉− 〈σ , f 〉| > δ ) ≤ P

(
|〈LN,Qδ 〉− 〈L̄N,Qδ 〉| >

δ
4

)

+P

(
|〈L̄N,Qδ 〉− 〈σ ,Qδ 〉| >

δ
4

)
+P

(
|〈LN,Qδ 1|x|>B〉| >

δ
4

)

=: P1 +P2+P3 .

By an application of Lemma 2.1.7,P1 →N→∞ 0. Lemma 2.1.6 implies thatP2 = 0
for N large, while (2.1.9) implies thatP3 →N→∞ 0. This completes the proof of
Theorem 2.1.1 (modulo Lemmas 2.1.6 and 2.1.7). ⊓⊔

2.1.3 Proof of Lemma 2.1.6: words and graphs

The starting point of the proof of Lemma 2.1.6 is the following identity:

〈L̄N,xk〉 =
1
N

EtrXk
N

=
1
N

N

∑
i1,...,ik=1

EXN(i1, i2)XN(i2, i3) · · ·XN(ik−1, ik)XN(ik, i1)

=:
1
N

N

∑
i1,...,ik=1

ETN
i =:

1
N

N

∑
i1,...,ik=1

T̄N
i , (2.1.10)
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where we use the notationi = (i1, . . . , ik).

The proof of Lemma 2.1.6 now proceeds by considering which terms contribute
to (2.1.10). Let us provide first an informal sketch that explains the emergence of
the Catalan numbers, followed by a formal proof. For the purpose of this sketch,
assume that the variablesYi vanish, and that the law ofZ1,2 is symmetric, so that
all odd moments vanish (and in particular,〈L̄N,xk〉 = 0 for k odd).

A first step in the sketch (that is fully justified in the actualproof below) is to
check that the only terms in (2.1.10) that survive the passage to the limit involve
only second moments ofZi, j , because there are orderNk/2+1 nonzero terms but
only at most orderNk/2 terms that involve moments higher than or equal to 4. One
then sees that

〈L̄N,x2k〉 = (1+O(N−1))
1
N ∑

∀p,∃! j 6=p:
(ip,ip+1)=(i j ,i j+1) or (i j+1,i j )

T̄N
i1,...,i2k

, (2.1.11)

where the notation∃! means “there exists a unique”. Considering the indexj > 1
such that either(i j , i j+1) = (i2, i1) or (i j , i j+1) = (i1, i2), and recalling thati2 6= i1
sinceYi1 = 0, one obtains

〈L̄N,x2k〉 = (1+O(N−1))
1
N

2k

∑
j=2

N

∑
i1 6=i2=1

N

∑
i3,...,i j−1,

i j+2,...,i2k=1

(2.1.12)

(
EXN(i2, i3) · · ·XN(i j−1, i2)XN(i1, i j+2) · · ·XN(i2k, i1)

+EXN(i2, i3) · · ·XN(i j−1, i1)XN(i2, i j+2) · · ·XN(i2k, i1)

)
.

Hence,if we could provethatE[〈LN − L̄N,xk〉]2 = O(N−2) and hence

E[〈LN,x j〉〈LN,x2k− j−2〉] = 〈L̄N,x j〉〈L̄N,x2k− j−2〉(1+O(N−1)) ,

we would obtain

〈L̄N,x2k〉 = (1+O(N−1))
2(k−1)

∑
j=0

(
〈L̄N,x j〉〈L̄N,x2k− j−2〉

+
1
N
〈L̄N,x2k−2〉

)

= (1+O(N−1))
2k−2

∑
j=0

〈L̄N,x j 〉〈L̄N,x2k− j−2〉

= (1+O(N−1))
k−1

∑
j=0

〈L̄N,x2 j〉〈L̄N,x2(k− j−1)〉 , (2.1.13)
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where we have used the fact that by induction〈L̄N,x2k−2〉 is uniformly bounded
and also the fact that odd moments vanish. Further,

〈L̄N,x2〉 =
1
N

N

∑
i, j=1

EXN(i, j)2 →N→∞ 1 = C1 . (2.1.14)

Thus, we conclude from (2.1.13) by induction that〈L̄N,x2k〉 converges to a limit
ak with a0 = a1 = 1, and further that the family{ak} satisfies the recursionsak =

∑k
j=1ak− ja j−1. Comparing with (2.1.7), we deduce thatak = Ck, as claimed.

We turn next to the actual proof. To handle the summation in expressions like
(2.1.10), it is convenient to introduce some combinatorialmachinery that will
serve us also in the sequel. We thus first digress and discuss the combinatorics
intervening in the evaluation of the sum in (2.1.10). This isthen followed by the
actual proof of Lemma 2.1.6.

In the following definition, the reader may think ofS as a subset of the integers.

Definition 2.1.8 (S -words) Given a setS , anS -letter sis simply an element of
S . An S -word w is a finite sequence of letterss1 · · ·sn, at least one letter long.
An S -word w is closedif its first and last letters are the same. TwoS -words
w1,w2 are calledequivalent, denotedw1 ∼ w2, if there is a bijection onS that
maps one into the other.

WhenS = {1, . . . ,N} for some finiteN, we use the termN-word. Otherwise, if
the setS is clear from the context, we refer to anS -word simply as a word.

For anyS -wordw= s1 · · ·sk, we useℓ(w) = k to denote thelengthof w, define
theweightwt(w) as the number of distinct elements of the set{s1, . . . ,sk} and the
supportof w, denoted suppw, as the set of letters appearing inw. With any word
w we may associate an undirected graph, with wt(w) vertices andℓ(w)−1 edges,
as follows.

Definition 2.1.9 (Graph associated with anS -word) Given a wordw = s1 · · ·sk,
we let Gw = (Vw,Ew) be the graph with set of verticesVw = suppw and (undi-
rected) edgesEw = {{si ,si+1}, i = 1, . . . ,k−1}. We define the set ofself edgesas
Es

w = {e∈Ew : e= {u,u},u∈Vw} and the set ofconnecting edgesasEc
w = Ew\Es

w.

The graphGw is connected since the wordw defines a path connecting all the
vertices ofGw, which further starts and terminates at the same vertex if the word
is closed. Fore∈ Ew, we useNw

e to denote the number of times this path traverses
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the edgee (in any direction). We note that equivalent words generate the same
graphsGw (up to graph isomorphism) and the same passage-countsNw

e .

Coming back to the evaluation of̄TN
i , see (2.1.10), note that anyk-tuple of

integersi defines a closed wordwi = i1i2 · · · iki1 of lengthk+ 1. We write wti =

wt(wi), which is nothing but the number of distinct integers ini. Then,

T̄N
i =

1

Nk/2 ∏
e∈Ec

wi

E(ZN
wi
e

1,2 ) ∏
e∈Es

wi

E(YN
wi
e

1 ) . (2.1.15)

In particular,T̄N
i = 0 unlessNwi

e ≥ 2 for all e∈ Ewi , which implies that wti ≤
k/2+1. Also, (2.1.15) shows that ifwi ∼ wi′ thenT̄N

i = T̄N
i′ . Further, ifN≥ t then

there are exactly

CN,t := N(N−1)(N−2) · · ·(N− t +1)

N-words that are equivalent to a givenN-word of weightt. We make the following
definition:

Wk,t denotes a set of representatives for equivalence classes ofclosed
t-wordsw of lengthk+1 and weightt with Nw

e ≥ 2 for eache∈ Ew .
(2.1.16)

One deduces from (2.1.10) and (2.1.15) that

〈L̄N,xk〉 =
⌊k/2⌋+1

∑
t=1

CN,t

Nk/2+1 ∑
w∈Wk,t

∏
e∈Ec

w

E(ZNw
e

1,2) ∏
e∈Es

w

E(YNw
e

1 ) . (2.1.17)

Note that the cardinality ofWk,t is bounded by the number of closedS -words of
lengthk+ 1 when the cardinality ofS is t ≤ k, that is,|Wk,t | ≤ tk ≤ kk. Thus,
(2.1.17) and the finiteness ofrk, see (2.1.1), imply that

lim
N→∞

〈L̄N,xk〉 = 0, if k is odd,

while, for k even,

lim
N→∞

〈L̄N,xk〉 = ∑
w∈Wk,k/2+1

∏
e∈Ec

w

E(ZNw
e

1,2) ∏
e∈Es

w

E(YNw
e

1 ) . (2.1.18)

We have now motivated the following definition. Note that forthe purpose of this
section, the casek = 0 in Definition 2.1.10 is not really needed. It is introduced in
this way here in anticipation of the analysis in Section 2.1.6.

Definition 2.1.10A closed wordw of lengthk+1≥ 1 is called aWigner wordif
eitherk = 0 ork is even andw is equivalent to an element ofWk,k/2+1.
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We next note that ifw ∈ Wk,k/2+1 thenGw is a tree: indeed,Gw is a connected
graph with|Vw|= k/2+1, hence|Ew| ≥ k/2, while the conditionNw

e ≥ 2 for each
e∈ Ew implies that|Ew| ≤ k/2. Thus,|Ew| = |Vw|−1, implying thatGw is a tree,
that is a connected graph with no loops. Further, the above implies thatEs

w is
empty forw∈ Wk,k/2+1, and thus, fork even,

lim
N→∞

〈L̄N,xk〉 = |Wk,k/2+1| . (2.1.19)

We may now complete the

Proof of Lemma 2.1.6Let k be even. It is convenient to choose the set of rep-
resentativesWk,k/2+1 such that each wordw = v1 · · ·vk+1 in that set satisfies, for
i = 1, . . . ,k+ 1, the condition that{v1, . . . ,vi} is an interval inZ beginning at 1.
(There is a unique choice of such representatives.) Each elementw ∈ Wk,k/2+1

determines a pathv1,v2, . . . ,vk,vk+1 = v1 of lengthk on the treeGw. We refer
to this path as theexploration processassociated withw. Let d(v,v′) denote the
distance between verticesv,v′ on the treeGw, i.e. the length of the shortest path
on the tree beginning atv and terminating atv′. Settingxi = d(vi+1,v1), one sees
that each wordw∈ Wk,k/2+1 defines a Dyck pathD(w) = (x1,x2, . . . ,xk) of length
k. See Figure 2.1.2 for an example of such coding. Conversely,given a Dyck path
x = (x1, . . . ,xk), one may construct a wordw = T(x) ∈ Wk,k/2+1 by recursively
constructing an increasing sequencew2, . . . , wk = w of words, as follows. Put
w2 = (1,2). For i > 2, if xi−1 = xi−2 +1, thenwi is obtained by adjoining on the
right of wi−1 the smallest positive integer not appearing inwi−1. Otherwise,wi is
obtained by adjoining on the right ofwi−1 the next-to-last letter ofwi−1. Note that
for all i, Gwi is a tree (becauseGw2 is a tree and, inductively, at stagei, either a
backtrack is added to the exploration process onGwi−1 or a leaf is added toGwi−1).
Furthermore, the distance inGwi between first and last letters ofwi equalsxi−1, and
therefore,D(w) = (x1, . . . ,xk). With our choice of representatives,T(D(w)) = w,
because each uptick in the Dyck pathD(w) starting at locationi −2 corresponds
to adjoinment on the right ofwi−1 of a new letter, which is uniquely determined by
suppwi−1, whereas each downtick at locationi−2 corresponds to the adjoinment
of the next-to-last letter inwi−1. This establishes a bijection between Dyck paths
of lengthk andWk,k/2+1. Lemma 2.1.3 then establishes that

|Wk,k/2+1| = Ck/2. (2.1.20)

This completes the proof of Lemma 2.1.6. ⊓⊔
From the proof of Lemma 2.1.6 we extract as a further benefit a proof of a fact

needed in Chapter 5. Letk be an even positive integer and letKk = {1, . . . ,k}.
Recall the notion of non-crossing partition ofKk, see Definition 2.1.4. We define
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1

2

3 4 5

Fig. 2.1.2. Coding of the wordw = 123242521 into a tree and a Dyck path of length 8.
Note thatℓ(w) = 9 and wt(w) = 5.

a pair partition of Kk to be a partition all of whose parts are two-element sets.
The fact we need is that the equivalence classes of Wigner words of lengthk+1
and the non-crossing pair partitions ofKk are in canonical bijective correspon-
dence. More precisely, we have the following result which describes the bijection
in detail.

Proposition 2.1.11Given a Wigner word w= i1 · · · ik+1 of length k+1, let Πw be
the partition generated by the function j7→ {i j , i j+1} : {1, . . . ,k}→Ew. (Here, re-
call, Ew is the set of edges of the graph Gw associated with w.) Then the following
hold:
(i) Πw is a non-crossing pair partition;
(ii) every non-crossing pair partition ofKk is of the formΠw for some Wigner
word w of length k+1;
(iii) if two Wigner words w and w′ of length k+1 satisfyΠw = Πw′ , then w and w′

are equivalent.

Proof (i) Because a Wigner wordw viewed as a walk on its graphGw crosses
every edge exactly twice,Πw is a pair partition. Because the graphGw is a tree,
the pair partitionΠw is non-crossing.
(ii) The non-crossing pair partitions ofKk correspond bijectively to Dyck paths.
More precisely, given a non-crossing pair partitionΠ of Kk, associate with it a
path fΠ = ( fΠ(1), . . . , fΠ(k)) by the rules thatfΠ(1) = 1 and, for i = 2, . . . ,k,
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fΠ(i) = fΠ(i −1)+1 (resp.,fΠ(i) = fΠ(i −1)−1) if i is the first (resp., second)
member of the part ofΠ to which i belongs. It is easy to check thatfΠ is a Dyck
path, and furthermore that the mapΠ 7→ fΠ puts non-crossing pair partitions of
Kk into bijective correspondence with Dyck paths of lengthk. Now choose a
Wigner wordw whose associated Dyck pathD(w), see the proof of Lemma 2.1.6,
equalsfΠ. One can verify thatΠw = Π.
(iii) Given Πw = Πw′ , one can verify thatD(w) = D(w′), from which the equiva-
lence ofw andw′ follows. ⊓⊔

2.1.4 Proof of Lemma 2.1.7: sentences and graphs

By Chebyshev’s inequality, it is enough to prove that

lim
N→∞

|E
(
〈LN,xk〉2

)
−〈L̄N,xk〉2| = 0.

Proceeding as in (2.1.10), one has

E(〈LN,xk〉2)−〈L̄N,xk〉2 =
1

N2

N

∑
i1,...,ik=1

i′1,...,i
′
k=1

T̄N
i,i′ , (2.1.21)

where

T̄N
i,i′ =

[
ETN

i TN
i′ −ETN

i ETN
i′
]
. (2.1.22)

The role of words in the proof of Lemma 2.1.6 is now played by pairs of words,
which is a particular case of asentence.

Definition 2.1.12 (S -sentences)Given a setS , anS -sentence ais a finite se-
quence ofS -wordsw1, . . . ,wn, at least one word long. TwoS -sentencesa1,a2

are calledequivalent, denoteda1 ∼ a2, if there is a bijection onS that maps one
into the other.

As with words, for a sentencea = (w1,w2, . . . ,wn), we define thesupportas
supp(a) =

⋃n
i=1supp(wi), and theweightwt(a) as the cardinality of supp(a).

Definition 2.1.13 (Graph associated with anS -sentence)Given a sentencea
= (w1, . . . ,wk), with wi = si

1si
2 · · ·si

ℓ(wi)
, we setGa = (Va,Ea) to be the graph with

set of verticesVa = supp(a) and (undirected) edges

Ea = {{si
j ,s

i
j+1}, j = 1, . . . , ℓ(wi)−1, i = 1, . . . ,k} .

We define the set ofself edgesasEs
a = {e∈ Ea : e= {u,u},u∈Va} and the set of

connecting edgesasEc
a = Ea\Es

a.



18 2. WIGNER MATRICES

In words, the graph associated with a sentencea = (w1, . . . ,wk) is obtained by
piecing together the graphs of the individual wordswi (and in general, it differs
from the graph associated with the word obtained by concatenating the words
wi ). Unlike the graph of a word, the graph associated with a sentence may be
disconnected. Note that the sentencea definesk paths in the graphGa. Fore∈ Ea,
we useNa

e to denote the number of times the union of these paths traverses the
edgee (in any direction). We note that equivalent sentences generate the same
graphsGa and the same passage-countsNa

e .

Coming back to the evaluation of̄Ti,i′ , see (2.1.21), recall the closed wordswi ,wi′

of lengthk+1, and define the two-word sentenceai,i′ = (wi ,wi′). Then,

T̄N
i,i′ =

1
Nk

[
∏

e∈Ec
ai,i′

E(ZNa
e

1,2) ∏
e∈Es

ai,i′

E(YNa
e

1 ) (2.1.23)

− ∏
e∈Ec

wi

E(ZN
wi
e

1,2 ) ∏
e∈Es

wi

E(YN
wi
e

1 ) ∏
e∈Ec

wi′

E(ZN
wi′
e

1,2 ) ∏
e∈Es

wi′

E(YN
wi′
e

1 )
]
.

In particular,T̄N
i,i′ = 0 unlessN

ai,i′
e ≥ 2 for all e∈ Eai,i′ . Also, T̄N

i,i′ = 0 unless

Ewi ∩Ewi′ 6= /0. Further, (2.1.23) shows that ifai,i′ ∼ aj ,j ′ thenT̄N
i,i′ = T̄N

j ,j ′ . Finally,
if N ≥ t then there are exactlyCN,t N-sentences that are equivalent to a given
N-sentence of weightt. We make the following definition:

W
(2)

k,t denotes a set of representatives for equivalence classes ofsentencesa
of weightt consisting of two closedt-words(w1,w2), each of lengthk+1,
with Na

e ≥ 2 for eache∈ Ea, andEw1 ∩Ew2 6= /0 .
(2.1.24)

One deduces from (2.1.21) and (2.1.23) that

E(〈LN,xk〉2)−〈L̄N,xk〉2 (2.1.25)

=
2k

∑
t=1

CN,t

Nk+2 ∑
a=(w1,w2)∈W

(2)
k,t

(
∏

e∈Ec
a

E(ZNa
e

1,2) ∏
e∈Es

a

E(YNa
e

1 )

− ∏
e∈Ec

w1

E(ZN
w1
e

1,2 ) ∏
e∈Es

w1

E(YN
w1
e

1 ) ∏
e∈Ec

w2

E(ZN
w2
e

1,2 ) ∏
e∈Es

w2

E(YN
w2
e

1 )
)

.

We have completed the preliminaries to

Proof of Lemma 2.1.7In view of (2.1.25), it suffices to check thatW
(2)

k,t is empty
for t ≥ k+ 2. Since we need it later, we prove a slightly stronger claim,namely

thatW (2)
k,t is empty fort ≥ k+1.

Toward this end, note that ifa ∈ W
(2)

k,t thenGa is a connected graph, witht
vertices and at mostk edges (sinceNa

e ≥ 2 for e∈ Ea), which is impossible when
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t > k+ 1. Considering the caset = k+ 1, it follows thatGa is a tree, and each
edge must be visited by the paths generated bya exactly twice. Because the path
generated byw1 in the treeGa starts and end at the same vertex, it must visit each
edge an even number of times. Thus, the set of edges visited byw1 is disjoint

from the set of edges visited byw2, contradicting the definition ofW (2)
k,t . ⊓⊔

Remark 2.1.14Note that in the course of the proof of Lemma 2.1.7, we actually
showed that forN > 2k,

E(〈LN,xk〉2)−〈L̄N,xk〉2 (2.1.26)

=
k

∑
t=1

CN,t

Nk+2 ∑
a=(w1,w2)∈W

(2)
k,t

[
∏

e∈Ec
a

E(ZNa
e

1,2) ∏
e∈Es

a

E(YNa
e

1 )

− ∏
e∈Ec

w1

E(ZN
w1
e

1,2 ) ∏
e∈Es

w1

E(YN
w1
e

1 ) ∏
e∈Ec

w2

E(ZN
w2
e

1,2 ) ∏
e∈Es

w2

E(YN
w2
e

1 )
]
,

that is, that the summation in (2.1.25) can be restricted tot ≤ k.

Exercise 2.1.15Consider symmetric random matricesXN, with the zero mean
independent random variables{XN(i, j)}1≤i≤ j≤N no longer assumed identically
distributed nor all of variance 1/N. Check that Theorem 2.1.1 still holds if one
assumes that for allε > 0,

lim
N→∞

#{(i, j) : |1−NEXN(i, j)2| < ε}
N2 = 1,

and for allk≥ 1, there exists a finiterk independent ofN such that

sup
1≤i≤ j≤N

E
∣∣∣
√

NXN(i, j)
∣∣∣
k
≤ rk .

Exercise 2.1.16Check that the conclusion of Theorem 2.1.1 remains true when
convergence in probability is replaced by almost sure convergence.
Hint: Using Chebyshev’s inequality and the Borel–Cantelli Lemma, it is enough
to verify that for all positive integersk, there exists a constantC = C(k) such that

|E
(
〈LN,xk〉2

)
−〈L̄N,xk〉2| ≤ C

N2 .

Exercise 2.1.17In the setup of Theorem 2.1.1, assume thatrk < ∞ for all k but
not necessarily thatE[Z2

1,2] = 1. Show that, for any positive integerk,

sup
N∈N

E[〈LN,xk〉] =: C(rℓ, ℓ ≤ k) < ∞ .
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Exercise 2.1.18We develop in this exercise the limit theory forWishartmatrices.
Let M = M(N) be a sequence of positive integers such that

lim
N→∞

M(N)/N = α ∈ [1,∞) .

Consider anN×M(N) matrix YN with i.i.d. entries of mean zero and variance
1/N, and such thatE

(
Nk/2|YN(1,1)|k

)
≤ rk < ∞ . Define theN×N Wishart matrix

asWN = YNYT
N , and letLN denote the empirical measure of the eigenvalues ofWN.

SetL̄N = ELN.
(a) WriteN〈L̄N,xk〉 as

∑
i1,...,ik
j1,..., jk

EYN(i1, j1)YN(i2, j1)YN(i2, j2)YN(i3, j2) · · ·YN(ik, jk)YN(i1, jk)

and show that the only contributions to the sum (divided byN) that survive the
passage to the limit are those in which each term appears exactly twice.
Hint: use the wordsi1 j1i2 j2 . . . jki1 and a bi-partite graph to replace the Wigner
analysis.
(b) Code the contributions as Dyck paths, where the even heights correspond to
i indices and the odd heights correspond toj indices. Letℓ = ℓ(i, j) denote the
number of times the excursion makes a descent from an odd height to an even
height (this is the number of distinctj indices in the tuple!), and show that the
combinatorial weight of such a path is asymptotic toNk+1αℓ.
(c) Let ℓ̄ denote the number of times the excursion makes a descent froman even
height to an odd height, and set

βk = ∑
Dyck paths of length 2k

αℓ , γk = ∑
Dyck paths of length 2k

α ℓ̄ .

(Theβk are thekth moments of any weak limit of̄LN.) Prove that

βk = α
k

∑
j=1

γk− jβ j−1 , γk =
k

∑
j=1

βk− jγ j−1 , k≥ 1.

(d) Settingβ̂α(z) = ∑∞
k=0zkβk, prove thatβ̂α(z) = 1+ zβ̂α(z)2 + (α − 1)zβ̂α(z),

and thus the limitFα of L̄N possesses the Stieltjes transform (see Definition 2.4.1)
−z−1β̂α(1/z), where

β̂α(z) =

1− (α −1)z−
√

1−4z
[

α+1
2 − (α−1)2z

4

]

2z
.
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(e) Conclude thatFα possesses a densityfα supported on[b−,b+], with b− =

(1−√
α)2, b+ = (1+

√
α)2, satisfying

fα (x) =

√
(x−b−)(b+−x)

2πx
, x∈ [b−,b+] . (2.1.27)

(This is the famousMarčenko–Pasturlaw, due to [MaP67].)
(f) Prove the analog of Lemma 2.1.7 for Wishart matrices, anddeduce thatLN →
Fα weakly, in probability.
(g) Note thatF1 is the image of the semicircle distribution under the transformation
x 7→ x2.

2.1.5 Some useful approximations

This section is devoted to the following simple observationthat often allows one
to considerably simplify arguments concerning the convergence of empirical mea-
sures.

Lemma 2.1.19 (Hoffman–Wielandt)Let A, B be N×N symmetric matrices, with
eigenvaluesλ A

1 ≤ λ A
2 ≤ . . . ≤ λ A

N andλ B
1 ≤ λ B

2 ≤ . . . ≤ λ B
N . Then

N

∑
i=1

|λ A
i −λ B

i |2 ≤ tr(A−B)2 .

Proof Note that trA2 = ∑i(λ A
i )2 and trB2 = ∑i(λ B

i )2. Let U denote the matrix
diagonalizingB written in the basis determined byA, and letDA,DB denote the
diagonal matrices with diagonal elementsλ A

i ,λ B
i respectively. Then,

trAB= trDAUDBUT = ∑
i, j

λ A
i λ B

j u2
i j .

The last sum is linear in the coefficientsvi j = u2
i j , and the orthogonality ofU

implies that∑ j vi j = 1,∑i vi j = 1. Thus

trAB≤ sup
vi j ≥0:∑ j vi j =1,∑i vi j =1

∑
i, j

λ A
i λ B

j vi j . (2.1.28)

But this is a maximization of a linear functional over the convex set of doubly
stochastic matrices, and the maximum is obtained at the extreme points, which
are well known to correspond to permutations The maximum among permuta-
tions is then easily checked to be∑i λ A

i λ B
i . Collecting these facts together implies

Lemma 2.1.19. Alternatively, one sees directly that a maximizing V = {vi j} in
(2.1.28) is the identity matrix. Indeed, assume w.l.o.g. that v11 < 1. We then
construct a matrix̄V = {v̄i j} with v̄11 = 1 andv̄ii = vii for i > 1 such that̄V is also
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a maximizing matrix. Indeed, becausev11 < 1, there exist aj and ak with v1 j > 0
andvk1 > 0. Setv = min(v1 j ,vk1) > 0 and define ¯v11 = v11+v, v̄k j = vk j +v and
v̄1 j = v1 j −v, v̄k1 = vk1−v, andv̄ab = vab for all other pairsab. Then,

∑
i, j

λ A
i λ B

j (v̄i j −vi j ) = v(λ A
1 λ B

1 + λ A
k λ B

j −λ A
k λ B

1 −λ A
1 λ B

j )

= v(λ A
1 −λ A

k )(λ B
1 −λ B

j ) ≥ 0.

Thus,V̄ = {v̄i j} satisfies the constraints, is also a maximum, and the number of
zero elements in the first row and column ofV̄ is larger by 1 at least from the
corresponding one forV. If v̄11 = 1, the claims follows, while if ¯v11 < 1, one
repeats this (at most 2N−2 times) to conclude. Proceeding in this manner with
all diagonal elements ofV, one sees that indeed the maximum of the right side of
(2.1.28) is∑i λ A

i λ B
i , as claimed. ⊓⊔

Remark 2.1.20The statement and proof of Lemma 2.1.19 carry over to the case
whereA andB are both Hermitian matrices.

Lemma 2.1.19 allows one to perform all sorts of truncations when proving con-
vergence of empirical measures. For example, let us prove the following variant
of Wigner’s Theorem 2.1.1.

Theorem 2.1.21Assume XN is as in (2.1.2), except that instead of (2.1.1), only
r2 < ∞ is assumed. Then, the conclusion of Theorem 2.1.1 still holds.

Proof Fix a constantC and consider the symmetric matrix̂XN whose elements
satisfy, for 1≤ i ≤ j ≤ N,

X̂N(i, j) = XN(i, j)1√N|XN(i, j)|≤C−E(XN(i, j)1√N|XN(i, j)|≤C).

Then, withλ̂ N
i denoting the eigenvalues ofX̂N, ordered, it follows from Lemma

2.1.19 that

1
N

N

∑
i=1

|λ N
i − λ̂ N

i |2 ≤ 1
N

tr(XN − X̂N)2 .

But

WN :=
1
N

tr(XN − X̂N)2

≤ 1
N2 ∑

i, j

[√
NXN(i, j)1|

√
NXN(i, j)|≥C−E(

√
NXN(i, j)1|

√
NXN(i, j)|≥C)

]2
.

Sincer2 < ∞, and the involved random variables are identical in law to eitherZ1,2

or Y1, it follows thatE[(
√

NXN(i, j))21|
√

NXN(i, j)|≥C] converges to 0 uniformly in
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N, i, j, whenC converges to infinity. Hence, one may chose for eachε a large
enoughC such thatP(|WN| > ε) < ε. Further, let

Lip(R) = { f ∈Cb(R) : sup
x
| f (x)| ≤ 1,sup

x6=y

| f (x)− f (y)
|x−y| ≤ 1} .

Then, on the event{|WN| < ε}, it holds that forf ∈ Lip(R),

|〈LN, f 〉− 〈L̂N, f 〉| ≤ 1
N ∑

i
|λ N

i − λ̂ N
i | ≤

√
ε ,

whereL̂N denotes the empirical measure of the eigenvalues ofX̂N, and Jensen’s
inequality was used in the second inequality. This, together with the weak conver-
gence in probability of̂LN toward the semicircle law assured by Theorem 2.1.1,
and the fact that weak convergence is equivalent to convergence with respect to
the Lipschitz bounded metric, see Theorem C.8, complete theproof of Theorem
2.1.21. ⊓⊔

2.1.6 Maximal eigenvalues and F̈uredi–Komĺos enumeration

Wigner’s theorem asserts the weak convergence of the empirical measure of eigen-
values to the compactly supported semicircle law. One immediately is led to sus-
pect that the maximal eigenvalue ofXN should converge to the value 2, the largest
element of the support of the semicircle distribution. Thisfact, however, does not
follow from Wigner’s Theorem. Nonetheless, the combinatorial techniques we
have already seen allow one to prove the following, where we use the notation
introduced in (2.1.1) and (2.1.2).

Theorem 2.1.22 (Maximal eigenvalue)Consider a Wigner matrix XN satisfying
rk ≤ kCk for some constant C and all positive integers k. Then,λ N

N converges to2
in probability.

Remark The assumption of Theorem 2.1.22 holds if the random variables|Z1,2|
and|Y1| possess a finite exponential moment.

Proof of Theorem 2.1.22Fix δ > 0 and letg : R 7→ R+ be a continuous function
supported on[2−δ ,2], with 〈σ ,g〉 = 1. Then, applying Wigner’s Theorem 2.1.1,

P(λ N
N < 2−δ )≤ P(〈LN,g〉= 0)≤ P(|〈LN,g〉−〈σ ,g〉|> 1

2
)→N→∞ 0. (2.1.29)

We thus need to provide a complementary estimate on the probability that λ N
N is

large. We do that by estimating〈L̄N,x2k〉 for k growing withN, using the bounds
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on rk provided in the assumptions. The key step is contained in thefollowing
combinatorial lemma that gives information on the setsWk,t , see (2.1.16).

Lemma 2.1.23For all integers k> 2t −2 one has the estimate

|Wk,t | ≤ 2kk3(k−2t+2) . (2.1.30)

The proof of Lemma 2.1.23 is deferred to the end of this section.

Equipped with Lemma 2.1.23, we have for 2k < N, using (2.1.17),

〈L̄N,x2k〉 ≤
k+1

∑
t=1

Nt−(k+1)|W2k,t | sup
w∈W2k,t

∏
e∈Ec

w

E(ZNw
e

1,2) ∏
e∈Es

w

E(YNw
e

1 ) (2.1.31)

≤ 4k
k+1

∑
t=1

(
(2k)6

N

)k+1−t

sup
w∈W2k,t

∏
e∈Ec

w

E(ZNw
e

1,2) ∏
e∈Es

w

E(YNw
e

1 ) .

To evaluate the last expectation, fixw∈W2k,t , and letl denote the number of edges
in Ec

w with Nw
e = 2. Hölder’s inequality then gives

∏
e∈Ec

w

E(ZNw
e

1,2) ∏
e∈Es

w

E(YNw
e

1 ) ≤ r2k−2l ,

with the convention thatr0 = 1. SinceGw is connected,|Ec
w| ≥ |Vw|−1= t−1. On

the other hand, by noting thatNw
e ≥ 3 for |Ec

w|− l edges, one has 2k≥ 3(|Ec
w|− l)+

2l +2|Es
w|. Hence, 2k−2l ≤ 6(k+1− t). Sincer2q is a nondecreasing function of

q bounded below by 1, we get, substituting back in (2.1.31), that for some constant
c1 = c1(C) > 0 and allk < N,

〈L̄N,x2k〉 ≤ 4k
k+1

∑
t=1

(
(2k)6

N

)k+1−t

r6(k+1−t) (2.1.32)

≤ 4k
k+1

∑
t=1

(
(2k)6(6(k+1− t))6C

N

)k+1−t

≤ 4k
k

∑
i=0

(
kc1

N

)i

.

Choose next a sequencek(N) →N→∞ ∞ such that

k(N)c1/N →N→∞ 0 but k(N)/ logN →N→∞ ∞ .

Then, for anyδ > 0, and allN large,

P(λ N
N > (2+ δ )) ≤ P(N〈LN,x2k(N)〉 > (2+ δ )2k(N))

≤ N〈L̄N,x2k(N)〉
(2+ δ )2k(N)

≤ 2N4k(N)

(2+ δ )2k(N)
→N→∞ 0,

completing the proof of Theorem 2.1.22, modulo Lemma 2.1.23. ⊓⊔
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Proof of Lemma 2.1.23The idea of the proof is to keep track of the number of
possibilities to prevent words inWk,t from having weight⌊k/2⌋+1. Toward this
end, letw∈Wk,t be given. Aparsingof the wordw is a sentenceaw = (w1, . . . ,wn)

such that the word obtained by concatenating the wordswi is w. One can imagine
creating a parsing ofw by introducing commas between parts ofw.

We say that a parsinga = aw of w is anFK parsing(after Füredi and Komlós),
and call the sentencea anFK sentence, if the graph associated witha is a tree, if
Na

e ≤ 2 for all e∈ Ea, and if for anyi = 1, . . . ,n−1, the first letter ofwi+1 belongs
to
⋃i

j=1suppwj . If the one-word sentencea = w is an FK parsing, we say thatw
is anFK word. Note that the constituent words in an FK parsing are FK words.

As will become clear next, the graph of an FK word consists of trees whose
edges have been visited twice byw, glued together by edges that have been visited
only once. Recalling that a Wigner word is either a one-letter word or a closed
word of odd length and maximal weight (subject to the constraint that edges are
visited at least twice), this leads to the following lemma.

Lemma 2.1.24Each FK word can be written in a unique way as a concatenation
of pairwise disjoint Wigner words. Further, there are at most 2n−1 equivalence
classes of FK words of length n.

Proof of Lemma 2.1.24Letw= s1 · · ·sn be an FK word of lengthn. By definition,
Gw is a tree. Let{si j ,si j +1}r

j=1 denote those edges ofGw visited only once by the
walk induced byw. Defining i0 = 1, one sees that the words ¯wj = si j−1+1 · · ·si j ,
j ≥ 1, are closed, disjoint, and visit each edge in the treeGw̄ j exactly twice. In
particular, withl j := i j − i j−1− 1, it holds thatl j is even (possibly,l j = 0 if w̄j

is a one-letter word), and further ifl j > 0 thenw̄j ∈ Wl j ,l j /2+1. This decomposi-
tion being unique, one concludes that for anyz, with Nn denoting the number of
equivalence classes of FK words of lengthn, and with|W0,1| := 1,

∞

∑
n=1

Nnzn =
∞

∑
r=1

∑
{l j }r

j=1
l j even

r

∏
j=1

zl j +1|Wl j ,l j/2+1|

=
∞

∑
r=1

(
z+

∞

∑
l=1

z2l+1|W2l ,l+1|
)r

, (2.1.33)

in the sense of formal power series. By the proof of Lemma 2.1.6, |W2l ,l+1| =

Cl = βl . Hence, by Lemma 2.1.3, for|z| < 1/4,

z+
∞

∑
l=1

z2l+1|W2l ,l+1| = zβ̂ (z2) =
1−

√
1−4z2

2z
.
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Substituting in (2.1.33), one sees that (again, in the senseof power series)

∞

∑
n=1

Nnzn =
zβ̂ (z2)

1−zβ̂(z2)
=

1−
√

1−4z2

2z−1+
√

1−4z2
= −1

2
+

z+ 1
2√

1−4z2
.

Using the fact that √
1

1− t
=

∞

∑
k=0

tk

4k

(
2k
k

)
,

one concludes that
∞

∑
n=1

Nnzn = z+
1
2
(1+2z)

∞

∑
n=1

z2n
(

2n
n

)
,

from which Lemma 2.1.24 follows. ⊓⊔
Our interest in FK parsings is the following FK parsingw′ of a word w =

s1 · · ·sn. Declare an edgee of Gw to be new (relative tow) if for some index
1≤ i < n we havee= {si ,si+1} andsi+1 6∈ {s1, . . . ,si}. If the edgee is not new,
then it isold. Definew′ to be the sentence obtained by breakingw (that is, “insert-
ing a comma”) at all visits to old edges ofGw and at third and subsequent visits to
new edges ofGw.

1

2 3

4

5
6

7

1

2 3

4

5

7

6

Fig. 2.1.3. Two inequivalent FK sentences[x1,x2] corresponding to (solid line)b =
141252363 and (dashed line)c = 1712 (in left)∼ 3732 (in right).

Since a wordw can be recovered from its FK parsing by omitting the extra
commas, and since the number of equivalence classes of FK words is estimated
by Lemma 2.1.24, one could hope to complete the proof of Lemma2.1.23 by
controlling the number of possible parsedFK sequences. A key step toward this
end is the following lemma, which explains how FK words are fitted together to
form FK sentences. Recall that any FK wordw can be written in a unique way as
a concatenation of disjoint Wigner wordswi , i = 1, . . . , r. With si denoting the first
(and last) letter ofwi , define theskeletonof w as the words1 · · ·sr . Finally, for a
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sentencea with graphGa, let G1
a = (V1

a ,E1
a) be the graph with vertex setVa = V1

a

and edge setE1
a = {e∈ Ea : Na

e = 1}. Clearly, whena is an FK sentence,G1
a is

always aforest, that is a disjoint union of trees.

Lemma 2.1.25Suppose b is an FK sentence with n− 1 words and c is an FK
word with skeleton s1 · · ·sr such that s1 ∈ supp(b). Letℓ be the largest index such
that sℓ ∈ suppb, and set d= s1 · · ·sℓ. Then a= (b,c) is an FK sentence only if
suppb∩suppc = suppd and d is a geodesic in G1b.

(A geodesicconnectingx,y ∈ G1
b is a path of minimal length starting atx and

terminating aty.) A consequence of Lemma 2.1.25 is that there exist at most
(wt(b))2 equivalence classes of FK sentencesx1, . . . ,xn such thatb∼ x1, . . . ,xn−1

andc∼ xn. See Figure 2.1.3 for an example of two such equivalence classes and
their pictorial description.

Before providing the proof of Lemma 2.1.25, we explain how itleads to

Completion of proof of Lemma 2.1.23Let Γ(t, ℓ,m) denote the set of equiva-
lence classes of FK sentencesa = (w1, . . . ,wm) consisting ofm words, with total
length∑m

i=1ℓ(wi) = ℓ and wt(a) = t. An immediate corollary of Lemma 2.1.25 is
that

|Γ(t, ℓ,m)| ≤ 2ℓ−mt2(m−1)

(
ℓ−1
m−1

)
. (2.1.34)

Indeed, there arecℓ,m :=

(
ℓ−1
m−1

)
m-tuples of positive integers summing toℓ,

and thus at most 2ℓ−mcℓ,m equivalence classes of sentences consisting ofm pair-
wise disjoint FK words with sum of lengths equal toℓ. Lemma 2.1.25 then shows
that there are at mostt2(m−1) ways to “glue these words into an FK sentence”,
whence (2.1.34) follows.

For any FK sentencea consisting ofm words with total lengthℓ, we have that

m= |E1
a|−2wt(a)+2+ ℓ . (2.1.35)

Indeed, the word obtained by concatenating the words ofa generates a list ofℓ−1
(not necessarily distinct) unordered pairs of adjoining letters, out of whichm−1
correspond to commas in the FK sentencea and 2|Ea|− |E1

a| correspond to edges
of Ga. Using that|Ea| = |Va|−1, (2.1.35) follows.

Consider a wordw ∈ Wk,t that is parsed into an FK sentencew′ consisting of
m words. Note that if an edgee is retained inGw′ , then no comma is inserted
at e at the first and second passage one (but is introduced if there are further
passages one). Therefore,E1

w′ = /0. By (2.1.35), this implies that for such words,
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m−1 = k+ 2−2t. Inequality (2.1.34) then allows one to conclude the proof of
Lemma 2.1.23. ⊓⊔
Proof of Lemma 2.1.25Assumea is an FK sentence. ThenGa is a tree, and since
the Wigner words composingc are disjoint,d is the unique geodesic inGc ⊂ Ga

connectings1 to sℓ. Hence, it is also the unique geodesic inGb ⊂ Ga connecting
s1 to sℓ. But d visits only edges ofGb that have been visited exactly once by the
constituent words ofb, for otherwise(b,c) would not be an FK sentence (that
is, a comma would need to be inserted to splitc). Thus,Ed ⊂ E1

b. Sincec is
an FK word,E1

c = Es1···sr . Sincea is an FK sentence,Eb∩Ec = E1
b ∩E1

c . Thus,
Eb∩Ec = Ed. But, recall thatGa, Gb, Gc, Gd are trees, and hence

|Va| = 1+ |Ea| = 1+ |Eb|+ |Ec|− |Eb∩Ec| = 1+ |Eb|+ |Ec|− |Ed|
= 1+ |Eb|+1+ |Ec|−1−|Ed| = |Vb|+ |Vc|− |Vd| .

Since|Vb|+ |Vc| − |Vb ∩Vc| = |Va|, it follows that |Vd| = |Vb ∩Vc|. SinceVd ⊂
Vb∩Vc, one concludes thatVd = Vb∩Vc, as claimed. ⊓⊔

Remark 2.1.26The result described in Theorem 2.1.22 is not optimal, in thesense
that even with uniform bounds on the (rescaled) entries, i.e. rk uniformly bounded,
the estimate one gets on the displacement of the maximal eigenvalue to the right
of 2 isO(n−1/6 logn), whereas the true displacement is known to be of ordern−2/3

(see Section 2.7 for more details, and, in the context of complex Gaussian Wigner
matrices, see Theorems 3.1.4 and 3.1.5).

Exercise 2.1.27Prove that the conclusion of Theorem 2.1.22 holds with conver-
gence in probability replaced by either almost sure convergence orLp conver-
gence.

Exercise 2.1.28Prove that the statement of Theorem 2.1.22 can be strengthened
to yield that for some constantδ = δ (C) > 0, Nδ (λ N

N −2) converges to 0, almost
surely.

Exercise 2.1.29Assume that for some constantsλ > 0, C, the independent (but
not necessarily identically distributed) entries{XN(i, j)}1≤i≤ j≤N of the symmetric
matricesXN satisfy

sup
i, j ,N

E(eλ
√

N|XN(i, j)|) ≤C.

Prove that there exists a constantc1 = c1(C) such that limsupN→∞ λ N
N ≤ c1, almost

surely, and limsupN→∞ Eλ N
N ≤ c1.



2.1 TRACES, MOMENTS AND COMBINATORICS 29

Exercise 2.1.30We develop in this exercise an alternative proof, that avoids mo-
ment computations, to the conclusion of Exercise 2.1.29, under the stronger as-
sumption that for someλ > 0,

sup
i, j ,N

E(eλ (
√

N|XN(i, j)|)2
) ≤C.

(a) Prove (using Chebyshev’s inequality and the assumption) that there exists a
constantc0 independent ofN such that for any fixedz ∈ RN, and allC large
enough,

P(‖zTXN‖2 > C) ≤ e−c0C2N . (2.1.36)

(b) Let Nδ = {zi}Nδ
i=1 be a minimal deterministic net in the unit ball ofRN, that

is ‖zi‖2 = 1, supz:‖z‖2=1 infi ‖z−zi‖2 ≤ δ , andNδ is the minimal integer with the
property that such a net can be found. Check that

(1− δ 2) sup
z:‖z‖2=1

zTXNz≤ sup
zi∈Nδ

zT
i XNzi +2sup

i
sup

z:‖z−zi‖2≤δ
zTXNzi . (2.1.37)

(c) Combine steps a) and b) and the estimateNδ ≤ cN
δ , valid for somecδ > 0, to

conclude that there exists a constantc2 independent ofN such that for allC large
enough, independently ofN,

P(λ N
N > C) = P( sup

z:‖z‖2=1
zTXNz> C) ≤ e−c2C2N .

2.1.7 Central limit theorems for moments

Our goal here is to derive a simple version of a central limit theorem (CLT)
for linear statistics of the eigenvalues of Wigner matrices. With XN a Wigner
matrix andLN the associated empirical measure of its eigenvalues, setWN,k :=
N[〈LN,xk〉− 〈L̄N,xk〉]. Let

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2du

denote the Gaussian distribution. We setσ2
k as in (2.1.44) below, and prove the

following.

Theorem 2.1.31The law of the sequence of random variables WN,k/σk converges
weakly to the standard Gaussian distribution. More precisely,

lim
N→∞

P

(
WN,k

σk
≤ x

)
= Φ(x) . (2.1.38)
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Proof of Theorem 2.1.31Most of the proof consists of a variance computation.
The reader interested only in a proof of convergence to a Gaussian distribution
(without worrying about the actual variance) can skip to thetext following equa-
tion (2.1.45).

Recall the notationW (2)
k,t , see (2.1.24). Using (2.1.26), we have

lim
N→∞

E(W2
N,k) = lim

N→∞
N2
[
E(〈LN,xk〉2)−〈L̄N,xk〉2

]
(2.1.39)

= ∑
a=(w1,w2)∈W

(2)
k,k

[
∏

e∈Ec
a

E(ZNa
e

1,2) ∏
e∈Es

a

E(YNa
e

1 )

− ∏
e∈Ec

w1

E(ZN
w1
e

1,2 ) ∏
e∈Es

w1

E(YN
w1
e

1 ) ∏
e∈Ec

w2

E(ZN
w2
e

1,2 ) ∏
e∈Es

w2

E(YN
w2
e

1 )
]
.

Note that ifa= (w1,w2)∈W
(2)

k,k thenGa is connected and possessesk vertices and
at mostk edges, each visited at least twice by the paths generated bya. Hence,

with k vertices,Ga possesses eitherk−1 ork edges. LetW (2)
k,k,+ denote the subset

of W
(2)

k,k such that|Ea| = k (that is,Ga is unicyclic, i.e. “possesses one edge too

many to be a tree”) and letW (2)
k,k,− denote the subset ofW

(2)
k,k such that|Ea|= k−1.

Suppose firsta ∈ W
(2)

k,k,−. Then,Ga is a tree,Es
a = /0, and necessarilyGwi is a

subtree ofGa. This implies thatk is even and that|Ewi | ≤ k/2. In this case, for
Ew1 ∩Ew2 6= /0 one must have|Ewi | = k/2, which implies that all edges ofGwi are
visited twice by the walk generated bywi , and exactly one edge is visited twice
by bothw1 andw2. In particular,wi are both closed Wigner words of lengthk+1.
The emerging picture is of two trees withk/2 edges each “glued together” at one
edge. Since there areCk/2 ways to chose each of the trees,k/2 ways of choosing
(in each tree) the edge to be glued together, and 2 possible orientations for the
gluing, we deduce that

|W (2)
k,k,−| = 2

(
k
2

)2

C2
k/2 . (2.1.40)

Further, for eacha∈ W
(2)

k,k,−,

[
∏

e∈Ec
a

E(ZNa
e

1,2) ∏
e∈Es

a

E(YNa
e

1 )

− ∏
e∈Ec

w1

E(ZN
w1
e

1,2 ) ∏
e∈Es

w1

E(YN
w1
e

1 ) ∏
e∈Ec

w2

E(ZN
w2
e

1,2 ) ∏
e∈Es

w2

E(YN
w2
e

1 )
]

= E(Z4
1,2)[E(Z2

1,2)]
k−2− [E(Z2

1,2)]
k = E(Z4

1,2)−1. (2.1.41)
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We next turn to considerW (2)
k,k,+. In order to do so, we need to understand the

structure of unicyclic graphs.

Definition 2.1.32A graphG = (V,E) is called abraceletif there exists an enu-
merationα1,α2, . . . ,αr of V such that

E =





{{α1,α1}} if r = 1,
{{α1,α2}} if r = 2,

{{α1,α2},{α2,α3},{α3,α1}} if r = 3,
{{α1,α2},{α2,α3},{α3,α4},{α4,α1}} if r = 4,

and so on. We callr thecircuit lengthof the braceletG.

We need the following elementary lemma, allowing one to decompose a uni-
cyclic graph as a bracelet and its associated pendant trees.Recall that a graph
G = (V,E) is unicyclic if it is connected and|E| = |V|.

Lemma 2.1.33Let G= (V,E) be a unicyclic graph. Let Z be the subgraph of
G consisting of all e∈ E such that G\ e is connected, along with all attached
vertices. Let r be the number of edges of Z. Let F be the graph obtained from G
by deleting all edges of Z. Then, Z is a bracelet of circuit length r, F is a forest
with exactly r connected components, and Z meets each connected component of
F in exactly one vertex. Further, r= 1 if Es 6= /0 while r≥ 3 otherwise.

We call Z the braceletof G. We call r the circuit lengthof G, and each of the
components ofF we call apendant tree. (The caser = 2 is excluded from Lemma
2.1.33 because a bracelet of circuit length 2 is a tree and thus never unicyclic.)
See Figure 2.1.4.

23

4

5

67

8

1

Fig. 2.1.4. The bracelet 1234 of circuit length 4, and the pendant trees, associated with the
unicyclic graph corresponding to[12565752341,2383412]
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Coming back toa∈W
(2)

k,k,+, let Za be the associated bracelet (with circuit length
r = 1 or r ≥ 3). Note that for anye∈ Ea one hasNa

e = 2. We claim next that
e∈ Za if and only if Nw1

e = Nw2
e = 1. On the one hand, ife∈ Za then(Va,Ea \e)

is a tree. If one of the paths determined byw1 andw2 fail to visit e then all edges
visited by this path determine a walk on a tree and therefore the path visits each
edge exactly twice. This then implies that the set of edges visited by the walks
are disjoint, a contradiction. On the other hand, ife= (x,y) andNwi

e = 1, then all
vertices inVwi are connected tox and toy by a path using only edges fromEwi \e.
Hence,(Va,Ea\e) is connected, and thuse∈ Za.

Thus, anya = (w1,w2) ∈ W
(2)

k,k,+ with bracelet lengthr can be constructed from

the following data: the pendant trees{T i
j }r

j=1 (possibly empty) associated with
each wordwi and each vertexj of the braceletZa, the starting point for each word
wi on the graph consisting of the braceletZa and trees{T i

j }, and whetherZa is
traversed by the wordswi in the same or in opposing directions (in the caser ≥ 3).
In view of the above, counting the number of ways to attach trees to a bracelet of
lengthr, and then the distinct number of non-equivalent ways to choose starting
points for the paths on the resulting graph, there are exactly

21r≥3k2

r


 ∑

ki≥0:
2∑r

i=1ki=k−r

r

∏
i=1

Cki




2

(2.1.42)

elements ofW (2)
k,k,+ with bracelet of lengthr. Further, fora∈ W

(2)
k,k,+ we have

[
∏

e∈Ec
a

E(ZNa
e

1,2) ∏
e∈Es

a

E(YNa
e

1 )

− ∏
e∈Ec

w1

E(ZN
w1
e

1,2 ) ∏
e∈Es

w1

E(YN
w1
e

1 ) ∏
e∈Ec

w2

E(ZN
w2
e

1,2 ) ∏
e∈Es

w2

E(YN
w2
e

1 )
]

=

{
(E(Z2

1,2))
k−0 if r ≥ 3,

(E(Z2
1,2))

k−1EY2
1 −0 if r = 1

=

{
1 if r ≥ 3,

EY2
1 if r = 1.

(2.1.43)

Combining (2.1.39), (2.1.40), (2.1.41), (2.1.42) and (2.1.43), and settingCx = 0 if
x is not an integer, one obtains, with

σ2
k = k2C2

k−1
2

EY2
1 +

k2

2
C2

k
2
[EZ4

1,2−1]+
∞

∑
r=3

2k2

r


 ∑

ki≥0:
2∑r

i=1 ki=k−r

r

∏
i=1

Cki




2

, (2.1.44)
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that

σ2
k = lim

N→∞
EW2

N,k . (2.1.45)

The rest of the proof consists in verifying that, forj ≥ 3,

lim
N→∞

E

(
WN,k

σk

) j

=

{
0 if j is odd,
( j −1)!! if j is even,

(2.1.46)

where( j − 1)!! = ( j − 1)( j − 3) · · ·1. Indeed, this completes the proof of the
theorem since the right hand side of (2.1.46) coincides withthe moments of the
Gaussian distributionΦ, and the latter moments determine the Gaussian distribu-
tion by an application of Carleman’s theorem (see, e.g., [Dur96]), since

∞

∑
n=1

[(2 j −1)!! ](−1/2 j) = ∞ .

To see (2.1.46), recall, for a multi-indexi =(i1, . . . , ik), the termsT̄N
i of (2.1.15),

and the associated closed wordwi . Then, as in (2.1.21), one has

E(W j
N,k) =

N

∑
in1,...,i

n
k=1

n=1,2,... j

T̄N
i1,i2,...,i j , (2.1.47)

where

T̄N
i1,i2,...,i j = E

[
j

∏
n=1

(TN
in −ETN

in )

]
. (2.1.48)

Note thatT̄N
i1,i2,...,i j = 0 if the graph generated by any wordwn := win does not

have an edge in common with any graph generated by the other wordswn′ , n′ 6= n.
Motivated by that and our variance computation, let

W
( j)

k,t denote a set of representatives for equivalence classes of
sentencesa of weightt consisting ofj closed words(w1,w2, . . . ,wj),
each of lengthk+1, with Na

e ≥ 2 for eache∈ Ea, and such that for
eachn there is ann′ = n′(n) 6= n such thatEwn ∩Ewn′ 6= /0.

(2.1.49)
As in (2.1.25), one obtains

E(W j
N,k) =

jk

∑
t=1

CN,t ∑
a=(w1,w2,...,w j )∈W

( j)
k,t

T̄N
w1,w2,...,w j

:=
jk

∑
t=1

CN,t

N jk/2 ∑
a∈W

( j)
k,t

T̄a . (2.1.50)

The next lemma, whose proof is deferred to the end of the section, is concerned

with the study ofW ( j)
k,t .
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Lemma 2.1.34Let c denote the number of connected components of Ga for a ∈⋃
t W

( j)
k,t . Then, c≤ ⌊ j/2⌋ andwt(a) ≤ c− j + ⌊(k+1) j/2⌋.

In particular, Lemma 2.1.34 and (2.1.50) imply that

lim
N→∞

E(W j
N,k) =

{
0 if j is odd,
∑

a∈W
( j)

k,k j/2
T̄a if j is even. (2.1.51)

By Lemma 2.1.34, ifa ∈ W
( j)

k,k j/2 for j even thenGa possesses exactlyj/2 con-
nected components. This is possible only if there exists a permutation

π : {1, . . . , j} → {1, . . . , j} ,

all of whose cycles have length 2 (that is, amatching), such that the connected
components ofGa are the graphs{G(wi ,wπ(i))

}. LettingΣm
j denote the collection of

all possible matchings, one thus obtains that forj even,

∑
a∈W

( j)
k,k j/2

T̄a = ∑
π∈Σm

j

j/2

∏
i=1

∑
(wi ,wπ(i))∈W

(2)
k,k

T̄wi ,wπ(i)

= ∑
π∈Σm

j

σ j
k = |Σm

j |σ j
k = σ j

k ( j −1)!! , (2.1.52)

which, together with (2.1.51), completes the proof of Theorem 2.1.31. ⊓⊔
Proof of Lemma 2.1.34Thatc≤ ⌊ j/2⌋ is immediate from the fact that the sub-
graph corresponding to any word ina must have at least one edge in common with
at least one subgraph corresponding to another word ina.

Next, put

a = [[αi,n]
k
n=1]

j
i=1 , I =

j⋃

i=1

{i}×{1, . . . ,k} , A = [{αi,n,αi,n+1}](i,n)∈I .

We visualizeA as a left-justified table ofj rows. LetG′ = (V ′,E′) be any spanning
forest inGa, with c connected components. Since every connected component of
G′ is a tree, we have

wt(a) = c+ |E′| . (2.1.53)

Now let X = {Xin}(i,n)∈I be a table of the same “shape” asA, but with all entries
equal either to 0 or 1. We callX an edge-bounding tableunder the following
conditions.

• For all (i,n) ∈ I , if Xi,n = 1, thenAi,n ∈ E′.
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• For eache∈E′ there exist distinct(i1,n1),(i2,n2) ∈ I such thatXi1,n1 = Xi2,n2 =

1 andAi1,n1 = Ai2,n2 = e.
• For eache∈ E′ and indexi ∈ {1, . . . , j}, if e appears in theith row of A then

there exists(i,n) ∈ I such thatAi,n = eandXi,n = 1.

For any edge-bounding tableX the corresponding quantity12 ∑(i,n)∈I Xi,n bounds
|E′|. At least one edge-bounding table exists, namely the table with a 1 in position
(i,n) for each(i,n) ∈ I such thatAi,n ∈ E′ and 0 elsewhere. Now letX be an edge-
bounding table such that for some indexi0 all the entries ofX in the i0th row are
equal to 1. Then the closed wordwi0 is a walk inG′, and hence every entry in the
i0th row of A appears there an even number of times anda fortiori at least twice.
Now choose(i0,n0) ∈ I such thatAi0,n0 ∈ E′ appears in more than one row ofA.
Let Y be the table obtained by replacing the entry 1 ofX in position(i0,n0) by
the entry 0. ThenY is again an edge-bounding table. Proceeding in this way we
can find an edge-bounding table with 0 appearing at least oncein every row, and
hence we have|E′| ≤ ⌊ |I |− j

2 ⌋. Together with (2.1.53) and the definition ofI , this
completes the proof. ⊓⊔

Exercise 2.1.35 (from [AnZ05])Prove that the random vector{WN,i}k
i=1 satisfies

a multidimensional CLT (asN → ∞). (See Exercise 2.3.7 for an extension of this
result.)

2.2 Complex Wigner matrices

In this section we describe the (minor) modifications neededwhen one considers
the analog of Wigner’s theorem for Hermitian matrices. Compared with (2.1.2),
we will have complex-valued random variablesZi, j . That is, start with two in-
dependent families of i.i.d. random variables{Zi, j}1≤i< j (complex-valued) and
{Yi}1≤i (real-valued), zero mean, such thatEZ2

1,2 = 0, E|Z1,2|2 = 1 and, for all
integersk≥ 1,

rk := max
(

E|Z1,2|k,E|Y1|k
)

< ∞ . (2.2.1)

Consider the (Hermitian)N×N matrixXN with entries

X∗
N( j, i) = XN(i, j) =

{
Zi, j/

√
N if i < j ,

Yi/
√

N if i = j .
(2.2.2)

We call such a matrix aHermitian Wigner matrix, and if the random variablesZi, j

andYi are Gaussian, we use the termGaussian Hermitian Wigner matrix. The
case of Gaussian Hermitian Wigner matrices in whichEY2

1 = 1 is of particular
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importance, and for reasons that will become clearer in Chapter 3, such matrices
(rescaled by

√
N) are referred to as Gaussian unitary ensemble (GUE) matrices.

As before, letλ N
i denote the (real) eigenvalues ofXN, with λ N

1 ≤ λ N
2 ≤ ·· · ≤

λ N
N , and recall that the empirical distribution of the eigenvalues is the probability

measure onR defined by

LN =
1
N

N

∑
i=1

δλ N
i

.

The following is the analog of Theorem 2.1.1.

Theorem 2.2.1 (Wigner)For a Hermitian Wigner matrix, the empirical measure
LN converges weakly, in probability, to the semicircle distribution.

As in Section 2.1.2, the proof of Theorem 2.2.1 is a direct consequence of the
following two lemmas.

Lemma 2.2.2For any k∈ N,

lim
N→∞

mN
k = mk.

Lemma 2.2.3For any k∈ N andε > 0,

lim
N→∞

P
(∣∣∣〈LN,xk〉− 〈L̄N,xk〉

∣∣∣> ε
)

= 0.

Proof of Lemma 2.2.2We recall the machinery introduced in Section 2.1.3. Thus,
anN-wordw= (s1, . . . ,sk) defines a graphGw = (Vw,Ew) and a path on the graph.
For our purpose, it is convenient to keep track of the direction in which edges are
traversed by the path. Thus, given an edgee = {s,s′}, with s < s′, we define
Nw,+

e as the number of times the edge is traversed froms to s′, and we setNw,−
e =

Nw
e −Nw,+

e as the number of times it is traversed in the reverse direction.

Recalling the equality (2.1.10), we now have instead of (2.1.15) the equation

T̄N
i =

1

Nk/2 ∏
e∈Ec

wi

E(ZN
wi ,+
e

1,2 (Z∗
1,2)

N
wi ,−
e ) ∏

e∈Es
wi

E(YN
wi
e

1 ) . (2.2.3)

In particular,T̄N
i = 0 unlessNwi

e ≥ 2 for all e∈ Ewi . Furthermore, sinceEZ2
1,2 = 0,

one hasTN
i = 0 if Nwi

e = 2 andNwi ,+
e 6= 1 for somee∈ Ewi .

A slight complication occurs since the function

gw(Nw,+
e ,Nw,−

e ) := E(ZNw,+
e

1,2 (Z∗
1,2)

Nw,−
e )
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is not constant over equivalence classes of words (since changing the letters de-
terminingw may switch the role ofNw,+

e andNw,−
e in the above expression). Note

however that, for anyw∈ Wk,t , one has

|gw(Nw,+
e ,Nw,−

e )| ≤ E(|Z1,2|N
w
e ) .

On the other hand, anyw ∈ Wk,k/2+1 satisfies thatGw is a tree, with each edge
visited exactly twice by the path determined byw. Since the latter path starts and
ends at the same vertex, one hasNw,+

e = Nw,−
e = 1 for eache∈Ew. Thus, repeating

the argument in Section 2.1.3, the finiteness ofrk implies that

lim
N→∞

〈L̄N,xk〉 = 0, if k is odd,

while, for k even,

lim
N→∞

〈L̄N,xk〉 = |Wk,k/2+1|gw(1,1) . (2.2.4)

Sincegw(1,1) = 1, the proof is completed by applying (2.1.20). ⊓⊔
Proof of Lemma 2.2.3The proof is a rerun of the proof of Lemma 2.1.7, using
the functionsgw(Nw,+

e ,Nw,−
e ), defined in the course of proving Lemma 2.2.2. The

proof boils down to showing thatW (2)
k,k+2 is empty, a fact that was established in

the course of proving Lemma 2.1.7. ⊓⊔

Exercise 2.2.4We consider in this exerciseHermitian self-dualmatrices, which
in the Gaussian case reduce to matrices from the Gaussian symplectic ensemble
discussed in greater detail in Section 4.1. For anya,b∈ C, set

ma,b =

(
a b

−b∗ a∗

)
∈ Mat2(C) .

Let {Z(k)
i, j }1≤i< j ,1≤k≤4 and{Yi}1≤i≤N be independent zero mean real-valued ran-

dom variables of unit variance satisfying the condition (2.1.1). For 1≤ i < j ≤ N,

setai, j = (Z(1)
i, j + iZ(2)

i, j )/(2
√

N), bi, j = (Z(3)
i, j + iZ(4)

i, j )/(2
√

N), ai,i = Yi/
√

N, bi,i =

0, and writemi, j = mai, j ,bi, j for 1≤ i ≤ j ≤N. Finally, construct a Hermitian matrix

XN ∈H
(2)

2N from the 2-by-2 matricesmi, j by settingXN(i, j) = mi, j , 1≤ i ≤ j ≤N.
(a) Let

J1 =

(
0 1
−1 0

)
∈ Mat2(R) ,

and letJN = diag(J1, . . . ,J1)∈Mat2N(R) be the block diagonal matrix with blocks
J1 on the diagonal. Check thatXN = JNXNJ−1

N . This justifies the name “self-dual”.
(b) Verify that the eigenvalues ofXN occur in pairs, and that Wigner’s Theorem
continues to hold.
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2.3 Concentration for functionals of random matrices and logarithmic
Sobolev inequalities

In this short section we digress slightly and prove that certain functionals of ran-
dom matrices have the concentration property, namely, withhigh probability these
functionals are close to their mean value. A more complete treatment of concen-
tration inequalities and their application to random matrices is postponed to Sec-
tion 4.4. The results of this section will be useful in Section 2.4, where they will
play an important role in the proof of Wigner’s Theorem via the Stieltjes trans-
form.

2.3.1 Smoothness properties of linear functions of the empirical measure

Let us recall that ifX is a symmetric (Hermitian) matrix andf is a bounded mea-
surable function,f (X) is defined as the matrix with the same eigenvectors asX
but with eigenvalues that are the image byf of those ofX; namely, ife is an eigen-
vector ofX with eigenvalueλ , Xe= λe, f (X)e := f (λ )e. In terms of the spectral
decompositionX = UDU∗ with U orthogonal (unitary) andD diagonal real, one
has f (X) = U f (D)U∗ with f (D)ii = f (Dii ). For M ∈ N, we denote by〈·, ·〉 the
Euclidean scalar product onRM (or CM), 〈x,y〉 = ∑M

i=1xiyi (〈x,y〉 = ∑M
i=1xiy∗i ),

and by|| · ||2 the associated norm||x||22 = 〈x,x〉.
General functions of independent random variables need not, in general, satisfy

a concentration property. Things are different when the functions involved satisfy
certain regularity conditions. It is thus reassuring to seethat linear functionals of
the empirical measure, viewed as functions of the matrix entries, do possess some
regularity properties.

Throughout this section, we denote the Lipschitz constant of a functionG :
RM → R by

|G|L := sup
x6=y∈RM

|G(x)−G(y)|
‖x−y‖2

,

and callG aLipschitz functionif |G|L < ∞. The following lemma is an immediate
application of Lemma 2.1.19. In its statement, we identifyC with R2.

Lemma 2.3.1Let g : RN → R be Lipschitz with Lipschitz constant|g|L . Then,
with X denoting the Hermitian matrix with entries X(i, j), the map

{X(i, j)}1≤i≤ j≤N 7→ g(λ1(X), . . . ,λN(X))

is a Lipschitz function onRN2
with Lipschitz constant bounded by

√
2|g|L . In
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particular, if f is a Lipschitz function onR,

{X(i, j)}1≤i≤ j≤N 7→ tr( f (X))

is a Lipschitz function onRN(N+1) with Lipschitz constant bounded by
√

2N| f |L .

2.3.2 Concentration inequalities for independent variables satisfying
logarithmic Sobolev inequalities

We derive in this section concentration inequalities basedon the logarithmic
Sobolev inequality.

To begin with, recall that a probability measureP onR is said to satisfy thelog-
arithmic Sobolev inequality(LSI) with constantc if, for any differentiable function
f in L2(P),

∫
f 2 log

f 2
∫

f 2dP
dP≤ 2c

∫
| f ′|2dP.

It is not hard to check, by induction, that ifPi satisfy the LSI with constantc and
if P(M) = ⊗M

i=1Pi denotes the product measure onRM, thenP(M) satisfies the LSI
with constantc in the sense that, for every differentiable functionF onRM,

∫
F2 log

F2
∫

F2dP(M)
dP(M) ≤ 2c

∫
||∇F||22dP(M) , (2.3.1)

where∇F denotes the gradient ofF. (See Exercise 2.3.4 for hints.) We note that
if the law of a random variableX satisfies the LSI with constantc, then for any
fixed α 6= 0, the law ofαX satisfies the LSI with constantα2c.

Before discussing consequences of the logarithmic Sobolevinequality, we quote
from [BoL00] a general sufficient condition for it to hold.

Lemma 2.3.2Let V : RM →R∪∞ satisfy that for some positive constantC, V(x)−
‖x‖2

2/2C is convex. Then, the probability measureν(dx) = Z−1e−V(x) dx, where
Z =

∫
e−V(x)dx, satisfies the logarithmic Sobolev inequality with constant C. In

particular, the standard Gaussian law onRM satisfies the logarithmic Sobolev
inequality with constant1.

The lemma is also a consequence of the Bakry–Emery criterion, see Theorem
4.4.18 in Section 4.4 for details.

The interest in the logarithmic Sobolev inequality, in the context of concentra-
tion inequalities, lies in the following argument, that among other things, shows
that LSI implies sub-Gaussian tails.
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Lemma 2.3.3 (Herbst)Assume that P satisfies the LSI onRM with constant c.
Let G be a Lipschitz function onRM, with Lipschitz constant|G|L . Then for all
λ ∈ R,

EP[eλ (G−EP(G))] ≤ ecλ 2|G|2L /2, (2.3.2)

and so for allδ > 0

P(|G−EP(G)| ≥ δ ) ≤ 2e−δ 2/2c|G|2L . (2.3.3)

Note that part of the statement in Lemma 2.3.3 is thatEPG is finite.

Proof of Lemma 2.3.3Note first that (2.3.3) follows from (2.3.2). Indeed, by
Chebyshev’s inequality, for anyλ > 0,

P(|G−EPG| > δ ) ≤ e−λ δ EP[eλ |G−EPG|]

≤ e−λ δ (EP[eλ (G−EPG)]+EP[e−λ (G−EPG)])

≤ 2e−λ δ ec|G|2L λ 2/2 .

Optimizing with respect toλ (by takingλ = δ/c|G|2L ) yields the bound (2.3.3).

Turning to the proof of (2.3.2), let us first assume thatG is a bounded differen-
tiable function such that

|| ||∇G||22||∞ := sup
x∈RM

M

∑
i=1

(∂xi G(x))2 < ∞ .

Define

Aλ = logEPe2λ (G−EPG) .

Then, takingF = eλ (G−EPG) in (2.3.1), some algebra reveals that forλ > 0,

d
dλ

(
Aλ
λ

)
≤ 2c|| ||∇G||22||∞ .

Now, becauseG−EP(G) is centered,

lim
λ→0+

Aλ
λ

= 0

and hence integrating with respect toλ yields

Aλ ≤ 2c|| ||∇G||22||∞λ 2 ,

first forλ ≥ 0 and then for anyλ ∈R by considering the function−G instead ofG.
This completes the proof of (2.3.2) in the case thatG is bounded and differentiable.

Let us now assume only thatG is Lipschitz with|G|L < ∞. For ε > 0, define
Ḡε = G∧ (−1/ε)∨ (1/ε), and note that|Ḡε |L ≤ |G|L < ∞. Consider the reg-
ularizationGε(x) = pε ∗ Ḡε(x) =

∫
Ḡε(y)pε (x− y)dy with the Gaussian density
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pε(x) = e−|x|2/2εdx/
√

(2πε)M such thatpε(x)dx converges weakly towards the
atomic measureδ0 asε converges to 0. Since, for anyx∈ RM,

|Gε(x)− Ḡε(x)| ≤ |G|L
∫

||y||2pε(y)dy= M|G|L
√

ε ,

Gε converges pointwise towardsG. Moreover,Gε is Lipschitz, with Lipschitz
constant bounded by|G|L independently ofε. Gε is also continuously differen-
tiable and

‖‖∇Gε‖2
2‖∞ = sup

x∈RM
sup

u∈RM
{2〈∇Gε(x),u〉−‖u‖2

2}

≤ sup
u,x∈RM

sup
δ>0

{2δ−1(Gε (x+ δu)−Gε(x))−‖u‖2
2}

≤ sup
u∈RM

{2|G|L ‖u‖2−‖u‖2
2} = |G|2L . (2.3.4)

Thus, we can apply (2.3.2) in the bounded differentiable case to find that for any
ε > 0 and allλ ∈ R,

EP[eλ Gε ] ≤ eλ EPGε ecλ 2|G|2L /2 . (2.3.5)

Therefore, by Fatou’s Lemma,

EP[eλ G] ≤ elim infε→0 λ EPGε ecλ 2|G|2L /2. (2.3.6)

We next show that limε→0 EPGε = EPG, which, in conjunction with (2.3.6), will
conclude the proof. Indeed, (2.3.5) implies that

P(|Gε −EPGε | > δ ) ≤ 2e−δ 2/2c|G|2L . (2.3.7)

Consequently,

E[(Gε −EPGε)
2] = 2

∫ ∞

0
xP(|Gε −EPGε | > x)dx

≤ 4
∫ ∞

0
xe

− x2

2c|G|2
L dx= 4c|G|2L , (2.3.8)

so that the sequence(Gε −EPGε)ε≥0 is uniformly integrable. Now,Gε converges
pointwise towardsG and therefore there exists a constantK, independent ofε,
such that forε < ε0, P(|Gε | ≤ K) ≥ 3

4. On the other hand, (2.3.7) implies that
P(|Gε −EPGε | ≤ r) ≥ 3

4 for somer independent ofε. Thus,

{|Gε −EPGε | ≤ r}∩{|Gε | ≤ K} ⊂ {|EPGε | ≤ K + r}

is not empty, providing a uniform bound on(EPGε )ε<ε0. We thus deduce from
(2.3.8) that supε<ε0

EPG2
ε is finite, and hence(Gε)ε<ε0 is uniformly integrable. In

particular,

lim
ε→0

EPGε = EPG < ∞ ,
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which finishes the proof. ⊓⊔

Exercise 2.3.4(From [Led01], page 98.)
(a) Let f ≥ 0 be a measurable function and set EntP( f ) =

∫
f log( f/EP f )dP.

Prove that

EntP( f ) = sup{EP f g : EPeg ≤ 1} .

(b) Use induction and the above representation to prove (2.3.1).

2.3.3 Concentration for Wigner-type matrices

We consider in this section (symmetric) matricesXN with independent (and not
necessarily identically distributed) entries{XN(i, j)}1≤i≤ j≤N. The following is an
immediate corollary of Lemmas 2.3.1 and 2.3.3.

Theorem 2.3.5Suppose that the laws of the independent entries
{XN(i, j)}1≤i≤ j≤N all satisfy the LSI with constant c/N. Then, for any Lipschitz
function f onR, for anyδ > 0,

P(|tr( f (XN)−E[tr( f (XN)]| ≥ δN) ≤ 2e
− 1

4c| f |2
L

N2δ 2

. (2.3.9)

Further, for any k∈ {1, . . . ,N},

P(| f (λk(XN))−E f(λk(XN))| ≥ δ ) ≤ 2e
− 1

4c| f |2L
Nδ 2

. (2.3.10)

We note that under the assumptions of Theorem 2.3.5,EλN(XN) is uniformly
bounded, see Exercise 2.1.29 or Exercise 2.1.30. In the Gaussian case, more in-
formation is available, see the bibliographical notes (Section 2.7).

Proof of Theorem 2.3.5To see (2.3.9), take

G(XN(i, j),1≤ i ≤ j ≤ N) = tr( f (XN)) .

By Lemma 2.3.1, we see that iff is Lipschitz,G is also Lipschitz with constant
bounded by

√
2N| f |L and hence Lemma 2.3.3 withM = N(N + 1)/2 yields the

result. To see (2.3.10), apply the same argument to the function

Ḡ(XN(i, j),1≤ i ≤ j ≤ N) = f (λk(XN)) .

⊓⊔

Remark 2.3.6The assumption of Theorem 2.3.5 is satisfied for Gaussian matrices
whose entries on or above the diagonal are independent, withvariance bounded



2.4 STIELTJES TRANSFORMS AND RECURSIONS 43

by c/N. In particular, the assumptions hold for Gaussian Wigner matrices. We
emphasize that Theorem 2.3.5 applies also when the varianceof XN(i, j) depends
on i, j, e.g. whenXN(i, j) = aN(i, j)YN(i, j) withYN(i, j) i.i.d. with lawPsatisfying
the log-Sobolev inequality anda(i, j) uniformly bounded (since ifP satisfies the
log-Sobolev inequality with constantc, the law ofaxunderP satisfies it also with
a constant bounded bya2c).

Exercise 2.3.7(From [AnZ05]) Using Exercise 2.1.35, prove that ifXN is a Gaus-
sian Wigner matrix andf : R → R is a C1

b function, thenN[〈 f ,LN〉 − 〈 f , L̄N〉]
satisfies a central limit theorem.

2.4 Stieltjes transforms and recursions

We begin by recalling some classical results concerning theStieltjes transform of
a probability measure.

Definition 2.4.1Let µ be a positive, finite measure on the real line. TheStieltjes
transformof µ is the function

Sµ(z) :=
∫

R

µ(dx)
x−z

, z∈ C\R .

Note that forz∈ C\R, both the real and imaginary parts of 1/(x−z) are continu-
ous bounded functions ofx∈ R and, further,|Sµ(z)| ≤ µ(R)/|ℑz|. These crucial
observations are used repeatedly in what follows.

Remark 2.4.2The generating function̂β (z), see (2.1.6), is closely related to the
Stieltjes transform of the semicircle distributionσ : for |z| < 1/4,

β̂(z) =
∞

∑
k=0

zk
∫

x2kσ(x)dx=

∫ ( ∞

∑
k=0

(
zx2)k

)
σ(x)dx

=
∫

1
1−zx2 σ(x)dx

=

∫
1

1−√
zx

σ(x)dx=
−1√

z
Sσ (1/

√
z) ,

where the third equality uses the fact that the support ofσ is the interval[−2,2],
and the fourth uses the symmetry ofσ .

Stieltjes transforms can be inverted. In particular, one has
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Theorem 2.4.3For any open interval I with neither endpoint on an atom ofµ ,

µ(I) = lim
ε→0

1
π

∫

I

Sµ(λ + iε)−Sµ(λ − iε)

2i
dλ

= lim
ε→0

1
π

∫

I
ℑSµ(λ + iε)dλ . (2.4.1)

Proof Note first that because

ℑSµ(i) =

∫
1

1+x2 µ(dx) ,

we have thatSµ ≡ 0 implies µ = 0. So assume next thatSµ does not vanish
identically. Then, since

lim
y↑+∞

yℑSµ(iy) = lim
y↑+∞

∫
y2

x2 +y2 µ(dx) = µ(R)

by bounded convergence, we may and will assume thatµ(R) = 1, i.e. thatµ is a
probability measure.

Let X be distributed according toµ , and denote byCε a random variable, inde-
pendent ofX, Cauchy distributed with parameterε, i.e. the law ofCε has density

εdx
π(x2 + ε2)

. (2.4.2)

Then,ℑSµ(λ + iε)/π is nothing but the density (with respect to Lebesgue mea-
sure) of the law ofX +Cε evaluated atλ ∈ R. The convergence in (2.4.1) is then
just a rewriting of the weak convergence of the law ofX +Cε to that ofX, as
ε → 0. ⊓⊔

Theorem 2.4.3 allows for the reconstruction of a measure from its Stieltjes
transform. Further, one has the following.

Theorem 2.4.4Let µn ∈ M1(R) be a sequence of probability measures.
(a) If µn converges weakly to a probability measureµ then Sµn(z) converges to
Sµ(z) for each z∈ C\R.
(b) If Sµn(z) converges for each z∈ C\R to a limit S(z), then S(z) is the Stieltjes
transform of a sub-probability measureµ , andµn converges vaguely toµ .
(c) If the probability measuresµn are random and, for each z∈ C \R, Sµn(z)
converges in probability to a deterministic limit S(z) that is the Stieltjes transform
of a probability measureµ , thenµn converges weakly in probability toµ .

(We recall thatµn converges vaguelyto µ if, for any continuous functionf on R

that decays to 0 at infinity,
∫

f dµn →
∫

f dµ . Recall also that a positive measure
µ onR is asub-probability measureif it satisfiesµ(R) ≤ 1.)
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Proof Part (a) is a restatement of the notion of weak convergence. To see part
(b), letnk be a subsequence on whichµnk converges vaguely (to a sub-probability
measureµ). (Such a subsequence always exists by Helly’s Theorem.) Because
x 7→ 1/(z− x), for z∈ C \R, is continuous and decays to zero at infinity, one
obtains the convergenceSµnk

(z) → Sµ(z) pointwise for suchz. From the hypoth-
esis, it follows thatS(z) = Sµ(z). Applying Theorem 2.4.3, we conclude that all
vaguely convergent subsequences converge to the sameµ , and henceµn → µ
vaguely.

To see part (c), fix a sequencezi → z0 in C \R with zi 6= z0, and define, for
ν1,ν2 ∈ M1(R), ρ(ν1,ν2) = ∑i 2

−i |Sν1(zi)−Sν2(zi)|. Note thatρ(νn,ν) → 0 im-
plies thatνn converges weakly toν. Indeed, moving to a subsequence if neces-
sary,νn converges vaguely to some sub-probability measureθ , and thusSνn(zi)→
Sθ (zi) for eachi. On the other hand, the uniform (ini,n) boundedness ofSνn(zi)

andρ(νn,ν) → 0 imply thatSνn(zi) → Sν(zi). Thus,Sν(z) = Sθ (z) for all z= zi

and hence, for allz∈ C\R since the set{zi} possesses an accumulation point and
Sν ,Sθ are analytic. By the inversion formula (2.4.1), it follows thatν = θ and in
particularθ is a probability measure andνn converges weakly toθ = ν. From
the assumption of part (c) we have thatρ(µn,µ) → 0, in probability, and thusµn

converges weakly toµ in probability, as claimed. ⊓⊔
For a matrixX, defineSX(z) := (X−zI)−1. TakingA = X in the matrix inver-

sion lemma (Lemma A.1), one gets

SX(z) = z−1(XSX(z)− I) , z∈ C\R. (2.4.3)

Note that withLN denoting the empirical measure of the eigenvalues ofXN,

SLN(z) =
1
N

trSXN(z) , SLN
(z) =

1
N

EtrSXN(z) .

2.4.1 Gaussian Wigner matrices

We consider in this section the case whenXN is a Gaussian Wigner matrix, pro-
viding

Proof #2 of Theorem 2.1.1(XN a Gaussian Wigner matrix).
Recall first the following identity, characterizing the Gaussian distribution, which
is proved by integration by parts.

Lemma 2.4.5If ζ is a zero mean Gaussian random variable, then for f differen-
tiable, with polynomial growth of f and f′,

E(ζ f (ζ )) = E( f ′(ζ ))E(ζ 2) .
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Define next the matrix∆i,k
N as the symmetricN×N matrix satisfying

∆i,k
N ( j, l) =

{
1, (i,k) = ( j, l) or (i,k) = (l , j) ,
0, otherwise.

Then, withX anN×N symmetric matrix,

∂
∂X(i,k)

SX(z) = −SX(z)∆i,k
N SX(z) . (2.4.4)

Using now (2.4.3) in the first equality and Lemma 2.4.5 and (2.4.4) (conditioning
on all entries ofXN but one) in the second, one concludes that

1
N

EtrSXN(z) = −1
z

+
1
z

1
N

E (trXNSXN(z))

= −1
z
− 1

zN2 E

(

∑
i,k

[SXN(z)(i, i)SXN (z)(k,k)+SXN(z)(i,k)2]

)

− 1
zN2 ∑

i

((
EY2

i −2
)
ESXN(z)(i, i)2)

= −1
z
− 1

z
E[〈LN,(x−z)−1〉2]− 1

zN
〈L̄N,(x−z)−2〉

− 1
zN2 ∑

i

((
EY2

i −2
)
ESXN(z)(i, i)2) . (2.4.5)

Since(x− z)−1 is a Lipschitz function for any fixedz∈ C \R, it follows from
Theorem 2.3.5 and Remark 2.3.6 that

|E[〈LN,(x−z)−1〉2]−〈L̄N,(x−z)−1〉2| →N→∞ 0.

This, and the boundedness of 1/(z−x)2 for a fixedzas above, imply the existence
of a sequenceεN(z) →N→∞ 0 such that, lettinḡSN(z) := N−1EtrSXN(z), one has

S̄N(z) = −1
z
− 1

z
S̄N(z)2 + εN(z) .

Thus any limit points(z) of S̄N(z) satisfies

s(z)(z+s(z))+1 = 0. (2.4.6)

Further, letC+ = {z∈ C : ℑz> 0}. Then, forz∈ C+, by its definition,s(z) must
have a nonnegative imaginary part, while forz∈ C \ (R∪C+), s(z) must have a
nonpositive imaginary part. Hence, for allz∈ C, with the choice of the branch of
the square-root dictated by the last remark,

s(z) = −1
2

[
z−
√

z2−4
]

. (2.4.7)
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Comparing with (2.1.6) and using Remark 2.4.2, one deduces thats(z) is the Stielt-
jes transform of the semicircle lawσ , sinces(z) coincides with the latter for|z|> 2
and hence for allz∈ C\R by analyticity. Applying again Theorem 2.3.5 and Re-
mark 2.3.6, it follows thatSLN(z) converges in probability tos(z), solution of
(2.4.7), for allz∈ C \R. The proof is completed by using part (c) of Theorem
2.4.4. ⊓⊔

2.4.2 General Wigner matrices

We consider in this section the case whenXN is a Wigner matrix. We give now:

Proof #3 of Theorem 2.1.1(XN a Wigner matrix).
We begin again with a general fact valid for arbitrary symmetric matrices.

Lemma 2.4.6Let W∈ H
(1)

N be a symmetric matrix, and let wi denote the ith col-
umn of W with the entry W(i, i) removed (i.e., wi is an N−1-dimensional vector).

Let W(i) ∈ H
(1)

N−1 denote the matrix obtained by erasing the ith column and row
from W. Then, for every z∈ C\R,

(W−zI)−1(i, i) =
1

W(i, i)−z−wT
i (W(i)−zIN−1)−1wi

. (2.4.8)

Proof of Lemma 2.4.6Note first that from Cramer’s rule,

(W−zIN)−1(i, i) =
det(W(i)−zIN−1)

det(W−zI)
. (2.4.9)

Write next

W−zIN =

(
W(N) −zIN−1 wN

wT
N W(N,N)−z

)
,

and use the matrix identity (A.1) withA = W(N) − zIN−1, B = wN, C = wT
N and

D = W(N,N)−z to conclude that

det(W−zIN) =

det(W(N) −zIN−1)det
[
W(N,N)−z−wT

N(W(N) −zIN−1)
−1wN

]
.

The last formula holds in the same manner withW(i), wi andW(i, i) replacing
W(N),wN andW(N,N) respectively. Substituting in (2.4.9) completes the proofof
Lemma 2.4.6. ⊓⊔
We are now ready to return to the proof of Theorem 2.1.1. Repeating the trunca-
tion argument used in the proof of Theorem 2.1.21, we may and will assume in
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the sequel thatXN(i, i) = 0 for all i and that for some constantC independent ofN,
it holds that|

√
NXN(i, j)| ≤C for all i, j. Defineᾱk(i) = XN(i,k), i.e. ᾱk is thekth

column of the matrixXN. Let αk denote theN− 1 dimensional vector obtained
from ᾱk by erasing the entryαk(k) = 0. Denote byX(k)

N ∈ H
(1)

N the matrix con-
sisting ofXN with thekth row and column removed. By Lemma 2.4.6, one gets
that

1
N

trSXN(z) =
1
N

N

∑
i=1

1

−z−αT
i (X(i)

N −zIN−1)−1αi

= − 1
z+N−1trSXN(z)

− δN(z) , (2.4.10)

where

δN(z) =
1
N

N

∑
i=1

εi,N

(−z−N−1trSXN(z)+ εi,N)(−z−N−1trSXN(z))
, (2.4.11)

and

εi,N = N−1trSXN(z)−αT
i (X(i)

N −zIN−1)
−1αi . (2.4.12)

Our next goal is to prove the convergence in probability ofδN(z) to zero for
each fixedz∈ C \R with |ℑz| = δ0 > 0. Toward this end, note that the term
−z−N−1trSXN(z)) in the right side of (2.4.11) has modulus at leastδ0, since
|ℑz| = δ0 and all eigenvalues ofXN are real. Thus, if we prove the convergence
of supi≤N |εi,N| to zero in probability, it will follow thatδN(z) converges to 0 in

probability. Toward this end, let̄X(i)
N denote the matrixXN with the ith column

and row set to zero. Then, the eigenvalues ofX̄(i)
N andX(i)

N coincide except that

X̄(i)
N has one more zero eigenvalue. Hence,

1
N
|trS

X̄
(i)
N

(z)− trS
X

(i)
N

(z)| ≤ 1
δ0N

,

whereas, with the eigenvalues ofX̄(i)
N denotedλ (i)

1 ≤ λ (i)
2 ≤ ·· · ≤ λ (i)

N , and those
of XN denotedλ N

1 ≤ λ N
2 ≤ ·· · ≤ λ N

N , one has

1
N
|trS

X̄(i)
N

(z)− trSXN(z)| ≤ 1

δ 2
0 N

N

∑
k=1

|λ (i)
k −λ N

k | ≤ 1

δ 2
0

(
1
N

N

∑
k=1

|λ (i)
k −λ N

k |2
)1/2

≤ 1

δ 2
0

(
2
N

N

∑
k=1

XN(i,k)2

)1/2

,

where Lemma 2.1.19 was used in the last inequality. Since|
√

NXN(i, j)| ≤ C,
we get that supi N

−1|trS
X̄(i)

N
(z)− trSXN(z)| converges to zero (deterministically).



2.4 STIELTJES TRANSFORMS AND RECURSIONS 49

Combining the above, it follows that to prove the convergence of supi≤N |εi,N| to
zero in probability, it is enough to prove the convergence to0 in probability of
supi≤N |ε̄i,N|, where

ε̄i,N = αT
i B(i)

N (z)αi −
1
N

trB(i)
N (z)

=
1
N

N−1

∑
k=1

([√
Nαi(k)

]2
−1

)
B(i)

N (z)(k,k)+
N−1

∑
k,k′=1,k6=k′

αi(k)αi(k
′)B(i)

N (z)(k,k′)

=: ε̄i,N(1)+ ε̄i,N(2) , (2.4.13)

whereB(i)
N (z) = (X(i)

N − zIN−1)
−1 . Noting thatαi is independent ofB(i)

N (z), and
possesses zero mean independent entries of variance 1/N, one observes by condi-

tioning on the sigma-fieldFi,N generated byX(i)
N thatEε̄i,N = 0. Further, since

N−1tr
(

B(i)
N (z)2

)
≤ 1

δ 2
0

,

and the random variables|
√

Nαi(k)| are uniformly bounded, it follows that

E|ε̄i,N(1)|4 ≤ c1

N2 .

for some constantc1 that depends only onδ0 andC. Similarly, one checks that

E|ε̄i,N(2)|4 ≤ c2

N2 ,

for some constantc2 depending only onC,δ0. One obtains then, by Chebyshev’s
inequality, the claimed convergence of supi≤N |εi,N(z)| to 0 in probability.

The rest of the argument is similar to what has already been done in Section
2.4.1, and is omitted. ⊓⊔

Remark 2.4.7We note that reconstruction and continuity results that arestronger
than those contained in Theorems 2.4.3 and 2.4.4 are available. An accessible
introduction to these and their use in RMT can be found in [Bai99]. For example,
in Theorem 2.4.3, ifµ possesses a Hölder continuous densitym then, forλ ∈ R,

Sµ(λ + i0) := lim
ε↓0

Sµ(λ + ε) = iπm(λ )+P.V.
∫

R

µ(dx)
x−λ

(2.4.14)

exists, where the notation P.V. stands for “principal value”. Also, in the context of
Theorem 2.4.4, if theµ andν are probability measures supported on[−B,B], a,γ
are constants satisfying

γ :=
1
π

∫

|u|≤a

1
u2+1

du>
1
2

,
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andA is a constant satisfying

κ :=
4B

π(A−B)(2γ −1)
∈ (0,1) ,

then for anyv > 0,

π(1−κ)(2γ −1) sup
|x|≤B

|µ([−B,x])−ν([−B,x]) ≤

[∫ A

−A
|Sµ(u+ iv)−Sν(u+ iv)|du (2.4.15)

+
1
v

sup
x

∫

|y|≤2va
|µ([−B,x+y])− µ([−B,x])|dy

]
.

In the context of random matrices, equation (2.4.15) is useful in obtaining the rate
of convergence ofLN to its limit, but we will not discuss this issue here at all.

Exercise 2.4.8LetY(N) be a sequence of matrices as in Exercise 2.1.18. By writ-

ing WN = YNYT
N = ∑M(N)

i=1 yiyT
i for appropriate vectorsyi , and again using Lemma

A.1, provide a proof of points (d) and (e) of Exercise 2.1.18 based on Stieltjes
transforms, showing thatN−1trSWN(z) converges to the solution of the equation
m(z) = −1/(z−α/(1+m(z)).
Hint: use the equality

IN +(z−x)(WN−zIN)−1 = (WN −xIN)(WN −zIN)−1 , (2.4.16)

and then use the equality

yT
i (B+yiy

T
i )−1 =

1

1+yT
i B−1yi

yT
i B−1 ,

with the matricesBi = WN − zI− yiyT
i , to show that the normalized trace of the

right side of (2.4.16) converges to 0.

2.5 Joint distribution of eigenvalues in the GOE and the GUE

We are going to calculate the joint distribution of eigenvalues of a random sym-
metric or Hermitian matrix under a special type of probability law which displays
a high degree of symmetry but still makes on-or-above-diagonal entries indepen-
dent so that the theory of Wigner matrices applies.
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2.5.1 Definition and preliminary discussion of the GOE and the GUE

Let {ξi, j ,ηi, j}∞
i, j=1 be an i.i.d. family of real mean 0 variance 1 Gaussian random

variables. We define

P(1)
2 ,P(1)

3 , . . .

to be the laws of the random matrices

[ √
2ξ1,1 ξ1,2

ξ1,2
√

2ξ2,2

]
∈ H

(1)
2 ,




√
2ξ1,1 ξ1,2 ξ1,3

ξ1,2
√

2ξ2,2 ξ2,3

ξ1,3 ξ2,3
√

2ξ3,3


 ∈ H

(1)
3 , . . . ,

respectively. We define

P(2)
2 ,P(2)

3 , . . .

to be the laws of the random matrices


 ξ1,1

ξ1,2+iη1,2√
2

ξ1,2−iη1,2√
2

ξ2,2


∈H

(2)
2 ,




ξ11
ξ1,2+iη1,2√

2

ξ1,3+iη1,3√
2

ξ1,2−iη1,2√
2

ξ2,2
ξ2,3+iη2,3√

2
ξ1,3−iη1,3√

2

ξ2,3−iη2,3√
2

ξ3,3


∈H

(2)
3 , . . . ,

respectively. A random matrixX ∈ H
(β )

N with law P(β )
N is said to belong to the

Gaussian orthogonal ensemble (GOE)or theGaussian unitary ensemble (GUE)
according asβ = 1 or β = 2, respectively. (We often write GOE(N) and GUE(N)
when an emphasis on the dimension is needed.) The theory of Wigner matrices
developed in previous sections of this book applies here. Inparticular, for fixed

β , given for eachN a random matrixX(N) ∈ H
(β )

N with law P(β )
N , the empirical

distribution of the eigenvalues ofXN := X(N)/
√

N tends to the semicircle law of
mean 0 and variance 1.

So what’s special about the lawP(β )
N within the class of laws of Wigner matri-

ces? The lawP(β )
N is highly symmetrical. To explain the symmetry, as well as

to explain the presence of the terms “orthogonal” and “unitary” in our terminol-

ogy, let us calculate the density ofP(β )
N with respect to Lebesgue measureℓ

(β )
N on

H
(β )

N . To fix ℓ
(β )
N unambiguously (rather than just up to a positive constant fac-

tor) we use the following procedure. In the caseβ = 1, consider the one-to-one

onto mappingH (1)
N → RN(N+1)/2 defined by taking on-or-above-diagonal entries

as coordinates, and normalizeℓ(1)
N by requiring it to push forward to Lebesgue

measure onRN(N+1)/2. Similarly, in the caseβ = 2, consider the one-to-one

onto mappingH (2)
N → RN ×CN(N−1)/2 = RN2

defined by taking on-or-above-

diagonal entries as coordinates, and normalizeℓ
(2)
N by requiring it to push forward
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to Lebesgue measure onRN2
. Let Hi, j denote the entry ofH ∈ H

(β )
N in row i and

column j. Note that

trH2 = trHH∗ =
N

∑
i=1

H2
i,i +2 ∑

1≤i< j≤N

|Hi, j |2.

It is a straightforward matter now to verify that

dP(β )
N

dℓ
(β )
N

(H) =





2−N/2(2π)−N(N+1)/4exp(−trH2/4) if β = 1,

2−N/2π−N2/2exp(−trH2/2) if β = 2.

(2.5.1)

The latter formula clarifies the symmetry ofP(β )
N . The main thing to notice is that

the density atH depends only on the eigenvalues ofH. It follows that if X is a

random element ofH (1)
N with law P(1)

N , then for anyN×N orthogonal matrixU ,

againUXU∗ has lawP(1)
N ; and similarly, ifX is a random element ofH (2)

N with

law P(2)
N , then for anyN×N unitary matrixU , againUXU∗ has lawP(2)

N . As

we already observed, for randomX ∈ H
(β )

N it makes sense to talk about the joint
distribution of the eigenvaluesλ1(X) ≤ ·· · ≤ λN(X).

Definition 2.5.1Let x = (x1, . . . ,xN) ∈ CN. TheVandermonde determinantasso-
ciated withx is

∆(x) = det({x j−1
i }n

i, j=1) = ∏
i< j

(x j −xi) . (2.5.2)

(For an easy verification of the second equality in (2.5.2), note that the determinant
is a polynomial that must vanish whenxi = x j for any pairi 6= j.)

The main result in this section is the following.

Theorem 2.5.2 (Joint distribution of eigenvalues: GOE and GUE) Let X ∈
H

(β )
N be random with law P(β )

N , β = 1,2. The joint distribution of the eigenvalues
λ1(X) ≤ ·· · ≤ λN(X) has density with respect to Lebesgue measure which equals

N!C̄(β )
N 1x1≤···≤xN |∆(x)|β

N

∏
i=1

e−β x2
i /4 , (2.5.3)

where

N!C̄(β )
N = N!

(∫ ∞

−∞
· · ·
∫ ∞

−∞
|∆(x)|β

N

∏
i=1

e−β x2
i /4dxi

)−1

= (2π)−N/2
(

β
2

)β N(N−1)/4+N/2 N

∏
j=1

Γ(β/2)

Γ( jβ/2)
. (2.5.4)



2.5 JOINT DISTRIBUTIONS IN THE GOEAND THE GUE 53

Here, for any positive reals,

Γ(s) =

∫ ∞

0
xs−1e−xdx (2.5.5)

is Euler’sGamma function.

Remark 2.5.3We refer to the probability measureP(β )
N onRN with density

dP
(β )
N

dLebN
= C̄(β )

N |∆(x)|β
N

∏
i=1

e−β x2
i /4 , (2.5.6)

where LebN is the Lebesgue measure onRN andC̄β
N is given in (2.5.4), as thelaw

of the unordered eigenvaluesof the GOE(N) (whenβ = 1) or GUE(N) (whenβ =

2). The special caseβ = 4 corresponds to the GSE(N) (see Section 4.1 for details
on the explicit construction of random matrices whose eigenvalues are distributed

according toP(4)
N ).

The distributionsP(β )
N for β ≥ 1, β 6= 1,2,4 also appear as the law of the

unordered eigenvalues of certain random matrices, although with a very different
structure, see Section 4.5.

A consequence of Theorem 2.5.2 is that a.s., the eigenvaluesof the GOE and
GUE are all distinct. Letv1, . . . ,vN denote the eigenvectors corresponding to the
eigenvalues(λ N

1 , . . . ,λ N
N ) of a matrixX from GOE(N) or GUE(N), with their first

nonzero entry positive real. Recall thatO(N) (the group of orthogonal matrices)
andU(N) (the group of unitary matrices) admit a unique Haar probability measure
(see Theorem F.13). The invariance of the law ofX under arbitrary orthogonal
(unitary) transformations implies then the following.

Corollary 2.5.4 The collection(v1, . . . ,vN) is independent of the eigenvalues
(λ N

1 , . . . ,λ N
N ). Each of the eigenvectors v1, . . . ,vN is distributed uniformly on

SN−1
+ = {x = (x1, . . . ,xN) : xi ∈ R,‖x‖2 = 1,x1 > 0}

(for the GOE), or on

SN−1
C,+ = {x = (x1, . . . ,xN) : x1 ∈ R,xi ∈ C for i ≥ 2,‖x‖2 = 1,x1 > 0}

(for the GUE). Further,(v1, . . . ,vN) is distributed like a sample of Haar measure
on O(N) (for the GOE) or U(N) (for the GUE), with each column multiplied by a
norm one scalar so that the columns all belong to SN−1

+ (for the GOE) and SN−1
C,+

(for the GUE).

Proof Write X = UDU∗. SinceTXT∗ possesses the same eigenvalues asX and



54 2. WIGNER MATRICES

is distributed likeX for any orthogonal (in the GOE case) or unitary (in the GUE
case)T independent ofX, and since choosingT uniformly according to Haar
measure and independent ofU makesTU Haar distributed and hence of law in-
dependent of that ofU , the independence of the eigenvectors and the eigenvalues
follows. All other statements are immediate consequences of this and the fact that
each column of a Haar distributed orthogonal (resp., unitary) matrix is distributed,
after multiplication by a scalar that makes its first entry real and nonnegative, uni-
formly onSN−1

+ (resp.SN−1
C,+ ). ⊓⊔

2.5.2 Proof of the joint distribution of eigenvalues

We present in this section a proof of Theorem 2.5.2 that has the advantage of
being direct, elementary, and not requiring much in terms ofcomputations. On
the other hand, this proof is not enough to provide one with the evaluation of the
normalization constant̄Cβ

N in (2.5.4). The evaluation of the latter is postponed to
subsection 2.5.3, where theSelberg integral formulais derived. Another approach
to evaluating the normalization constants, in the case of the GUE, is provided in
Section 3.2.1.

The idea behind the proof of Theorem 2.5.2 is as follows. Since X ∈ H
(β )

N ,
there exists a decompositionX = UDU∗, with eigenvalue matrixD ∈ DN, where
DN denotes diagonal matrices with real entries, and with eigenvector matrixU ∈
U

(β )
N , whereU

(β )
N denotes the collection of orthogonal matrices (whenβ = 1)

or unitary matrices (whenβ = 2). Suppose this map were a bijection (which it
is not, at least at the matricesX without distinct eigenvalues) and that one could

parametrizeU (β )
N usingβN(N− 1)/2 parameters in a smooth way (which one

cannot). An easy computation shows that the Jacobian of the transformation
would then be a polynomial in the eigenvalues with coefficients that are func-

tions of the parametrization ofU (β )
N , of degreeβN(N−1)/2. Since the bijection

must break down whenDii = D j j for somei 6= j, the Jacobian must vanish on
that set; symmetry and degree considerations then show thatthe Jacobian must

be proportional to the factor∆(x)β . Integrating over the parametrization ofU
(β )

N
then yields (2.5.3).

In order to make the above construction work, we need to throwaway subsets

of H
(β )

N that fortunately turn out to have zero Lebesgue measure. Toward this

end, we say thatU ∈ U
(β )

N is normalizedif every diagonal entry ofU is strictly

positive real. We say thatU ∈ U
(β )

N is goodif it is normalized and every entry of

U is nonzero. The collection of good matrices is denotedU
(β ),g

N . We also say that
D ∈ DN is distinct if its entries are all distinct, denoting byDd

N the collection of
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distinct matrices, and byDdo
N the subset of matrices with decreasing entries, that

is Ddo
N = {D ∈ Dd

N : Di,i > Di+1,i+1}.

LetH (β ),dg
N denote the subset ofH (β ) consisting of those matrices that possess

a decompositionX = UDU∗ whereD ∈ Dd
N andU ∈ U

(β ),g
N . The first step is

contained in the following lemma.

Lemma 2.5.5H
(β )

N \H
(β ),dg

N has null Lebesgue measure. Further, the map

(Ddo
N ,U

(β ),g
N )→H

(β ),dg
N given by(D,U) 7→UDU∗ is one-to-one and onto, while

(Dd
N,U

(β ),g
N ) → H

(β ),dg
N given by the same map is N!-to-one.

Proof of Lemma 2.5.5In order to prove the first part of the lemma, we note
that for any nonvanishing polynomial functionp of the entries ofX, the set{X :
p(X) = 0} is closed and has zero Lebesgue measure (this fact can be checked by
applying Fubini’s Theorem). So it is enough to exhibit a nonvanishing polynomial

p with p(X) = 0 if X ∈ H
(β )

N \H
(β ),dg

N . Toward this end, we will show that
for suchX, eitherX has some multiple eigenvalue, or, for somek, X and the
matrix X(k) obtained by erasing thekth row and column ofX possess a common
eigenvalue.

Given anyn by n matrix H, for i, j = 1, . . . ,n let H(i, j) be then−1 by n−1
matrix obtained by deleting theith column andjth row of H, and writeH(k) for
H(k,k). We begin by proving that ifX = UDU∗ with D ∈ Dd

N, andX andX(k) do
not have eigenvalues in common for anyk = 1,2, . . . ,N, then all entries ofU are
nonzero. Indeed, letλ be an eigenvalue ofX, setA= X−λ I , and defineAadj as the
N by N matrix withAadj

i, j = (−1)i+ j det(A(i, j)). Using the identityAAadj = det(A)I ,

one concludes thatAAadj = 0. Since the eigenvalues ofX are assumed distinct,
the null space ofA has dimension 1, and hence all columns ofAadj are scalar
multiple of some vectorvλ , which is then an eigenvector ofX corresponding to the
eigenvalueλ . Sincevλ (i) = Aadj

i,i = det(X(i) −λ I) 6= 0 by assumption, it follows
that all entries ofvλ are nonzero. But each column ofU is a nonzero scalar
multiple of somevλ , leading to the conclusion that all entries ofU do not vanish.

We recall, see Appendix A.4, that the resultant of the characteristic polynomials
of X andX(k), which can be written as a polynomial in the entries ofX andX(k),
and hence as a polynomialP1 in the entries ofX, vanishes if and only ifX andX(k)

have a common eigenvalue. Further, the discriminant ofX, which is a polynomial
P2 in the entries ofX, vanishes if and only if not all eigenvalues ofX are distinct.
Taking p(X) = P1(X)P2(X), one obtains a nonzero polynomialp with p(X) = 0

if X ∈H
(β )

N \H
(β ),dg

N . This completes the proof of the first part of Lemma 2.5.5.

The second part of the lemma is immediate since the eigenspace corresponding
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to each eigenvalue is of dimension 1, the eigenvectors are fixed by the normaliza-
tion condition, and the multiplicity arises from the possible permutations of the
order of the eigenvalues. ⊓⊔

Next, we say thatU ∈ U
(β ),g

N is very goodif all minors ofU have nonvanishing

determinant. LetU (β ),vg
N denote the collection of very good matrices. The interest

in such matrices is that they possess a particularly nice parametrization.

Lemma 2.5.6The map T: U
(β ),vg

N → Rβ N(N−1)/2 defined by

T(U) =

(
U1,2

U1,1
, . . . ,

U1,N

U1,1
,
U2,3

U2,2
, . . . ,

U2,N

U2,2
, . . . ,

UN−1,N

UN−1,N−1

)
(2.5.7)

(whereC is identified withR2 in the caseβ = 2) is one-to-one with smooth inverse.

Further, the set
(

T(U
(β ),vg

N )
)c

is closed and has zero Lebesgue measure.

Proof of Lemma 2.5.6We begin with the first part. The proof is by an inductive
construction. Clearly,U−2

1,1 = 1+ ∑N
j=2 |U1, j |2/|U1,1|2. So suppose thatUi, j are

given for 1≤ i ≤ i0 and 1≤ j ≤ N. Let vi = (Ui,1, . . . ,Ui,i0), i = 1, . . . , i0. One
then solves the equation




v1

v2
...

vi0


Z = −




U1,i0+1 + ∑N
i=i0+2U1,i

(
Ui0+1,i

Ui0+1,i0+1

)∗

U2,i0+1 + ∑N
i=i0+2U2,i

(
Ui0+1,i

Ui0+1,i0+1

)∗

...

Ui0,i0+1 + ∑N
i=i0+2Ui0,i

(
Ui0+1,i

Ui0+1,i0+1

)∗




.

The very good condition onU ensures that the vectorZ is uniquely determined by
this equation, and one then sets

U−2
i0+1,i0+1 = 1+

i0

∑
k=1

|Zk|2 +
N

∑
i=i0+2

∣∣∣∣
Ui0+1,i

Ui0+1,i0+1

∣∣∣∣
2

and

Ui0+1, j = Z∗
j Ui0+1,i0+1 , for 1≤ j ≤ i0 .

(All entriesUi0+1, j with j > i0 +1 are then determined byT(U).) This completes
the proof of the first part.

To see the second part, letZ
(β )

N be the space of matrices whose columns are
orthogonal, whose diagonal entries all equal to 1, and all ofwhose minors have

nonvanishing determinants. Define the action ofT on Z
(β )

N using (2.5.7). Then,

T(U
(β ),vg

N ) = T(Z
(β )

N ). Applying the previous constructions, one immediately
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obtains a polynomial type condition for a point inRβ N(N−1)/2 to not belong to the

setT(Z
(β )

N ). ⊓⊔

Let H
(β ),vg

N denote the subset ofH (β ),dg
N consisting of those matricesX that

can be written asX = UDU∗ with D ∈ Dd
N andU ∈ U

(β ),vg
N .

Lemma 2.5.7The Lebesgue measure ofH
(β )

N \H
(β ),vg

N is zero.

Proof of Lemma 2.5.7We identify a subset ofH (β ),vg
N which we will prove to

be of full Lebesgue measure. We say that a matrixD ∈ Dd
N is strongly distinctif

for any integerr = 1,2, . . . ,N−1 and subsetsI ,J of {1,2, . . . ,N},

I = {i1 < · · · < ir}, J = { j1 < · · · < jr}

with I 6= J, it holds that∏i∈I Di,i 6= ∏i∈J Di,i . We consider the subsetH
(β ),sdg

N

of H
(β ),vg

N consisting of those matricesX = UDU∗ with D strongly distinct and

U ∈ U
(β ),vg

N .

Given a positive integerr and subsetsI ,J as above, put

(
r∧

X)IJ :=
r

det
µ,ν=1

Xiµ , jν ,

thus defining a square matrix
∧r X with rows and columns indexed byr-element

subsets of{1, . . . ,n}. If we replace each entry ofX by its complex conjugate, we
replace each entry of

∧r X by its complex conjugate. If we replaceX by its trans-
pose, we replace

∧r X by its transpose. Given anotherN by N matrixY with com-
plex entries, by the Cauchy–Binet Theorem A.2 we have

∧r(XY) = (
∧r X)(

∧r Y).

Thus, ifU ∈ U
(β )

N then
∧r U ∈ U

(β )
cr
N

wherecr
N = N!/(N− r)!r!. We thus obtain

that if X = UDU∗ then
∧r X can be decomposed as

∧r X = (
∧r U)(

∧r D)(
∧r U∗).

In particular, ifD is not strongly distinct then, for somer,
∧r X does not possess all

eigenvalues distinct. Similarly, ifD is strongly distinct butU 6∈U
(β ),vg

N , then some
entry of

∧r U vanishes. Repeating the argument presented in the proof of the first

part of Lemma 2.5.5, we conclude that the Lebesgue measure ofH
(β )

N \H
(β ),sdg

N
vanishes. This completes the proof of the lemma. ⊓⊔

We are now ready to provide the

Proof of (2.5.3)Recall the mapT introduced in Lemma 2.5.6, and define the

map T̂ : T(U
(β ),vg

N )×RN → H
(β )

N by setting, forλ ∈ RN andz∈ T(U
(β ),vg

N ),
D ∈ DN with Di,i = λi and T̂(z,λ ) = T−1(z)DT−1(z)∗. By Lemma 2.5.6,T̂ is
smooth, whereas by Lemma 2.5.5, it isN!-to-1 on a set of full Lebesgue measure
and is locally one-to-one on a set of full Lebesgue measure. LettingJT̂ denote the
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Jacobian of̂T, we note thatJT̂(z,λ ) is a homogeneous polynomial inλ of degree
(at most)βN(N−1)/2, with coefficients that are functions ofz (since derivatives
of T̂(z,λ ) with respect to theλ -variables do not depend onλ , while derivatives
with respect to thezvariables are linear inλ ). Note next that̂T fails to be locally
one-to-one whenλi = λ j for somei 6= j. In particular, it follows by the implicit
function theorem thatJT̂ vanishes at such points. Hence,∆(λ ) = ∏i< j(λ j −λi)

is a factor ofJT̂. In fact, we have that

∆(λ )β is a factor ofJT̂ . (2.5.8)

We postpone the proof of (2.5.8) in the caseβ = 2. Since∆(λ ) is a polynomial
of degreeN(N−1)/2, it follows from (2.5.8) thatJT̂(z,λ ) = g(z)∆(λ )β for some
(continuous, hence measurable) functiong. By Lemma 2.5.7, we conclude that
for any functionf that depends only on the eigenvalues ofX, it holds that

N!
∫

f (H)dP(β )
N =

∫
|g(z)|dz

∫
f (λ )|∆(λ )|β

N

∏
i=1

e−β λ 2
i /4dλi .

Up to the normalization constant(
∫ |g(z)|dz)/N!, this is (2.5.3).

It only remains to complete the proof of (2.5.8) in the caseβ = 2. Writing for
brevity W = T−1(z), we haveT̂ = WDW∗, andW∗W = I . Using the notation
dT̂ for the matrix of differentials of̂T, we havedT̂ = (dW)DW∗ +W(dD)W∗ +

WD(dW∗). Using the relationd(W∗W) = (dW∗)W +W∗(dW) = 0, we deduce
that

W∗(dT̂)W = W∗(dW)D−DW∗(dW)+ (dD) .

Therefore, whenλi = λ j for somei 6= j, acomplexentry (above the diagonal) of
W∗(dT̂)W vanishes. This implies that, whenλi = λ j , there exist two linear (real)
relations between the on-and-above diagonal entries ofdT̂, which implies in turn
that(λi −λ j)

2 must divideJT̂. ⊓⊔

2.5.3 Selberg’s integral formula and proof of (2.5.4)

To complete the description of the joint distribution of eigenvalues of the GOE,
GUE and GSE, we derive in this section an expression for the normalization con-
stant in (2.5.4). The value of the normalization constant does not play a role in the
rest of this book, except for Section 2.6.2.

We begin by stating Selberg’s integral formula. We then describe in Corol-
lary 2.5.9 a couple of limiting cases of Selberg’s formula. The evaluation of the
normalization constant in (2.5.4) is immediate from Corollary 2.5.9. Recall, see
Definition 2.5.1, that∆(x) denotes the Vandermonde determinant ofx.



2.5 JOINT DISTRIBUTIONS IN THE GOEAND THE GUE 59

Theorem 2.5.8 (Selberg’s integral formula)For all positive numbers a, b and c
we have

1
n!

∫ 1

0
· · ·
∫ 1

0
|∆(x)|2c

n

∏
i=1

xa−1
i (1−xi)

b−1dxi =
n−1

∏
j=0

Γ(a+ jc)Γ(b+ jc)Γ(( j +1)c)
Γ(a+b+(n+ j −1)c)Γ(c)

.

(2.5.9)

Corollary 2.5.9 For all positive numbers a and c we have

1
n!

∫ ∞

0
· · ·
∫ ∞

0
|∆(x)|2c

n

∏
i=1

xa−1
i e−xi dxi =

n−1

∏
j=0

Γ(a+ jc)Γ(( j +1)c)
Γ(c)

, (2.5.10)

and

1
n!

∫ ∞

−∞
· · ·
∫ ∞

−∞
|∆(x)|2c

n

∏
i=1

e−x2
i /2dxi = (2π)n/2

n−1

∏
j=0

Γ(( j +1)c)
Γ(c)

. (2.5.11)

Remark 2.5.10The identities in Theorem 2.5.8 and Corollary 2.5.9 hold under
rather less stringent conditions on the parametersa, b andc. For example, one
can allowa, b andc to be complex with positive real parts. We refer to the biblio-
graphical notes for references. We note also that only (2.5.11) is directly relevant
to the study of the normalization constants for the GOE and GUE. The usefulness
of the other more complicated formulas will become apparentin Section 4.1.

We will prove Theorem 2.5.8 following Anderson’s method [And91], after first
explaining how to deduce Corollary 2.5.9 from (2.5.9) by means of theStirling
approximation, which we recall is the statement

Γ(s) =

√
2π
s

(s
e

)s
(1+os→+∞(1)), (2.5.12)

wheres tends to+∞ along the positive real axis. (For a proof of (2.5.12) by an
application of Laplace’s method, see Exercise 3.5.5.)

Proof of Corollary 2.5.9We denote the left side of (2.5.9) bySn(a,b,c). Consider
first the integral

Is =
1
n!

∫ s

0
· · ·
∫ s

0
∆(x)2c

n

∏
i=1

xa−1
i (1−xi/s)sdxi ,

wheres is a large positive number. By monotone convergence, the left side of
(2.5.10) equals lims→∞ Is. By rescaling the variables of integration, we find that

Is = sn(a+(n−1)c)Sn(a,s+1,c) .
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From (2.5.12) we deduce the formula

Γ(s+1+A)

Γ(s+1+B)
= sA−B(1+os→+∞(1)) , (2.5.13)

in which A andB are any real constants. Finally, assuming the validity of (2.5.9),
we can evaluate lims→∞ Is with the help of (2.5.13), thus verifying (2.5.10).

Turning to the proof of (2.5.11), consider the integral

Js =
1
n!

∫ √
2s

−
√

2s
· · ·
∫ √

2s

−
√

2s
|∆(x)|2c

n

∏
i=1

(
1− x2

i

2s

)s

dxi ,

wheres is a large positive number. By monotone convergence the leftside of
(2.5.11) equals lims→∞ Js. By shifting and rescaling the variables of integration,
we find that

Js = 23n(n−1)/2+3n/2+2nssn(n−1)c/2+n/2Sn(s+1,s+1,c) .

From (2.5.12) we deduce the formula

Γ(2s+2+A)

Γ(s+1+B)2 =
2A+3/2+2ssA−2B+1/2

√
2π

(1+os→+∞(1)) , (2.5.14)

whereA andB are any real constants. Assuming the validity of (2.5.9), wecan
evaluate lims→∞ Js with the help of (2.5.14), thus verifying (2.5.11). ⊓⊔

Before providing the proof of Theorem 2.5.8, we note the following identity
involving thebeta integralin the left side:

∫

{x∈Rn:minn
i=1xi>0,∑n

i=1xi<1}

(
1−

n

∑
i=1

xi

)sn+1−1 n

∏
i=1

xsi−1
i dxi =

Γ(s1) · · ·Γ(sn+1)

Γ(s1 + · · ·+sn+1)
.

(2.5.15)

The identity (2.5.15) is proved by substitutingu1 = tx1, . . . ,un = txn, un+1 = t(1−
x1−·· ·−xn) in the integral

∫ ∞

0
· · ·
∫ ∞

0

n+1

∏
i=1

usi−1
i e−ui dui ,

and applying Fubini’s Theorem both before and after the substitution.

Proof of Theorem 2.5.8We aim now to rewrite the left side of (2.5.9) in an
intuitive way, see Lemma 2.5.12 below. Toward this end, we introduce some
notation.

Let Dn be the space consisting of monic polynomialsP(t) of degreen in a vari-
ablet with real coefficients such thatP(t) hasn distinct real roots. More generally,
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given an open intervalI ⊂ R, let DnI ⊂ Dn be the subspace consisting of polyno-
mials withn distinct roots inI . Givenx∈ Rn, let Px(t) = tn + ∑n

i=1(−1)ixn−itn−i.
For any open intervalI ⊂ R, the set{x∈ Rn | Px ∈ DnI} is open, since the pertur-
bation of a degreen polynomial by the addition of a degreen− 1 polynomial
with small real coefficients does not destroy the property ofhaving n distinct
real roots, nor does it move the roots very much. By definitiona setA ⊂ Dn

is measurable if and only if{x ∈ Rn | Px ∈ A} is Lebesgue measurable. Letℓn

be the measure onDn obtained by pushing Lebesgue measure on the open set
{x∈ Rn |Px ∈Dn} forward toDn via x 7→Px (that is, underℓn, monic polynomials
of degreen have coefficients that are jointly Lebesgue distributed). GivenP∈Dn,
we defineσk(P) ∈ R for k = 0, . . . ,n by the ruleP(t) = ∑n

k=0(−1)kσk(P)tn−k.
Equivalently, ifα1 < · · · < αn are the roots ofP∈ Dn, we haveσ0(P) = 1 and

σk(P) = ∑
1≤i1<···<ik≤n

αi1 · · ·αik

for k = 1, . . . ,n. The map(P 7→ (σ1(P), . . . ,σn(P))) : Dn → Rn inverts the map
(x 7→ Px) : {x ∈ Rn | Px ∈ Dn} → Dn. Let D̃n ⊂ Rn be the open set consisting
of n-tuples(α1, . . . ,αn) such thatα1 < · · · < αn. Finally, for P ∈ Dn with roots
α = (α1 < · · · < αn), we setD(P) = ∏i< j(α j −αi)

2 = ∆(α)2.

Lemma 2.5.11For k, ℓ = 1, . . . ,n andα = (α1, . . . ,αn) ∈ D̃n put

τk = τk(α1, . . . ,αn) = ∑
1≤i1<···<ik≤n

αi1 · · ·αik , τk,ℓ =
∂τk

∂αℓ
.

Then ∣∣∣∣
n

det
k,ℓ=1

τk,ℓ

∣∣∣∣= ∏
1≤i< j≤n

|αi −α j | = |∆(α)| . (2.5.16)

Proof We have

τk,ℓ = σk−1

(

∏
i∈{1,...,n}\{ℓ}

(t −αi)

)
,

whence follows the identity

n

∑
m=1

(−1)m−1αn−m
k τm,ℓ = δkℓ ∏

i∈{1,...,n}\{ℓ}
(αℓ −αi) .

This last is equivalent to a matrix identityAB= C where detA up to a sign equals
the Vandermonde determinant detn

i, j=1 αn−i
j , detB is the determinant we want to

calculate, and detC up to a sign equals(detA)2. Formula (2.5.16) follows. ⊓⊔
(See Exercise 2.5.16 for an alternative proof of Lemma 2.5.11.)
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We can now rewrite (2.5.9).

Lemma 2.5.12The left side of (2.5.9) equals
∫

Dn(0,1)
|P(0)|a−1|P(1)|b−1D(P)c−1/2dℓn(P) . (2.5.17)

Proof We prove a slightly more general statement: for any nonnegative
ℓn-measurable functionf onDn, we have

∫

Dn

f dℓn =

∫

D̃n

f (
n

∏
i=1

(t −αi))∆(α)dα1 · · ·dαn , (2.5.18)

from which (2.5.17) follows by takingf (P) = |P(0)|a−1|P(1)|b−1D(P)c−1/2. To
see (2.5.18), putg(x) = f (Px) for x∈ Rn such thatPx ∈ Dn. Then, the left side of
(2.5.18) equals
∫

{x∈Rn|Px∈Dn}
g(x1, . . . ,xn)dx1 · · ·dxn =

∫

D̃n

g(τ1, . . . ,τn)

∣∣∣∣
n

det
k,ℓ=1

τk,ℓ

∣∣∣∣dα1 . . .dαn ,

(2.5.19)

by the usual formula for changing variables in a multivariable integral. The left
sides of (2.5.18) and (2.5.19) are equal by definition; the right sides are equal by
(2.5.16). ⊓⊔

We next transform some naturally occurring integrals onDn to beta integrals,
see Lemma 2.5.15 below. This involves some additional notation. LetEn ⊂ Dn×
Dn+1 be the subset consisting of pairs(P,Q) such that the rootsα1 < · · · < αn

of P and the rootsβ1 < · · · < βn+1 of Q areinterlaced, that is,αi ∈ (βi ,βi+1) for
i = 1, . . . ,n. More generally, given an intervalI ⊂R, letEnI = En∩(DnI ×Dn+1I).

Lemma 2.5.13Fix Q ∈ Dn+1 with roots β1 < · · · < βn+1. Fix real numbers
γ1, . . . ,γn+1 and let P(t) be the unique polynomial in t of degree≤ n with real
coefficients such that the partial fraction expansion

P(t)
Q(t)

=
n+1

∑
i=1

γi

t −βi

holds. Then the following statements are equivalent:

(I) (P,Q) ∈ En.
(II) minn+1

i=1 γi > 0 and∑n+1
i=1 γi = 1.

Proof (I⇒II) The numbersP(βi) do not vanish and their signs alternate. Similarly,
the numbersQ′(βi) do not vanish and their signs alternate. By L’Hôpital’s rule, we
haveγi = P(βi)/Q′(βi) for i = 1, . . . ,n+1. Thus all the quantitiesγi are nonzero
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and have the same sign. The quantityP(t)/Q′(t) depends continuously ont in
the interval[βn+1,∞), does not vanish in that interval, and tends to 1/(n+ 1) as
t → +∞. Thusγn+1 is positive. Since the signs ofP(βi) alternate, and so do the
signs ofQ′(βi), it follows that γi = P(βi)/Q′(βi) > 0 for all i. BecauseP(t) is
monic, the numbersγi sum to 1. Thus condition (II) holds.
(II⇒I) Because the signs of the numbersQ′(βi) alternate, we have sufficient in-
formation to forceP(t) to change signn+1 times, and thus to haven distinct real
roots interlaced with the roots ofQ(t). And because the numbersγi sum to 1, the
polynomialP(t) must be monic int. Thus condition (I) holds. ⊓⊔

Lemma 2.5.14Fix Q∈ Dn+1 with rootsβ1 < · · · < βn+1. Then we have

ℓn({P∈ Dn | (P,Q) ∈ En}) =
1
n!

n+1

∏
j=1

|Q′(β j)|1/2 =
D(Q)1/2

n!
. (2.5.20)

Proof Consider the set

A = {x∈ Rn | (Px,Q) ∈ En} .

By definition the left side of (2.5.20) equals the Lebesgue measure ofA. Consider
the polynomialsQ j(t) = Q(t)/(t−β j) for j = 1, . . . ,n+1. By Lemma 2.5.13, for
all x∈Rn, we havex∈A if and only if Px(t) = ∑n+1

i=1 γiQi(t) for some real numbers
γi such that minγi > 0 and∑γi = 1, or equivalently,A is the interior of the convex
hull of the points

(
τ2, j(β1, . . . ,βn+1), . . . ,τn+1, j(β1, . . . ,βn+1)

)
∈ Rn for j = 1, . . . ,n+1,

where theτs are defined as in Lemma 2.5.11 (but withn replaced byn+1). Noting
thatτ1,ℓ ≡ 1 for ℓ = 1, . . . ,n+ 1, the Lebesgue measure ofA equals the absolute
value of 1

n! detn+1
k,ℓ=1 τk,ℓ(β1, . . . ,βn+1) by the determinantal formula for computing

the volume of a simplex inRn. Finally, we get the claimed result by (2.5.16).⊓⊔

Lemma 2.5.15Fix Q ∈ Dn+1 with rootsβ1 < · · · < βn+1. Fix positive numbers
s1, . . . ,sn+1. Then we have

∫

{P∈Dn|(P,Q)∈En}

n+1

∏
i=1

|P(βi)|si−1dℓn(P) =
∏n+1

i=1 |Q′(βi)|si−1/2Γ(si)

Γ(∑n+1
i=1 si)

. (2.5.21)

Proof For P in the domain of integration in the left side of (2.5.21), define γi =

γi(P) = P(βi)/Q′(βi), i = 1, . . . ,n+ 1. By Lemma 2.5.13,γi > 0, ∑n+1
i=1 γi = 1,

and furtherP 7→ (γi)
n
i=1 is a bijection from{P∈ Dn | (P,Q) ∈ En} to the domain

of integration in the right side of (2.5.15). Further, the map x 7→ γ(Px) is linear.



64 2. WIGNER MATRICES

Hence
∫

{P∈Dn|(P,Q)∈En}

n+1

∏
i=1

∣∣∣∣
P(βi)

Q′(βi)

∣∣∣∣
si−1

dℓn(P)

equals, up to a constant multipleC independent of{si}, the right side of (2.5.15).
Finally, by evaluating the left side of (2.5.21) fors1 = · · · = sn+1 = 1 by means of
Lemma 2.5.14 (and recalling thatΓ(n+1) = n!) we find thatC = 1. ⊓⊔

We may now complete the proof of Theorem 2.5.8. Recall that the integral on
the left side of (2.5.9), denoted as above bySn(a,b,c), can be represented as the
integral (2.5.17). Consider the double integral

Kn(a,b,c) =

∫

En(0,1)
|Q(0)|a−1|Q(1)|b−1|R(P,Q)|c−1dℓn(P)dℓn+1(Q) ,

whereR(P,Q) denotes the resultant ofP andQ, see Appendix A.4. We will apply
Fubini’s Theorem in both possible ways. On the one hand, we have

Kn(a,b,c) =

∫

Dn+1(0,1)
|Q(0)|a−1|Q(1)|b−1

×
(∫

{P∈Dn(0,1)|(P,Q)∈En}
|R(P,Q)|c−1dℓn(P)

)
dℓn+1(Q)

= Sn+1(a,b,c)
Γ(c)n+1

Γ((n+1)c)
,

via Lemma 2.5.15. On the other hand, writingP̃ = t(t −1)P, we have

Kn(a,b,c) =
∫

Dn(0,1)

(∫

{Q∈Dn+1|(Q,P̃)∈En+2}

|Q(0)|a−1|Q(1)|b−1|R(P,Q)|c−1dℓn+1(Q)

)
dℓn(P)

=

∫

Dn(0,1)
|P̃′(0)|a−1/2|P̃′(1)|b−1/2|R(P, P̃′)|c−1/2dℓn(P)

Γ(a)Γ(b)Γ(c)n

Γ(a+b+nc)

= Sn(a+c,b+c,c)
Γ(a)Γ(b)Γ(c)n

Γ(a+b+nc)
,

by another application of Lemma 2.5.15. This proves (2.5.9)by induction onn;
the induction basen = 1 is an instance of (2.5.15). ⊓⊔

Exercise 2.5.16Provide an alternative proof of Lemma 2.5.11 by noting that the
determinant in the left side of (2.5.16) is a polynomial of degreen(n−1)/2 that
vanishes wheneverxi = x j for somei 6= j, and thus, must equal a constant multiple
of ∆(x).
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2.5.4 Joint distribution of eigenvalues: alternative formulation

It is sometimes useful to represent the formulas for the joint distribution of eigen-
values as integration formulas for functions that depend only on the eigenvalues.
We develop this correspondence now.

Let f : H
(β )

N → [0,∞] be a Borel function such thatf (H) depends only on the
sequence of eigenvaluesλ1(H) ≤ ·· · ≤ λN(H). In this situation, for short, we say
that f (H) depends only on the eigenvalues ofH. (Note that the definition implies

that f is asymmetricfunction of the eigenvalues ofH.) Let X ∈ H
(β )

N be random

with law P(β )
N . Assuming the validity of Theorem 2.5.2, we have

E f(X) =

∫ ∞
−∞ · · ·∫ ∞

−∞ f (x1, . . . ,xN)|∆(x)|β ∏N
i=1e−β x2

i /4dxi
∫ ∞
−∞ · · ·∫ ∞

−∞ |∆(x)|β ∏N
i=1e−β x2

i /4dxi

, (2.5.22)

where f (x1, . . . ,xN) denotes the value off at the diagonal matrix with diago-
nal entriesx1, . . . ,xN. Conversely, assuming (2.5.22), we immediately verify that
(2.5.3) is proportional to the joint density of the eigenvaluesλ1(X), . . . ,λN(X) by
taking f (H) = 1(λ1(H),...,λN(H))∈A whereA⊂RN is any Borel set. In turn, to prove
(2.5.22), it suffices to prove the general integration formula

∫
f (H)ℓ

(β )
N (dH) = C(β )

N

∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x1, . . . ,xN)|∆(x)|β

N

∏
j=1

dxi , (2.5.23)

where

C(β )
N =





1
N!

N

∏
k=1

Γ(1/2)k

Γ(k/2)
if β = 1 ,

1
N!

N

∏
k=1

πk−1

(k−1)!
if β = 2 ,

and as in (2.5.22), the integrandf (H) is nonnegative, Borel measurable, and de-
pends only on the eigenvalues ofH. Moreover, assuming the validity of (2.5.23),
it follows by taking f (H) = exp(−atr(H2)/2) with a > 0 and using Gaussian
integration that

1
N!

∫ ∞

−∞
· · ·
∫ ∞

−∞
|∆(x)|β

N

∏
i=1

e−ax2
i /2dxi

= (2π)N/2a−β N(N−1)/4−N/2
N

∏
j=1

Γ( jβ/2)

Γ(β/2)
=:

1

N!C̄(β )
N

. (2.5.24)

Thus, Theorem 2.5.2 is equivalent to the integration formula (2.5.23).
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2.5.5 Superposition and decimation relations

The goal of this short subsection is to show how the eigenvalues of the GUE can be
coupled (that is, constructed on the same probability space) with the eigenvalues
of the GOE. As a by-product, we also discuss the eigenvalues of the GSE. Besides
the obvious probabilistic interest in such a construction,the coupling will actually
save us some work in the analysis of limit distributions for the maximal eigenvalue
of the GOE and the GSE.

To state our results, we introduce some notation. For a finitesubsetA⊂ R with
|A|= n, we define Ord(A) to be the vector inRn whose entries are the elements of
A, ordered, that is

Ord(A) = (x1, . . . ,xn) with xi ∈ A andx1 ≤ x2 ≤ . . . ≤ xn .

For a vectorx = (x1, . . . ,xn) ∈ Rn, we define Dec(x) as the even-location deci-
mated version ofx, that is

Dec(x) = (x2,x4, . . . ,x2⌊n/2⌋) .

Note that ifx is ordered, then Dec(x) erases fromx the smallest entry, the third
smallest entry, etc.

The main result of this section is the following.

Theorem 2.5.17For N > 0 integer, let AN and BN+1 denote the (collection of)
eigenvalues of two independent random matrices distributed according to GOE(N)
and GOE(N+1), respectively. Set

(ηN
1 , . . . ,ηN

N ) = ηN = Dec(Ord(AN ∪BN+1)) , (2.5.25)

and

(θ N
1 , . . . ,θ N

N ) = θ N = Dec(Ord(A2N+1)) . (2.5.26)

Then,{ηN} (resp., {θ N}) is distributed as the eigenvalues of GUE(N) (resp.,
GSE(N)).

The proof of Theorem 2.5.17 goes through an integration relation that is slightly
more general than our immediate needs. To state it, letL = (a,b) ⊂ R be a
nonempty open interval, perhaps unbounded, and letf and g be positive real-
valued infinitely differentiable functions defined onL. We will use the following
assumption on the triple(L, f ,g).

Assumption 2.5.18For (L, f ,g) as above, for each integer k≥ 0, write fk(x) =

xk f (x) and gk(x) = xkg(x) for x∈ L. Then the following hold.
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(I) There exists a matrix M(n) ∈ Matn+1(R), independent of x, such that
detM(n) > 0 and

M(n)( f0, f1, . . . , fn)
T = (g′0,g

′
1, . . . ,g

′
n−1, f0)

T .

(II)
∫ b

a | fn(x)|dx< ∞.
(III) lim x↓agn(x) = 0 andlimx↑bgn(x) = 0.

For a vectorxn = (x1, . . . ,xn), recall that∆(xn) = ∏1≤i< j≤n(x j − xi) is the
Vandermonde determinant associated withxn, noting that ifxn is ordered then
∆(xn)≥ 0. For an ordered vectorxn and an ordered collection of indicesI = {i1 <

i2 < .. . < i|I |} ⊂ {1, . . . ,n}, we writexI = (xi1,xi2, . . . ,xi|I |). The key to the proof
of Theorem 2.5.17 is the following proposition.

Proposition 2.5.19Let Assumption 2.5.18 hold for a triple(L, f ,g) with L =

(a,b). For x2n+1 = (x1, . . . ,x2n+1), set

x(e)
n = Dec(x2n+1) = (x2,x4, . . . ,x2n) , andx(o)

n+1 = (x1,x3, . . . ,x2n+1) .

Let

J2n+1 = {(I ,J) : I ,J ⊂ {1, . . . ,2n+1}, |I |= n, |J| = n+1, I ∩J = /0} .

Then for each positive integer n andx(e)
n ∈ Ln, we have the integration identities

∫ x2

a

∫ x4

x2

· · ·
∫ b

x2n

(

∑
(I ,J)∈J2n+1

∆(xI )∆(xJ)

)(
2n+1

∏
i=1

f (xi)

)
dx2n+1 · · ·dx3dx1

=
2n
(

∆(x(e)
n )
)2(∫ b

a f (x)dx
)

(∏n
i=1 f (x2i))(∏n

i=1g(x2i))

detM(n)
, (2.5.27)

and
∫ x2

a

∫ x4

x2

· · ·
∫ b

x2n

∆(x2n+1)

(
2n+1

∏
i=1

f (xi)

)
dx2n+1 · · ·dx3dx1

=

(∫ b
a f (x)dx

)(
∆(x(e)

n )
)4

(∏n
i=1g(x2i))

2

detM(2n)
. (2.5.28)

Assumption 2.5.18(II) guarantees the finiteness of the integrals in the proposition.
The value of the positive constant detM(n) will be of no interest in applications.

The proof of Proposition 2.5.19 will take up most of this section, after we com-
plete the
Proof of Theorem 2.5.17We first check that Assumption 2.5.18 withL = (−∞,∞),
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f (x) = g(x) = e−x2/4 holds, that is we verify that a matrixM(n) as defined there
exists. DefineM̃(n) as the solution to

M̃(n)( f0, f1, . . . , fn)
T = ( f0, f ′0, f ′1, . . . , f ′n−1)

T .

Becausef ′i is a polynomial of degreei + 1 multiplied by e−x2/4, with leading

coefficient equal−1/2, we have that̃M(n) is a lower triangular matrix, with̃M(n)
1,1 =

−1/2 for i > 1 andM̃(n)
1,1 = 1, and thus det̃M(n) = (−1/2)n. SinceM(n) is obtained

from M̃(n) by a cyclic permutation (of lengthn+1, and hence sign equal to(−1)n),
we conclude that detM(n) = (1/2)n > 0, as needed.

To see the statement of Theorem 2.5.17 concerning the GUE, one applies equa-
tion (2.5.27) of Proposition 2.5.19 with the above choices of (L, f ,g) andM(n),
together with Theorem 2.5.2. The statement concerning the GSE follows with the
same choice of(L, f ,g), this time using (2.5.28). ⊓⊔

In preparation for the proof of Proposition 2.5.19, we need three lemmas. Only
the first uses Assumption 2.5.18 in its proof. To compress notation, write

[Ai j ]n,N =




A11 . . . A1N
...

...
An1 . . . AnN


 .

Lemma 2.5.20For positive integers n and N, we have

M(n)
[∫ xj

xj−1
fi−1(x)dx

]
n+1,N+1

[1i≤ j ]N+1,N+1

=







gi−1(x j) if i < n+1 and j< N+1,
0 if i < n+1 and j= N+1,∫ xj

a f0(x)dx if i = n+1




n+1,N+1

(2.5.29)

for all a = x0 < x1 < · · · < xN < xN+1 = b.

The left side of (2.5.29) is well-defined by Assumptions 2.5.18(I,II).

Proof Let hi = g′i for i = 0, . . . ,n−1 and puthn = f0. The left side of (2.5.29)
equals[

∫ xj
a hi−1(x)dx]n+1,N+1 and this in turn equals the right side of (2.5.29) by

Assumption 2.5.18(III). ⊓⊔

Lemma 2.5.21For every positive integer n andx ∈ Ln, we have

(∆(x))4

(
n

∏
i=1

g(xi)

)2

= det

[{
gi−1(x( j+1)/2) if j is odd

g′i−1(x j/2) if j is even

]

2n,2n

. (2.5.30)
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The caseg = 1 is the classicalconfluent alternant identity.

Proof Write y2n = (y1, . . . ,y2n). Set

G(y2n) = det([gi−1(y j )]2n,2n) = ∆(y)
2n

∏
i=1

g(yi) . (2.5.31)

Dividing G(y2n) by ∏n
i=1(y2i − y2i−1) and substitutingy2i−1 = y2i = xi for i =

1, . . . ,n give the left side of (2.5.30). On the other hand, letu j denote thejth col-
umn of[gi−1(y j)]2n,2n. (Thus,G(y2n) = det[u1, . . . ,u2n].) Since it is a determinant,
G(y2n) = det[u1,u2−u1,u3,u4−u3, . . . ,u2n−1,u2n−u2n−1] and thus

G(y2n)

∏n
i=1(y2i −y2i−1)

= det

[
u1,

u2−u1

y2−y1
, . . . ,u2n−1,

u2n−u2n−1

y2n−y2n−1

]
.

Applying L’Hôpital’s rule thus shows that the last expression evaluated aty2i−1 =

y2i = xi for i = 1, . . . ,n equals the right side of (2.5.30). ⊓⊔

Lemma 2.5.22For every positive integer n andx2n+1 = (x1, . . . ,x2n+1) we have
an identity

2n∆(x(o)
n+1)∆(x(e)

n ) = ∑
(I ,J)∈J2n+1

∆(xI )∆(xJ) . (2.5.32)

Proof Given I = {i1 < · · · < ir} ⊂ {1, . . . ,2n+ 1}, we write∆I = ∆(xI ). Given
a polynomialP = P(x1, . . . ,x2n+1) and a permutationτ ∈ S2n+1, let τP be defined
by the rule

(τP)(x1, . . . ,x2n+1) = P(xτ(1), . . . ,xτ(2n+1)) .

Given a permutationτ ∈ S2n+1, let τI = {τ(i) | i ∈ I}. Now let ∆I ∆J be a term
appearing on the right side of (2.5.32) and letτ = (i j ) ∈ S2n+1 be a transposition.
We claim that

τ(∆I ∆J)

∆τI ∆τJ
=

{
−1 if {i, j} ⊂ I or {i, j} ⊂ J,

(−1)|i− j |+1 otherwise.
(2.5.33)

To prove (2.5.33), since the cases{i, j} ⊂ I and{i, j} ⊂ J are trivial, and we may
allow i and j to exchange roles, we may assume without loss of generality that
i ∈ I and j ∈ J. Let k (resp.,ℓ) be the number of indices in the setI (resp.,J)
strictly betweeni and j. Then

k+ ℓ = |i − j|−1, τ∆I/∆τI = (−1)k, τ∆J/∆τJ = (−1)ℓ,

which proves (2.5.33). It follows that ifi and j have the same parity, the effect of
applyingτ to the right side of (2.5.32) is to multiply by−1, and therefore(xi −x j)

divides the right side. On the other hand, the left side of (2.5.32) equals 2n times
the product of(xi − x j) with i < j of the same parity. Therefore, because the
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polynomial functions on both sides of (2.5.32) are homogeneous of the same total
degree in the variablesx1, . . . ,x2n+1, the left side equals the right side times some
constant factor. Finally, the constant factor has to be 1 because the monomial
∏n+1

i=1 xi−1
2i−1∏n

i=1xi−1
2i appears with coefficient 2n on both sides. ⊓⊔

We can now provide the

Proof of Proposition 2.5.19Let x0 = a andx2n+2 = b. To prove (2.5.27), use
(2.5.32) to rewrite the left side multiplied by detM(n) as

2n∆(x(e)
n )det

(
M(n)

[∫ x2 j
x2 j−2 fi−1(x)dx

]
n+1.n+1

) n

∏
i=1

f (x2i) ,

and then evaluate using (2.5.29) and the second equality in (2.5.31). To prove
(2.5.28), rewrite the left side multiplied by detM(2n) as

det

(
M(2n)

[{ ∫ xj+1
xj−1 fi−1(x)dx if j is odd

fi−1(x j ) if j is even

]

2n+1,2n+1

)
,

and then evaluate using (2.5.29) and (2.5.30). ⊓⊔

Exercise 2.5.23Let α,γ > −1 be real constants. Show that each of the following
triples(L, f ,g) satisfies Assumption 2.5.18:
(a)L = (0,∞), f (x) = xαe−x, g(x) = xα+1e−x (the Laguerre ensembles);
(b) L = (0,1), f (x) = xα(1−x)γ , g(x) = xα+1(1−x)γ+1 (the Jacobi ensembles).

2.6 Large deviations for random matrices

In this section, we considerN random variables(λ1, · · · ,λN) with law

PN
V,β (dλ1, · · · ,dλN) = (ZN

V,β )−1|∆(λ )|β e−N∑N
i=1V(λi)

N

∏
i=1

dλi , (2.6.1)

for a β > 0 and a continuous functionV : R→R such that, for someβ ′ > 1 satis-
fying β ′ ≥ β ,

liminf
|x|→∞

V(x)
β ′ log|x| > 1. (2.6.2)

Here,∆(λ ) = ∏1≤i< j≤N(λi −λ j) and

ZN
V,β =

∫

R

· · ·
∫

R

|∆(λ )|β e−N∑N
i=1V(λi)

N

∏
i=1

dλi . (2.6.3)

WhenV(x) = βx2/4, andβ = 1,2, we saw in Section 2.5 thatPN
β x2/4,β is the law
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of the (rescaled) eigenvalues of a GOE(N) matrix whenβ = 1, and of a GUE(N)
matrix whenβ = 2. It also follows from the general results in Section 4.1 that the
caseβ = 4 corresponds to another matrix ensemble, namely the GSE(N). In view
of these and applications to certain problems in physics, weconsider in this section
the slightly more general model. We emphasize, however, that the distribution
(2.6.1) precludes us from considering random matrices withindependent non-
Gaussian entries.

We have proved earlier in this chapter (for the GOE, see Section 2.1, and for the
GUE, see Section 2.2) that the empirical measureLN = N−1 ∑N

i=1 δλi
converges in

probability (and almost surely, under appropriate moment assumptions), and we
studied its fluctuations around its mean. We have also considered the convergence
of the top eigenvalueλ N

N . Such results did not depend much on the Gaussian
nature of the entries.

We address here a different type of question. Namely, we study the probability
that LN, or λ N

N , take a very unlikely value. This was already considered in our
discussion of concentration inequalities, see Section 2.3, where the emphasis was
put on obtaining upper bounds on the probability of deviation. In contrast, the
purpose of the analysis here is to exhibit a precise estimateof these probabilities,
or at least of their logarithmic asymptotics. The appropriate tool for handling
such questions is large deviation theory, and we give in Appendix D a concise
introduction to that theory and related definitions, together with related references.

2.6.1 Large deviations for the empirical measure

We endowM1(R) with the usual weak topology, compatible with the Lipschitz
bounded metric, see (C.1). Our goal is to estimate the probability PN

V,β (LN ∈ A),
for measurable setsA ⊂ M1(R). Of particular interest is the case whereA does
not contain the limiting distribution ofLN.

Define thenoncommutative entropyΣ : M1(R) → [−∞,∞) as

Σ(µ) =

{ ∫∫
log|x−y|dµ(x)dµ(y) if

∫
log(|x|+1)dµ(x) < ∞ ,

−∞ otherwise,
(2.6.4)

and the functionIV
β : M1(R) → [0,∞] as

IV
β (µ) =

{ ∫
V(x)dµ(x)− β

2 Σ(µ)−cV
β if

∫
V(x)dµ(x) < ∞ ,

∞ otherwise ,
(2.6.5)
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where

cV
β = inf

ν∈M1(R)
{
∫

V(x)dν(x)− β
2

Σ(ν)} ∈ (−∞,∞) . (2.6.6)

(Lemma 2.6.2 below and its proof show that bothΣ andIV
β are well defined, and

thatcV
β is finite.)

Theorem 2.6.1Let LN = N−1 ∑N
i=1 δλ N

i
where the random variables{λ N

i }N
i=1 are

distributed according to the law PNV,β of (2.6.1), with potential V satisfying (2.6.2).
Then, the family of random measures LN satisfies, in M1(R) equipped with the
weak topology, a large deviation principle with speed N2 and good rate function
IV
β . That is,

(a) IV
β : M1(R) → [0,∞] possesses compact level sets

{ν : IV
β (ν) ≤ M} for all M ∈ R+ ,

(b) for any open setO⊂ M1(R) ,

liminf
N→∞

1
N2 logPN

β ,V (LN ∈ O) ≥− inf
O

IV
β , (2.6.7)

(c) for any closed setF ⊂ M1(R) ,

limsup
N→∞

1
N2 logPN

β ,V (LN ∈ F) ≤− inf
F

IV
β . (2.6.8)

The proof of Theorem 2.6.1 relies on the properties of the function IV
β collected in

Lemma 2.6.2 below. Define thelogarithmic capacityof a measurable setA⊂ R

as

γ(A) := exp

{
− inf

ν∈M1(A)

∫ ∫
log

1
|x−y|dν(x)dν(y)

}
.

Lemma 2.6.2

(a) cV
β ∈ (−∞,∞) and IVβ is well defined on M1(R), taking its values in[0,+∞].

(b) IV
β (µ) is infinite as soon asµ satisfies one of the following conditions

(b.1)
∫

V(x)dµ(x) = +∞.
(b.2) There exists a set A⊂R of positiveµ mass but null logarithmic capacity,

i.e. a set A such thatµ(A) > 0 but γ(A) = 0.

(c) IV
β is a good rate function.

(d) IV
β is a strictly convex function on M1(R).

(e) IV
β achieves its minimum value at uniqueσV

β ∈ M1(R). The measureσV
β is

compactly supported, and is characterized by the equality

V(x)−β 〈σV
β , log| ·−x|〉 = CV

β , for σV
β -almost everyx, (2.6.9)
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and inequality

V(x)−β 〈σV
β , log| ·−x|〉> CV

β , for all x 6∈ supp(σV
β ), (2.6.10)

for some constant CVβ . Necessarily, CVβ = 2cV
β −〈σV

β ,V〉.

As an immediate corollary of Theorem 2.6.1 and of part (e) of Lemma 2.6.2 we
have the following.

Corollary 2.6.3 Under PN
V,β , LN converges almost surely towardsσV

β .

Proof of Lemma 2.6.2For all µ ∈ M1(R), Σ(µ) is well defined and< ∞ due to
the bound

log|x−y| ≤ log(|x|+1)+ log(|y|+1) . (2.6.11)

Further,cV
β < ∞ as can be checked by takingν as the uniform law on[0,1].

Set

f (x,y) =
1
2

V(x)+
1
2

V(y)− β
2

log|x−y| . (2.6.12)

Note that (2.6.2) implies thatf (x,y) goes to+∞ whenx,y do since (2.6.11) yields

f (x,y) ≥ 1
2
(V(x)−β log(|x|+1))+

1
2
(V(y)−β log(|y|+1)) . (2.6.13)

Further, f (x,y) goes to+∞ whenx,y approach the diagonal{x = y}. Therefore,
for all L > 0, there exists a constantK(L) (going to infinity withL) such that, with
BL := {(x,y) : |x−y|< L−1}∪{(x,y) : |x| > L}∪{(x,y) : |y| > L},

BL ⊂ {(x,y) : f (x,y) ≥ K(L)} . (2.6.14)

Sincef is continuous on the compact setBc
L, we conclude thatf is bounded below

onR2, and denote bybf >−∞ a lower bound. It follows thatcV
β ≥bf >−∞. Thus,

becauseV is bounded below by (2.6.2), we conclude thatIV
β is well defined and

takes its values in[0,∞], completing the proof of part (a). Further, since for any
measurable subsetA⊂ R,

IV
β (µ) =

∫∫
( f (x,y)−bf )dµ(x)dµ(y)+bf −cV

β

≥
∫

A

∫

A
( f (x,y)−bf )dµ(x)dµ(y)+bf −cV

β

≥ β
2

∫

A

∫

A
log|x−y|−1dµ(x)dµ(y)+ inf

x∈R
V(x)µ(A)2−|bf |−cV

β

≥ −β
2

µ(A)2 log(γ(A))−|bf |−cV
β + inf

x∈R
V(x)µ(A)2 ,
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one concludes that ifIV
β (µ) < ∞, andA is a measurable set withµ(A) > 0, then

γ(A) > 0. This completes the proof of part (b).

We now show thatIβ
V is a good rate function, and first that its level sets{Iβ

V ≤
M} are closed, that is thatIβ

V is lower semicontinuous. Indeed, by the monotone
convergence theorem,

IV
β (µ) =

∫∫
f (x,y)dµ(x)dµ(y)−cV

β

= sup
M≥0

∫∫
( f (x,y)∧M)dµ(x)dµ(y)−cV

β .

But f M = f ∧M is bounded continuous and so, forM < ∞,

IV,M
β (µ) =

∫∫
( f (x,y)∧M)dµ(x)dµ(y)

is bounded continuous onM1(R). As a supremum of the continuous functions
IV,M
β , IV

β is lower semicontinuous.

To complete the proof thatIV
β is a good rate function, we need to show that the

set{IV
β ≤ L} is compact. By Theorem C.9, to see the latter it is enough to show

that{IV
β ≤ L} is included in a compact subset ofM1(R) of the form

Kε =
⋂

B∈N

{µ ∈ M1(R) : µ([−B,B]c) ≤ ε(B)} ,

with a sequenceε(B) going to zero asB goes to infinity. Arguing as in (2.6.14),
there exist constantsK′(L) going to infinity asL goes to infinity, such that

{(x,y) : |x| > L, |y| > L} ⊂ {(x,y) : f (x,y) ≥ K′(L)} . (2.6.15)

Therefore, for any large positiveL,

µ (|x| > L)2 = µ ⊗ µ (|x| > L, |y| > L)

≤ µ ⊗ µ
(

f (x,y) ≥ K′(L)
)

≤ 1
K′(L)−bf

∫∫
( f (x,y)−bf )dµ(x)dµ(y)

=
1

K′(L)−bf
(IV

β (µ)+cV
β −bf ) .

Hence, takingε(B) = [
√

(M +cV
β −bf )+/

√
(K′(B)−bf )+]∧ 1, which goes to

zero whenB goes to infinity, one has that{IV
β ≤ M} ⊂ Kε . This completes the

proof of part (c).

Since IV
β is a good rate function, it achieves its minimal value. LetσV

β be
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a minimizer. Let us derive some consequences of minimality.For any signed
measurēν(dx) = φ(x)σV

β (dx)+ψ(x)dxwith two bounded measurable compactly
supported functions(φ ,ψ) such thatψ ≥ 0 andν̄(R) = 0, forε > 0 small enough,
σV

β + εν̄ is a probability measure so that

IV
β (σV

β + εν̄) ≥ IV
β (σV

β ) , (2.6.16)

which implies
∫ (

V(x)−β
∫

log|x−y|dσV
β (y)

)
dν̄(x) ≥ 0.

Takingψ = 0, we deduce (using±φ ) that there is a constantCV
β such that

V(x)−β
∫

log|x−y|dσV
β (y) = CV

β , σV
β a.s., (2.6.17)

which implies thatσV
β is compactly supported (becauseV(x)−β

∫
log|x−y|dσV

β (y)
goes to infinity whenx does by (2.6.13)). Takingφ = −∫ ψ(y)dy on the support
of σV

β , we then find that

V(x)−β
∫

log|x−y|dσV
β (y) ≥CV

β , (2.6.18)

Lebesgue almost surely, and then everywhere outside of the support of σV
β by

continuity. Integrating (2.6.17) with respect toσV
β then shows that

CV
β = 2cV

β −〈σV
β ,V〉 ,

proving (2.6.9) and (2.6.10), with the strict inequality in(2.6.10) following from
the uniqueness ofσV

β , since the later implies that the inequality (2.6.16) is strict

as soon as̄ν is nontrivial. Finally, integrating (2.6.9) with respect to σV
β reveals

that the latter must be a minimizer ofIV
β , so that (2.6.9) characterizesσV

β .

The claimed uniqueness ofσV
β , and hence the completion of the proof of part

(e), will follow from the strict convexity claim (part (d) ofthe lemma), which we
turn to next. Note first that, extending the definition ofΣ to signed measures in
evident fashion when the integral in (2.6.4) is well defined,we can rewriteIV

β as

IV
β (µ) = −β

2
Σ(µ −σV

β )+

∫ (
V(x)−β

∫
log|x−y|dσV

β (y)−CV
β

)
dµ(x) .

The fact thatIV
β is strictly convex will follow as soon as we show thatΣ is strictly

concave. Toward this end, note the formula

log|x−y|=
∫ ∞

0

1
2t

(
exp{− 1

2t
}−exp{−|x−y|2

2t
}
)

dt , (2.6.19)
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which follows from the equality

1
z

=
1
2z

∫ ∞

0
e−u/2du

by the change of variablesu 7→ z2/t and integration ofz from 1 to |x− y|. Now,
(2.6.19) implies that for anyµ ∈ M1(R),

Σ(µ −σV
β ) = −

∫ ∞

0

1
2t

(∫∫
exp{−|x−y|2

2t
}d(µ −σV

β )(x)d(µ −σV
β )(y)

)
dt .

(2.6.20)
Indeed, one may apply Fubini’s Theorem whenµ ,σV

β are supported in[− 1
2, 1

2]

since thenµ⊗σV
β (exp{− 1

2t }−exp{− |x−y|2
2t }≤ 0)= 1. One then deduces (2.6.20)

for any compactly supported probability measureµ by scaling and finally for all
probability measures by approximations. The fact that, forall t ≥ 0,

∫∫
exp{−|x−y|2

2t
}d(µ −σV

β )(x)d(µ −σV
β )(y)

=

√
t

2π

∫ +∞

−∞

∣∣∣∣
∫

exp{iλx}d(µ −σV
β )(x)

∣∣∣∣
2

exp{− tλ 2

2
}dλ ,

therefore entails thatΣ is concave sinceµ→
∣∣∣
∫

exp{iλx}d(µ −σV
β )(x)

∣∣∣
2

is convex

for all λ ∈ R. Strict convexity comes from the fact that

Σ(αµ +(1−α)ν)− (αΣ(µ)+ (1−α)Σ(ν)) = (α2−α)Σ(µ −ν) ,

which vanishes forα ∈ (0,1) if and only if Σ(ν − µ) = 0. The latter equality
implies that all the Fourier transforms ofν − µ vanish, and henceµ = ν. This
completes the proof of part (d) and hence of the lemma. ⊓⊔
Proof of Theorem 2.6.1With f as in (2.6.12),

PN
V,β (dλ1, · · · ,dλN) = (Zβ ,V

N )−1e−N2 ∫∫
x6=y f (x,y)dLN(x)dLN(y)

N

∏
i=1

e−V(λi)dλi .

(No typo here: indeed, noN beforeV(λi).) Hence, if

µ→
∫

x6=y
f (x,y)dµ(x)dµ(y)

were a bounded continuous function, the proof would follow from a standard ap-
plication of Varadhan’s Lemma, Theorem D.8. The main point will therefore be
to overcome the singularities of this function, with the most delicate part being to
overcome the singularity of the logarithm.
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Following Appendix D (see Corollary D.6 and Definition D.3),a full large devi-
ation principle can be proved by proving that exponential tightness holds, as well
as estimating the probability of small balls. We follow these steps below.

Exponential tightness

Observe that, by Jensen’s inequality, for some constantC,

logZβ ,V
N ≥ N log

∫
e−V(x)dx

−N2
∫ (∫

x6=y
f (x,y)dLN(x)dLN(y)

) N

∏
i=1

e−V(λi)dλi∫
e−V(x)dx

≥−CN2 .

Moreover, by (2.6.13) and (2.6.2), there exist constantsa > 0 andc > −∞ so that

f (x,y) ≥ a|V(x)|+a|V(y)|+c,

from which one concludes that for allM ≥ 0,

PN
V,β

(∫
|V(x)|dLN ≥ M

)
≤ e−2aN2M+(C−c)N2

(∫
e−V(x)dx

)N

. (2.6.21)

SinceV goes to infinity at infinity,KM = {µ ∈ M1(R) :
∫
|V|dµ ≤ M} is a com-

pact set for allM < ∞, so that we have proved that the law ofLN underPN
V,β is

exponentially tight.

A large deviation upper bound

Recall thatd denotes the Lipschitz bounded metric, see (C.1). We prove here that
for anyµ ∈ M1(R), if we setP̄N

V,β = Zβ ,V
N PN

V,β ,

lim
ε→0

limsup
N→∞

1
N2 logP̄N

V,β (d(LN,µ) ≤ ε) ≤−
∫

f (x,y)dµ(x)dµ(y) . (2.6.22)

(We will prove the full LDP forPN
V,β as a consequence of both the upper and lower

bounds onP̄N
V,β , see (2.6.28) below.) For anyM ≥ 0, set fM(x,y) = f (x,y)∧M.

Then the bound

P̄N
V,β (d(LN,µ) ≤ ε) ≤

∫

d(LN,µ)≤ε
e−N2 ∫

x6=y fM(x,y)dLN(x)dLN(y)
N

∏
i=1

e−V(λi)dλi

holds. Since under the product Lebesgue measure, theλis are almost surely dis-
tinct, it holds thatLN ⊗LN(x = y) = N−1, P̄N

V,β almost surely. Thus we deduce
that

∫
fM(x,y)dLN(x)dLN(y) =

∫

x6=y
fM(x,y)dLN(x)dLN(y)+MN−1 ,
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and so

P̄N
V,β (d(LN,µ) ≤ ε)

≤ eMN
∫

d(LN,µ)≤ε
e−N2 ∫ fM(x,y)dLN(x)dLN(y)

N

∏
i=1

e−V(λi)dλi .

Since fM is bounded and continuous,IV,M
β : ν 7→

∫
fM(x,y)dν(x)dν(y) is a con-

tinuous functional, and therefore we deduce that

lim
ε→0

limsup
N→∞

1
N2 logP̄N

V,β (d(LN,µ) ≤ ε) ≤−IV,M
β (µ) .

We finally letM go to infinity and conclude by the monotone convergence theo-
rem. Note that the same argument shows that

limsup
N→∞

1
N2 logZβ ,V

N ≤− inf
µ∈M1(R)

∫
f (x,y)dµ(x)dµ(y) . (2.6.23)

A large deviation lower bound

We prove here that for anyµ ∈ M1(R),

lim
ε→0

lim inf
N→∞

1
N2 logP̄N

V,β (d(LN,µ) ≤ ε) ≥−
∫

f (x,y)dµ(x)dµ(y) . (2.6.24)

Note that we can assume without loss of generality thatIV
β (µ) < ∞, since other-

wise the bound is trivial, and so, in particular, we may and will assume thatµ has
no atoms. We can also assume thatµ is compactly supported since if we con-
siderµM = µ([−M,M])−11|x|≤Mdµ(x), clearly µM converges towardsµ and by
the monotone convergence theorem, one checks that, sincef is bounded below,

lim
M↑∞

∫
f (x,y)dµM(x)dµM(y) =

∫
f (x,y)dµ(x)dµ(y) ,

which ensures that it is enough to prove the lower bound for(µM,M ∈R+, IV
β (µ)<

∞), and so for compactly supported probability measures with finite entropy.

The idea is to localize the eigenvalues(λi)1≤i≤N in small sets and to take ad-
vantage of the fast speedN2 of the large deviations to neglect the small volume of
these sets. To do so, we first remark that, for anyν ∈ M1(R) with no atoms, if we
set

x1,N = inf

{
x : ν ((−∞,x]) ≥ 1

N+1

}
,

xi+1,N = inf

{
x≥ xi,N : ν

(
(xi,N,x]

)
≥ 1

N+1

}
, 1≤ i ≤ N−1,
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for any real numberη , there exists a positive integerN(η) such that, for anyN
larger thanN(η),

d

(
ν,

1
N

N

∑
i=1

δxi,N

)
< η .

In particular, forN ≥ N( δ
2 ),

{
(λi)1≤i≤N | |λi −xi,N| < δ

2
∀i ∈ [1,N]

}
⊂ {(λi)1≤i≤N | d(LN,ν) < δ} ,

so that we have the lower bound

P̄N
V,β (d(LN,µ) ≤ ε)

≥
∫
⋂

i{|λi−xi,N|< δ
2 }

e−N2 ∫
x6=y f (x,y)dLN(x)dLN(y)

N

∏
i=1

e−V(λi)dλi

=

∫
⋂

i{|λi |< δ
2 }

∏
i< j

|xi,N −x j ,N + λi −λ j |β e−N∑N
i=1V(xi,N+λi)

N

∏
i=1

dλi

≥
(

∏
i+1< j

|xi,N −x j ,N|β ∏
i
|xi,N −xi+1,N|

β
2 e−N∑N

i=1V(xi,N)

)

×
(∫

⋂
i{|λi |< δ

2 }
λi<λi+1

∏
i
|λi −λi+1|

β
2 e−N∑N

i=1[V(xi,N+λi)−V(xi,N)]
N

∏
i=1

dλi

)

=: PN,1×PN,2 , (2.6.25)

where we used the fact that|xi,N −x j ,N + λi −λ j | ≥ |xi,N −x j ,N| ∨ |λi −λ j | when
λi ≥ λ j andxi,N ≥ x j ,N. To estimatePN,2, note that since we assumed thatµ is
compactly supported, the(xi,N,1≤ i ≤ N)N∈N are uniformly bounded and so, by
continuity ofV,

lim
N→∞

sup
N∈N

sup
1≤i≤N

sup
|x|≤δ

|V(xi,N +x)−V(xi,N)| = 0.

Moreover, writingu1 = λ1, ui+1 = λi+1−λi,

∫
|λi |< δ

2 ∀i

λi <λi−1

∏
i
|λi −λi+1|

β
2

N

∏
i=1

dλi ≥
∫

0<ui<
δ

2N

N

∏
i=2

u
β
2
i

N

∏
i=1

dui ≥
(

δ
(β +2)N

)N( β
2 +1)

.

Therefore,

lim
δ→0

lim inf
N→∞

1
N2 logPN,2 ≥ 0. (2.6.26)

To handle the termPN,1, the uniform boundedness of thexi,Ns and the convergence
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of their empirical measure towardsµ imply that

lim
N→∞

1
N

N

∑
i=1

V(xi,N) =

∫
V(x)dµ(x). (2.6.27)

Finally sincex→ log(x) increases onR+, we notice that
∫

x1,N≤x<y≤xN,N
log(y−x)dµ(x)dµ(y)

≤ ∑
1≤i≤ j≤N−1

log(x j+1,N −xi,N)
∫

x∈[xi,N,xi+1,N]

y∈[xj,N ,xj+1,N]

1x<ydµ(x)dµ(y)

=
1

(N+1)2 ∑
i< j

log|xi,N −x j+1,N|+ 1
2(N+1)2

N−1

∑
i=1

log|xi+1,N −xi,N| .

Since log|x− y| is upper-bounded whenx,y are in the support of the compactly
supported measureµ , the monotone convergence theorem implies that the left side
in the last display converges towards1

2Σ(µ). Thus, with (2.6.27), we have proved

liminf
N→∞

1
N2 logPN,1 ≥ β

∫

x<y
log(y−x)dµ(x)dµ(y)−

∫
V(x)dµ(x) ,

which concludes, with (2.6.25) and (2.6.26), the proof of (2.6.24).

Conclusion of the proof of Theorem 2.6.1

By (2.6.24), for allµ ∈ M1(R),

liminf
N→∞

1
N2 logZN

β ,V ≥ lim
ε→0

lim inf
N→∞

1
N2 logP̄N

V,β (d(LN,µ) ≤ ε)

≥ −
∫∫

f (x,y)dµ(x)dµ(y) ,

and so, optimizing with respect toµ ∈ M1(R) and with (2.6.23),

lim
N→∞

1
N2 logZN

β ,V = − inf
µ∈M1(R)

{
∫

f (x,y)dµ(x)dµ(y)} = −cV
β .

Thus, (2.6.24) and (2.6.22) imply the weak large deviation principle, i.e. that for
all µ ∈ M1(R),

lim
ε→0

lim inf
N→∞

1
N2 logPN

V,β (d(LN,µ) ≤ ε)

= lim
ε→0

limsup
N→∞

1
N2 logPN

V,β (d(LN,µ) ≤ ε) = −IV
β (µ) . (2.6.28)

This, together with the exponential tightness property proved above, completes
the proof of Theorem 2.6.1. ⊓⊔
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Exercise 2.6.4[Proof #5 of Wigner’s Theorem] TakeV(x) = βx2/4 and apply
Corollary 2.6.3 together with Lemma 2.6.2 to provide a proofof Wigner’s Theo-
rem 2.1.1 in the case of GOE or GUE matrices.
Hint: It is enough to check (2.6.9) and (2.6.10), that is to check that

∫
log|x−y|σ(dy) ≤ x2

4
− 1

2
,

with equality forx∈ [−2,2], whereσ is the semicircle law. Toward this end, use
the representation of the Stieltjes transform ofσ , see (2.4.6).

2.6.2 Large deviations for the top eigenvalue

We consider next the large deviations for the maximumλ ∗
N = maxN

i=1 λi , of ran-
dom variables that possess the joint law (2.6.1). These willbe obtained under the
following assumption.

Assumption 2.6.5The normalization constants ZN
V,β satisfy

lim
N→∞

1
N

log
ZN−1

NV/(N−1),β

ZN
V,β

= αV,β . (2.6.29)

It is immediate from (2.5.11) that ifV(x) = βx2/4 then Assumption 2.6.5 holds,
with αV,β = −β/2.

Assumption 2.6.5 is crucial in deriving the following LDP.

Theorem 2.6.6Let (λ N
1 , . . . ,λ N

N ) be distributed according to the joint law PN
V,β of

(2.6.1), with continuous potential V that satisfies (2.6.2)and Assumption 2.6.5.
Let σV

β be the minimizing measure of Lemma 2.6.2, and set x∗ = max{x : x ∈
suppσV

β }. Then,λ ∗
N = maxN

i=1 λ N
i satisfies the LDP inR with speed N and good

rate function

JV
β (x) =

{
β
∫

log|x−y|σV
β (dy)−V(x)−αV,β if x≥ x∗ ,

∞ otherwise.

Proof of Theorem 2.6.6SinceJV
β (·) is continuous on(x∗,∞) andJV

β (x) increases
to infinity asx→ ∞, it is a good rate function. Therefore, the stated LDP follows
as soon as we show that

for anyx < x∗, limsup
N→∞

1
N

logPN
V,β (λ ∗

N ≤ x) = −∞ , (2.6.30)
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for anyx > x∗, limsup
N→∞

1
N

logPN
V,β (λ ∗

N ≥ x) ≤−JV
β (x) (2.6.31)

and

for anyx > x∗, lim
δ→0

lim inf
N→∞

1
N

logPN
V,β (λ ∗

N ∈ (x−δ ,x+δ ))≥−JV
β (x) . (2.6.32)

The limit (2.6.30) follows immediately from the LDP (at speed N2) for the empiri-
cal measure, Theorem 2.6.1; indeed, the eventλ ∗

N ≤ x implies thatLN((x,x∗]) = 0.
Hence, one can find a bounded continuous functionf with support in(x,x∗], inde-
pendent ofN, such that〈LN, f 〉 = 0 but〈σV

β , f 〉 > 0. Theorem 2.6.1 implies that

this event has probability that decays exponentially (at speedN2), whence (2.6.30)
follows.

The following lemma, whose proof is deferred, will allow fora proper trunca-
tion of the top and bottom eigenvalues. (The reader interested only in the GOE or
GUE setups can note that Lemma 2.6.7 is then a consequence of Exercise 2.1.30.)

Lemma 2.6.7Under the assumptions of Theorem 2.6.6, we have

limsup
N→∞

1
N

log
ZN−1

V,β

ZN
V,β

< ∞ . (2.6.33)

Further,

lim
M→∞

limsup
N→∞

1
N

logPN
V,β (λ ∗

N > M) = −∞ (2.6.34)

and, withλ ∗
1 = minN

i=1 λ N
i ,

lim
M→∞

limsup
N→∞

1
N

logPN
V,β (λ ∗

1 < −M) = −∞ . (2.6.35)

Equipped with Lemma 2.6.7, we may complete the proof of Theorem 2.6.6. We
begin with the upper bound (2.6.31). Note that for anyM > x,

PN
V,β (λ ∗

N ≥ x) ≤ PN
V,β (λ ∗

N > M)+PN
V,β(λ ∗

N ∈ [x,M]) . (2.6.36)

By choosingM large enough and using (2.6.34), the first term in the right side of

(2.6.36) can be made smaller thane
−NJV

β (x), for all N large. In the sequel, we fix
anM such that the above is satisfied, the analogous bound with−λ ∗

1 also holds,
and further
[

β
∫

log|x−y|σV
β (dy)−V(x)

]
> sup

z∈[M,∞)

[
β
∫

log|z−y|σV
β (dy)−V(z)

]
.

(2.6.37)
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Set, forz∈ [−M,M] andµ supported on[−M,M],

Φ(z,µ) = β
∫

log|z−y|µ(dy)−V(z) ≤ β log(2M)+V− =: ΦM ,

whereV− = − infx∈R V(x) < ∞. SettingB(δ ) as the ball of radiusδ aroundσV
β ,

BM(δ ) as those probability measures inB(δ ) with support in[−M,M], and writing

ζN =
ZN−1

NV/(N−1),β

ZN
V,β

, IM = [−M,M]N−1 ,

we get

PN
V,β (λ ∗

N ∈ [x,M])

≤ PN
V,β (λ ∗

1 < −M)

+NζN

∫ M

x
dλN

∫

IM
e(N−1)Φ(λN,LN−1)PN−1

NV/(N−1),β (dλ1, . . . ,dλN−1)

≤ PN
V,β (λ ∗

1 < −M)+NζN

[∫ M

x
e(N−1)supµ∈BM (δ ) Φ(z,µ)dz

+(M−x)e(N−1)ΦMPN−1
NV/(N−1),β (LN−1 6∈ B(δ ))

]
. (2.6.38)

(The choice of metric in the definition ofB(δ ) plays no role in our argument,
as long as it is compatible with weak convergence.) Noting that the perturbation
involving the multiplication ofV by N/(N−1) introduces only an exponential in
N factor, see (2.6.33), we get from the LDP for the empirical measure, Theorem
2.6.1, that

limsup
N→∞

1
N2 logPN−1

NV/(N−1),β (LN−1 6∈ B(δ )) < 0,

and hence, for any fixedδ > 0,

limsup
N→∞

1
N

logPN−1
NV/(N−1),β (LN−1 6∈ B(δ )) = −∞ . (2.6.39)

We conclude from (2.6.38) and (2.6.39) that

limsup
N→∞

1
N

PN
V,β (λ ∗

N ∈ [x,M]) ≤ limsup
N→∞

1
N

logζN + lim
δ→0

sup
z∈[x,M],µ∈BM(δ )

Φ(z,µ)

= αV,β + lim
δ→0

sup
z∈[x,M],µ∈BM(δ )

Φ(z,µ) . (2.6.40)

SinceΦ(z,µ) = infη>0[β
∫

log(|z− y| ∨η)µ(dy)−V(z), it holds that(z,µ) 7→
Φ(z,µ) is upper semicontinuous on[−M,M]×M1([−M,M]). Therefore, using
(2.6.37) in the last equality,

lim
δ→0

sup
z∈[x,M],µ∈BM(δ )

Φ(z,µ) = sup
z∈[x,M]

Φ(z,σV
β ) = sup

z∈[x,∞)

Φ(z,σV
β ) .



84 2. WIGNER MATRICES

Combining the last equality with (2.6.40) and (2.6.36), we obtain (2.6.31).

We finally prove the lower bound (2.6.32). Let 2δ < x−x∗ and fixr ∈ (x∗,x−
2δ ). Then, withIr = (−M, r)N−1,

PN
V,β (λ ∗

N ∈ (x− δ ,x+ δ ))

≥ PN
V,β (λN ∈ (x− δ ,x+ δ ),λi ∈ (−M, r), i = 1, . . . ,N−1) (2.6.41)

= ζN

∫ x+δ

x−δ
dλN

∫

Ir
e(N−1)Φ(λN,LN

N−1)PN−1
NV/(N−1),β (dλ1, . . . ,dλN−1)

≥ 2δζN exp
(
(N−1) inf

z∈(x−δ ,x+δ )

µ∈Br,M(δ )

Φ(z,µ)
)

PN−1
NV/(N−1),β (LN−1 ∈ Br,M(δ )) ,

whereBr,M(δ ) denotes those measures inB(δ ) with support in[−M, r]. Recall
from the upper bound (2.6.31) together with (2.6.35) that

limsup
N→∞

PN−1
NV/(N−1),β (λi 6∈ (−M, r) for somei ∈ {1, . . . ,N−1}) = 0.

Combined with (2.6.39) and the strict inequality in (2.6.10) of Lemma 2.6.2, we
get by substituting in (2.6.41) that

lim
δ→0

lim inf
N→∞

1
N

logPN
V,β (λ ∗

N ∈ (x− δ ,x+ δ )) ≥ αV,β + lim
δ→0

inf
z∈(x−δ ,x+δ )

µ∈Br,M(δ )

Φ(z,µ)

= αV,β + Φ(x,σβ
V ) ,

where in the last step we used the continuity of(z,µ) 7→ Φ(z,µ) on [x− δ ,x+

δ ]×M1([−M, r]). The bound (2.6.32) follows. ⊓⊔
Proof of Lemma 2.6.7We first prove (2.6.33). Note that, for anyδ > 0 and allN
large,

ZN−1
V,β

ZN
V,β

=
ZN−1

V,β

ZN−1
NV/(N−1),β

·
ZN−1

NV/(N−1),β

ZN
V,β

≤
ZN−1

V,β

ZN−1
NV/(N−1),β

·eN(αV,β +δ ) , (2.6.42)

by (2.6.29). On the other hand,

ZN−1
V,β

ZN−1
NV/(N−1),β

=

∫
eN〈LN−1,V〉dPN−1,NV/(N−1) . (2.6.43)

By the LDP forLN−1 (at speedN2, see Theorem 2.6.1), Lemma 2.6.2 and (2.6.21),

the last integral is bounded above byeN(〈σV
β ,V〉+δ ). Substituting this in (2.6.43) and

(2.6.42) yields (2.6.33).

For |x| > M, M large andλi ∈ R, for some constantsaβ , bβ ,

|x−λi|β e−V(λi) ≤ aβ (|x|β + |λi|β )e−V(λi) ≤ bβ |x|β ≤ bβ eV(x) .
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Therefore,

PN
V,β (λ ∗

N > M) ≤ N
ZN−1

V,β

ZN
V,β

∫ ∞

M
e−NV(λN)dλN

∫

RN−1

N−1

∏
i=1

(
|x−λi|β e−V(λi)

)
dPN−1

V,β

≤ NbN−1
β e−NV(M)/2

ZN−1
V,β

ZN
V,β

∫ ∞

M
e−V(λN)dλN ,

implying, together with (2.6.33), that

lim
M→∞

limsup
N→∞

1
N

logPN
V,β (λ ∗

N > M) = −∞ .

This proves (2.6.34). The proof of (2.6.35) is similar. ⊓⊔

2.7 Bibliographical notes

Wigner’s Theorem was presented in [Wig55], and proved thereusing the method
of moments developed in Section 2.1. Since then, this resulthas been extended in
many directions. In particular, under appropriate moment conditions, an almost
sure version holds, see [Arn67] for an early result in that direction. Relaxation
of moment conditions, requiring only the existence of thirdmoments of the vari-
ables, is described by Bai and co-workers, using a mixture ofcombinatorial, prob-
abilistic and complex-analytic techniques. For a review, we refer to [Bai99]. It is
important to note that one cannot hope to forgo the assumption of finiteness of sec-
ond moments, because without this assumption the empiricalmeasure, properly
rescaled, converges toward a noncompactly supported measure, see [BeG08].

Regarding the proof of Wigner’s Theorem that we presented, there is a slight
ambiguity in the literature concerning the numbering of Catalan numbers. Thus,
[Aig79, p. 85] denotes byck what we denote byCk−1. Our notation follows
[Sta97]. Also, there does not seem to be a clear convention asto whether the
Dyck paths we introduced should be called Dyck paths of length 2k or of length
k. Our choice is consistent with our notion of length of Bernoulli walks. Finally,
we note that the first part of the proof of Lemma 2.1.3 is an application of the
reflection principle, see [Fel57, Ch. III.2].

The study of Wigner matrices is closely related to the study of Wishart ma-
trices, discussed in Exercises 2.1.18 and 2.4.8. The limit of the empirical mea-
sure of eigenvalues of Wishart matrices (and generalizations) can be found in
[MaP67], [Wac78] and [GrS77]. Another similar model is given by band ma-
trices, see [BoMP91]. In fact, both Wigner and Wishart matrices fall under the
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class of the general band matrices discussed in [Shl96], [Gui02] (for the Gaussian
case) and [AnZ05], [HaLN06].

Another promising combinatorial approach to the study of the spectrum of ran-
dom Wigner matrices, making a direct link with orthogonal polynomials, is pre-
sented in [Sod07].

The rate of convergence toward the semicircle distributionhas received some
attention in the literature, see, e.g., [Bai93a], [Bai93b], [GoT03].

Lemma 2.1.19 first appears in [HoW53]. In the proof we mentionthat permu-
tation matrices form the extreme points of the set of doubly stochastic matrices,
a fact that is is usually attributed to G. Birkhoff. See [Chv83] for a proof and a
historical discussion which attributes this result to D. Konig. The argument we
present (that bypasses this characterization) was kindly communicated to us by
Hongjie Dong. The study of the distribution of the maximal eigenvalue of Wigner
matrices by combinatorial techniques was initiated by [Juh81], and extended by
[FuK81] (whose treatment we essentially follow; see also [Vu07] for recent im-
provements). See also [Gem80] for the analogous results forWishart matrices.
The method was widely extended in the papers [SiS98a], [SiS98b], [Sos99] (with
symmetric distribution of the entries) and [PeS07] (in the general case), allow-
ing one to derive much finer behavior on the law of the largest eigenvalue, see
the discussion in Section 3.7. Some extensions of the Füredi–Komlós and Sinai–
Soshnikov techniques can also be found in [Kho01]. Finally,conditions for the
almost sure convergence of the maximal eigenvalue of Wignermatrices appear in
[BaY88].

The study of maximal and minimal eigenvalues for Wishart matrices is of fun-
damental importance in statistics, where they are referredto as sample covari-
ance matrices, and has received a great deal of attention recently. See [SpT02],
[BeP05], [LiPRTJ05], [TaV09a], [Rud08], [RuV08] for a sample of recent devel-
opments.

The study of central limit theorems for traces of powers of random matrices
can be traced back to [Jon82], in the context of Wishart matrices (an even earlier
announcement appears in [Arh71], without proofs). Our presentation follows to a
large extent Jonsson’s method, which allows one to derive a CLT for polynomial
functions. A by-product of [SiS98a] is a CLT for trf (XN) for analytic f , under
a symmetry assumption on the moments. The paper [AnZ05] generalizes these
results, allowing for differentiable functionsf and for nonconstant variance of the
independent entries. See also [AnZ08a] for a different version of Lemma 2.1.34.
For functions of the formf (x) = ∑ai/(zi − x) wherezi ∈ C \R, and matrices of
Wigner type, CLT statements can be found in [KhKP96], with somewhat sketchy
proofs. A complete treatment forf analytic in a domain including the support of
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the limit of the empirical distribution of eigenvalues is given in [BaY05] for ma-
trices of Wigner type, and in [BaS04] for matrices of Wisharttype under a certain
restriction on fourth moments. Finally, an approach based on Fourier transforms
and interpolation was recently proposed in [PaL08].

Much more is known concerning the CLT for restricted classesof matrices:
[Joh98] uses an approach based on the explicit joint densityof the eigenvalues,
see Section 2.5. (These results apply also to a class of matrices with dependent
entries.) For Gaussian matrices, an approach based on the stochastic calculus
introduced in Section 4.3 can be found in [Cab01] and [Gui02]. Recent extensions
and reinterpretation of this work, using the notion of second order freeness, can
be found in [MiS06] (see Chapter 5 for the notion of freeness and its relation to
random matrices).

The study of spectra of random matrices via the Stieltjes transform (resolvent
functions) was pioneered by Pastur co-workers, and greatlyextended by Bai and
co-workers. See [MaP67] for an early reference, and [Pas73]for a survey of the
literature up to 1973. Our derivation is based on [KhKP96], [Bai99] and [SiB95].

We presented in Section 2.3 a very brief introduction to concentration inequali-
ties. This topic is picked up again in Section 4.4, to which werefer the reader for
a complete introduction to different concentration inequalities and their applica-
tion in RMT, and for full bibliographical notes. Good references for the logarith-
mic Sobolev inequalities used in Section 2.3 are [Led01] and[AnBC+00]. Our
treatment is based on [Led01] and [GuZ00]. Lemma 2.3.2 is taken from [BoL00,
Proposition 3.1]. We note in passing that, onR, a criterion for a measure to satisfy
the logarithmic Sobolev inequality was developed by Bobkovand Götze [BoG99].
In particular, any probability measure onR possessing a bounded above and be-
low density with respect to the measuresν(dx) = Z−1e−|x|α dx for α ≥ 2, where
Z =

∫
e−|x|α dx, satisfies the LSI, see [Led01], [GuZ03, Property 4.6]. Finally,

in the Gaussian case, estimates on the expectation of the maximal eigenvalue (or
minimal and maximal singular values, in the case of Wishart matrices) can be ob-
tained from Slepian’s and Gordon’s inequalities, see [LiPRTJ05] and [DaS01]. In
particular, these estimates are useful when using, in the Gaussian case, (2.3.10)
with k = N.

The basic results on joint distribution of eigenvalues in the GOE and GUE pre-
sented in Section 2.5, as well as an extensive list of integral formulas similar to
(2.5.4) are given in [Meh91], [For05]. We took, however, a quite different ap-
proach to all these topics based on the elementary proof of the Selberg integral
formula [Sel44], see [AnAR99], given in [And91]. The proof of [And91] is based
on a similar proof [And90] of some trigonometric sum identities, and is also simi-
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lar in spirit to the proofs in [Gus90] of much more elaborate identities. For a recent
review of the importance of the Selberg integral, see [FoO08], where in particular
it is pointed out that Lemma 2.5.15 seems to have first appeared in [Dix05].

We follow [FoR01] in our treatment of “superposition and decimation” (The-
orem 2.5.17). We remark that triples(L, f ,g) satisfying Assumption 2.5.18, and
hence the conclusions of Proposition 2.5.19, can be classified, see [FoR01], to
which we refer for other classical examples where superposition and decimation
relations hold. An early precursor of such relations can be traced to [MeD63].

Theorem 2.6.1 is stated in [BeG97, Theorem 5.2] under the additional assump-
tion thatV does not grow faster than exponentially and proved there in detail when
V(x) = x2. In [HiP00b], the same result is obtained when the topology overM1(R)

is taken to be the weak topology with respect to polynomial test functions instead
of bounded continuous functions. Large deviations for the empirical measure of
random matrices with complex eigenvalues were considered in [BeZ98] (where
non self-adjoint matrices with independent Gaussian entries were studied) and in
[HiP00a] (where Haar unitary distributed matrices are considered). This strategy
can also be used when one is interested in discretized versions of the lawPN

β ,V
as they appear in the context of Young diagrams, see [GuM05].The LDP for
the maximal eigenvalue described in Theorem 2.6.6 is based on [BeDG01]. We
mention in passing that other results discussed in this chapter have analogs for the
law PN

β ,V . In particular, the CLT for linear statistics is discussed in [Joh98], and
concentration inequalities forV convex are a consequence of the results in Section
4.4.

Models of random matrices with various degrees of dependence between entries
have also be treated extensively in the literature. For a sample of existing results,
see [BodMKV96], [ScS05] and [AnZ08b]. Random Toeplitz, Hankel and Markov
matrices have been studied in [BrDJ06] and [HaM05].

Many of the results described in this chapter (except for Sections 2.3, 2.5 and
2.6) can also be found in the book [Gir90], a translation of a 1975 Russian edition,
albeit with somewhat sketchy and incomplete proofs.

We have restricted attention in this chapter to Hermitian matrices. A natural
question concerns thecomplexeigenvalues of a matrixXN where all are i.i.d. In
the Gaussian case, the joint distribution of the eigenvalues was derived by [Gin65].
The analog of the semicircle law is now the circular law: the empirical measure of
the (rescaled) eigenvalues converges to the circular law, i.e. the measure uniform
on the unit disc in the complex plane. This is stated in [Gir84], with a sketchy
proof. A full proof for the Gaussian case is provided in [Ede97], who also eval-
uated the probability that exactlyk eigenvalues are real. Large deviations for the
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empirical measure in the Gaussian case are derived in [BeZ98]. For non-Gaussian
entries whose law possesses a density and finite moments of order at least 6, a
full proof, based on Girko idea’s, appears in [Bai97]. The problem was recently
settled in full generality, see [TaV08a], [TaV08b], [GoT07]; the extra ingredients
in the proof are closely related to the study of the minimal singular value ofXX∗

discussed above.



3

Hermite polynomials, spacings and limit
distributions for the Gaussian ensembles

In this chapter, we present the analysis of asymptotics for the joint eigenvalue dis-
tribution for the Gaussian ensembles: the GOE, GUE and GSE. As it turns out, the
analysis takes a particularly simple form for the GUE, because then the process of
eigenvalues is adeterminantal process. (We postpone to Section 4.2 a discussion
of general determinantal processes, opting to present hereall computations “with
bare hands”.) In keeping with our goal of making this chapteraccessible with
minimal background, in most of this chapter we consider the GUE, and discuss
the other Gaussian ensembles in Section 3.9. Generalizations to other ensembles,
refinements and other extensions are discussed in Chapter 4 and in the biblio-
graphical notes.

3.1 Summary of main results: spacing distributions in the bulk and edge of
the spectrum for the Gaussian ensembles

We recall that theN eigenvalues of the GUE/GOE/GSE are spread out on an in-
terval of width roughly equal to 4

√
N, and hence the spacing between adjacent

eigenvalues is expected to be of order 1/
√

N.

3.1.1 Limit results for the GUE

Using the determinantal structure of the eigenvalues{λ N
1 , . . . ,λ N

N } of the GUE,
developed in Sections 3.2–3.4, we prove the following.

90
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Theorem 3.1.1 (Gaudin–Mehta)For any compact set A⊂ R,

lim
N→∞

P[
√

Nλ N
1 , . . . ,

√
Nλ N

N 6∈ A]

= 1+
∞

∑
k=1

(−1)k

k!

∫
A · · ·

∫
Adetki, j=1Ksine(xi ,x j)∏k

j=1dxj , (3.1.1)

where

Ksine(x,y) =

{
1
π

sin(x−y)
x−y , x 6= y,

1
π , x = y.

(Similar results apply to the setsA+c
√

n with |c| < 2, see Exercise 3.7.5.)

As a consequence of Theorem 3.1.1, we will show that the theory of integrable
systems applies and yields the following fundamental result concerning the be-
havior of spacings between eigenvaluesin the bulk.

Theorem 3.1.2 (Jimbo–Miwa–M̂ori–Sato)One has

lim
N→∞

P[
√

Nλ N
1 , . . . ,

√
Nλ N

N 6∈ (−t/2,t/2)] = 1−F(t),

with

1−F(t) = exp

(∫ t

0

σ(x)
x

dx

)
for t ≥ 0 ,

with σ the solution of

(tσ ′′)2 +4(tσ ′−σ)(tσ ′−σ +(σ ′)2) = 0,

so that

σ = − t
π
− t2

π2 −
t3

π3 +O(t4) ast ↓ 0. (3.1.2)

The differential equation satisfied byσ is the σ -form of Painlevé V. Note that
Theorem 3.1.2 implies thatF(t)→t→0 0. Additional analysis (see Remark 3.6.5 in
Subsection 3.6.3) yields that alsoF(t) →t→∞ 1, showing thatF is the distribution
function of a probability distribution onR+.

We now turn our attention to the edge of the spectrum.

Definition 3.1.3TheAiry functionis defined by the formula

Ai(x) =
1

2π i

∫

C
eζ 3/3−xζ dζ , (3.1.3)

whereC is the contour in theζ -plane consisting of the ray joininge−π i/3∞ to the
origin plus the ray joining the origin toeπ i/3∞ (see Figure 3.1.1).
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π
6

C

π
6

Fig. 3.1.1. Contour of integration for the Airy function

TheAiry kernelis defined by

KAiry (x,y) = A(x,y) :=
Ai(x)Ai ′(y)−Ai ′(x)Ai(y)

x−y
,

where the value forx = y is determined by continuity.

By differentiating under the integral and then integratingby parts, it follows that
Ai(x), for x∈ R, satisfies theAiry equation:

d2y
dx2 −xy= 0. (3.1.4)

Various additional properties of the Airy function and kernel are summarized in
Subsection 3.7.3.

The fundamental result concerning the eigenvalues of the GUE at the edge of
the spectrum is the following.

Theorem 3.1.4For all −∞ < t ≤ t ′ ≤ ∞,

lim
N→∞

P

[
N2/3

(
λ N

i√
N
−2

)
6∈ [t, t ′], i = 1, . . . ,N

]

= 1+
∞

∑
k=1

(−1)k

k!

∫ t′

t
· · ·
∫ t′

t

k
det

i, j=1
A(xi ,x j)

k

∏
j=1

dxj , (3.1.5)

with A the Airy kernel. In particular,

lim
N→∞

P

[
N2/3

(
λ N

N√
N
−2

)
≤ t

]

= 1+
∞

∑
k=1

(−1)k

k!

∫ ∞
t · · ·∫ ∞

t detki, j=1A(xi ,x j)∏k
j=1dxj =: F2(t) . (3.1.6)
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Note that the statement of Theorem 3.1.4 does not ensure thatF2 is a distribu-
tion function (and in particular, does not ensure thatF2(−∞) = 0), since it only
implies the vague convergence, not the weak convergence, ofthe random vari-
ablesλ N

N /
√

N−2. The latter convergence, as well as a representation ofF2, are
contained in the following.

Theorem 3.1.5 (Tracy–Widom)The function F2(·) is a distribution function that
admits the representation

F2(t) = exp

(
−
∫ ∞

t
(x− t)q(x)2dx

)
, (3.1.7)

where q satisfies

q′′ = tq+2q3, q(t) ∼ Ai (t) ,ast → +∞ . (3.1.8)

The functionF2(·) is theTracy–Widomdistribution. Equation (3.1.8) is thePainlev́e
II equation. Some information on its solutions is collected inRemark 3.8.1 below.

3.1.2 Generalizations: limit formulas for the GOE and GSE

We next state the results for the GOE and GSE in a concise way that allows easy
comparison with the GUE. Most of the analysis will be devotedto controlling the
influence of the departure from a determinantal structure inthese ensembles.

For β = 1,2,4, let λ (β ,n) = (λ (β ,n)
1 , . . . ,λ (β ,n)

n ) be a random vector inRn with

the lawP
(β )
n , see (2.5.6), possessing a density with respect to Lebesguemeasure

proportional to|∆(x)|β e−β |x|2/4. (Thus,β = 1 corresponds to the GOE,β = 2 to
the GUE andβ = 4 to the GSE.) Consider the limits

1−Fβ ,bulk(t) = lim
n→∞

P({
√

nλ (β ,n)}∩ (−t/2,t/2)}= /0) ,

for t > 0 , (3.1.9)

Fβ ,edge(t) = lim
n→∞

P
({

n1/6(λ (β ,n)−2
√

n)
}
∩ (t,∞) = /0

)
,

for all realt . (3.1.10)

The existence of these limits forβ = 2 follows from Theorems 3.1.2 and 3.1.4,
together with Corollary 3.1.5. Further, from Lemma 3.6.6 below, we also have

1−F2,bulk(t) = exp

(
− t

π
−
∫ t

0
(t −x)r(x)2dx

)
,

where

t2((tr)′′ +(tr))2 = 4(tr)2((tr)2 +((tr)′)2) , r(t) =
1
π

+
t

π2 +Ot↓0(t
2).
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The following is the main result of the analysis of spacings for the GOE and GSE.

Theorem 3.1.6The limits1−Fβ ,bulk (β = 1,4) exist and are as follows:

1−F1,bulk(t)√
1−F2,bulk(t)

= exp

(
−1

2

∫ t

0
r(x)dx

)
, (3.1.11)

1−F4,bulk(t/2)√
1−F2,bulk(t)

= cosh

(
−1

2

∫ t

0
r(x)dx

)
. (3.1.12)

Theorem 3.1.7The limits Fβ ,edge(β = 1,4) exist and are as follows:

F1,edge(t)√
F2,edge(t)

= exp

(
−1

2

∫ ∞

t
q(x)dx

)
, (3.1.13)

F4,edge(t/22/3)√
F2,edge(t)

= cosh

(
−1

2

∫ ∞

t
q(x)dx

)
. (3.1.14)

The proofs of Theorems 3.1.6 and 3.1.7 appear in Section 3.9.

3.2 Hermite polynomials and the GUE

In this section we show why orthogonal polynomials arise naturally in the study
of the law of the GUE. The relevant orthogonal polynomials inthis study are the
Hermite polynomials and the associated oscillator wave-functions, which we in-
troduce and use to derive a Fredholm determinant representation for certain prob-
abilities connected with the GUE.

3.2.1 The GUE and determinantal laws

We now show that the joint distribution of the eigenvalues following the GUE has
a nicedeterminantal form, see Lemma 3.2.2 below. We then use this formula
in order to deduce aFredholm determinantexpression for the probability that no
eigenvalues belong to a given interval, see Lemma 3.2.4.

Throughout this section, we shall consider the eigenvaluesof GUE matrices
with complex Gaussian entries of unit variance as in Theorem2.5.2, and later
normalize the eigenvalues to study convergence issues. We shall be interested in
symmetric statistics of the eigenvalues. Forp≤N, recalling the joint distributions

P
(2)
N of the unordered eigenvalues of the GUE, see Remark 2.5.3, wecall its

marginalPp,N on p coordinates thedistribution of p unordered eigenvalues of
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the GUE. More explicitly,P(2)
p,N is the probability measure onRp so that, for any

f ∈Cb(R
p),

∫
f (θ1, · · · ,θp)dP

(2)
p,N(θ1, · · · ,θp) =

∫
f (θ1, · · · ,θp)dP

(2)
N (θ1, · · · ,θN)

(recall thatP(2)
N is the law of theunorderedeigenvalues). Clearly, one also has

∫
f (θ1, · · · ,θp)dP

(2)
p,N(θ1, · · · ,θp)

=
(N− p)!

N! ∑
σ∈Sp,N

∫
f (θσ(1), · · · ,θσ(p))dP

(2)
N (θ1, · · · ,θN) ,

whereSp,N is the set of injective maps from{1, · · · , p} into {1, · · · ,N}. Note that

we automatically haveP(2)
N,N = P

(2)
N .

We now introduce the Hermite polynomials and associated normalized (har-
monic) oscillator wave-function.

Definition 3.2.1(a) Thenth Hermite polynomialHn(x) is defined as

Hn(x) := (−1)nex2/2 dn

dxn e−x2/2 . (3.2.1)

(b) Thenth normalized oscillator wave-functionis the function

ψn(x) =
e−x2/4Hn(x)√√

2π n!
.

(Often, in the literature,(−1)nex2 dn

dxn e−x2
is taken as the definition of thenth Her-

mite polynomial. We find (3.2.1) more convenient.)

For our needs, the most important property of the oscillatorwave-functions is
their orthogonality relations

∫
ψk(x)ψℓ(x)dx= δkℓ . (3.2.2)

We will also use the monic property of the Hermite polynomials, that is

Hn(x) is a polynomial of degreen with leading termxn. (3.2.3)

The proofs of (3.2.2) and (3.2.3) appear in Subsection 3.2.2, see Lemmas 3.2.7
and 3.2.5.

We are finally ready to describe the determinantal structureof P
(2)
p,N. (See Sec-

tion 4.2 for more information on implications of this determinantal structure.)
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Lemma 3.2.2For any p≤ N, the lawP
(2)
p,N is absolutely continuous with respect

to Lebesgue measure, with density

ρ (2)
p,N(θ1, · · · ,θp) =

(N− p)!
N!

p
det

k,l=1
K(N)(θk,θl ) ,

where

K(N)(x,y) =
N−1

∑
k=0

ψk(x)ψk(y) . (3.2.4)

Proof Theorem 2.5.2 shows thatρ (2)
p,N exists and equals

ρ (2)
p,N(θ1, · · · ,θp) = Cp,N

∫
|∆(x)|2

N

∏
i=1

e−x2
i /2

N

∏
i=p+1

dζi , (3.2.5)

wherexi = θi for i ≤ p andζi for i > p, andCp,N is a normalization constant. The
fundamental remark is that this density depends on the Vandermonde determinant

∆(x) = ∏
1≤i< j≤N

(x j −xi) =
N

det
i, j=1

x j−1
i =

N
det

i, j=1
H j−1(xi) , (3.2.6)

where we used (3.2.3) in the last equality.

We begin by consideringp = N, writing ρ (2)
N for ρ (2)

N,N. Then

ρ (2)
N (θ1, · · · ,θN) = CN,N

(
N

det
i, j=1

H j−1(θi)

)2 N

∏
i=1

e−θ2
i /2 (3.2.7)

= C̃N,N

(
N

det
i, j=1

ψ j−1(θi)

)2

= C̃N,N

N
det

i, j=1
K(N)(θi ,θ j) ,

where in the last line we used the fact that det(AB) = det(A)det(B) with A= B∗ =

(ψ j−1(θi))
N
i, j=1. Here,C̃N,N = ∏N−1

k=0 (
√

2πk!)CN,N.

Of course, from (2.5.4) we know thatCN,N = C̄(2)
N . We provide now yet another

direct evaluation of the normalization constant, following [Meh91]. We introduce
a trick that will be very often applied in the sequel.

Lemma 3.2.3For any square-integrable functions f1, . . . , fn and g1, . . . ,gn on the
real line, we have

1
n!

∫
· · ·
∫ n

det
i, j=1

(
n

∑
k=1

fk(xi)gk(x j)

)
n

∏
i=1

dxi

=
1
n!

∫
· · ·
∫ n

det
i, j=1

fi(x j) ·
n

det
i, j=1

gi(x j )
n

∏
i=1

dxi =
n

det
i, j=1

∫
fi(x)g j(x)dx. (3.2.8)
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Proof Using the identity det(AB) = det(A)det(B) applied toA = { fk(xi)}ik and
B = {gk(x j)}k j, we get

∫
· · ·
∫ n

det
i, j=1

(
n

∑
k=1

fk(xi)gk(x j)

)
n

∏
i=1

dxi =

∫
· · ·
∫ n

det
i, j=1

fi(x j) ·
n

det
i, j=1

gi(x j)
n

∏
i=1

dxi ,

which equals, by expanding the determinants involving the families{gi} and{ fi},

∑
σ ,τ∈Sn

ε(σ)ε(τ)
∫
· · ·
∫ n

∏
i=1

fσ(i)(xi) ·gτ(i)(xi))
n

∏
i=1

dxi

= ∑
σ ,τ∈Sn

ε(σ)ε(τ)
n

∏
i=1

∫
fσ(i)(x)gτ(i)(x)dx

= n! ∑
σ∈Sn

ε(σ)
n

∏
i=1

∫
fi(x)gσ(i)(x)dx= n!

n
det

i, j=1

∫
fi(x)g j(x)dx.

⊓⊔
Substitutingfi = gi = ψi−1 andn= N in Lemma 3.2.3, and using the orthogonality
relations (3.2.2), we deduce that

∫ N
det

i, j=1
K(N)(θi ,θ j)

N

∏
i=1

dθi = N! , (3.2.9)

which completes the evaluation ofCN,N and the proof of Lemma 3.2.2 forp = N.

For p < N, using (3.2.5) and (3.2.6) in a manner similar to (3.2.7), wefind that
for some constant̃Cp,N, with xi = θi if i ≤ p andζi otherwise,

ρ (2)
p,N(θ1, · · · ,θp) = C̃p,N

∫
(

N
det

i, j=1
ψ j−1(xi))

2
N

∏
i=p+1

dζi

= C̃p,N ∑
σ ,τ∈SN

ε(σ)ε(τ)

∫ N

∏
j=1

ψσ( j)−1(x j)ψτ( j)−1(x j)
N

∏
i=p+1

dζi .

Therefore, lettingS (p,ν) denote the bijections from{1, · · · , p} to {ν1, · · · ,νp}
:= ν, we get

ρ (2)
p,N(θ1, · · · ,θp)

= C̃p,N ∑
1≤ν1<···<νp≤N

∑
σ ,τ∈S (p,ν)

ε(σ)ε(τ)
p

∏
i=1

ψσ(i)−1(θi)ψτ(i)−1(θi)

= C̃p,N ∑
1≤ν1<···<νp≤N

(
p

det
i, j=1

ψν j−1(θi)

)2

, (3.2.10)

where in the first equality we used the orthogonality of the family {ψ j} to con-
clude that the contribution comes only from permutations ofSN for whichτ(i) =
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σ(i) for i > p, and we put{ν1, · · · ,νp} = {τ(1), · · · ,τ(p)} = {σ(1), · · · ,σ(p)}.
Using the Cauchy–Binet Theorem A.2 withA = B∗ (of dimensionp×N) and
Ai, j = ψ j−1(θi), we get that

ρ (2)
p,N(θ1, · · · ,θp) = C̃p,N

p
det

i, j=1
(K(N)(θi ,θ j )).

To computeC̃p,N, note that, by integrating both sides of (3.2.10), we obtain

1 = C̃p,N ∑
1≤ν1<···<νp≤N

∫ ( p
det

i, j=1
ψν j−1(θi)

)2

dθ1 · · ·dθp , (3.2.11)

whereas Lemma 3.2.3 implies that for all{ν1, . . . ,νp},

∫ ( p
det

i, j=1
ψν j−1(θi)

)2

dθ1 · · ·dθp = p!.

Thus, since there are(N!)/((N− p)!p!) terms in the sum at the right side of
(3.2.11), we conclude that̃Cp,N = (N− p)!/N!. ⊓⊔

Now we arrive at the main point, on which the study of the localproperties of
the GUE will be based.

Lemma 3.2.4For any measurable subset A ofR,

P(2)
N (

N⋂

i=1

{λi ∈ A}) = 1+
∞

∑
k=1

(−1)k

k!

∫

Ac
· · ·
∫

Ac

k
det

i, j=1
K(N)(xi ,x j)

k

∏
i=1

dxi . (3.2.12)

(The proof will show that the sum in (3.2.12) is actually finite.) The last expres-
sion appearing in (3.2.12) is aFredholm determinant. The latter are discussed in
greater detail in Section 3.4.

Proof By using Lemmas 3.2.2 and 3.2.3 in the first equality, and the orthogonality
relations (3.2.2) in the second equality, we have

P(2)
N [λi ∈ A, i = 1, . . . ,N]

=
N−1
det

i, j=0

∫

A
ψi(x)ψ j(x)dx=

N−1
det

i, j=0

(
δi j −

∫

Ac
ψi(x)ψ j (x)dx

)

= 1+
N

∑
k=1

(−1)k ∑
0≤ν1<···<νk≤N−1

k
det

i, j=1

(∫

Ac
ψνi (x)ψν j (x)dx

)
,
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Therefore,

P(2)
N [λi ∈ A, i = 1, . . . ,N]

= 1+
N

∑
k=1

(−1)k

k!

∫

Ac
· · ·
∫

Ac
∑

0≤ν1<···<νk≤N−1

(
k

det
i, j=1

ψνi (x j)

)2 k

∏
i=1

dxi

= 1+
N

∑
k=1

(−1)k

k!

∫

Ac
· · ·
∫

Ac

k
det

i, j=1
K(N)(xi ,x j)

k

∏
i=1

dxi

= 1+
∞

∑
k=1

(−1)k

k!

∫

Ac
· · ·
∫

Ac

k
det

i, j=1
K(N)(xi ,x j)

k

∏
i=1

dxi , (3.2.13)

where the first equality uses (3.2.8) withgi(x) = fi(x) = ψνi (x)1Ac(x), the second
equality uses the Cauchy–Binet Theorem A.2, and the last step is trivial since the
determinant detk

i, j=1K(N)(xi ,x j) has to vanish identically fork > N because the

rank of{K(N)(xi ,x j )}k
i, j=1 is at mostN. ⊓⊔

3.2.2 Properties of the Hermite polynomials and oscillatorwave-functions

Recall the definition of the Hermite polynomials, Definition3.2.1. Some proper-
ties of the Hermite polynomials are collected in the following lemma. Through-
out, we use the notation〈 f ,g〉G =

∫
R f (x)g(x)e−x2/2dx. In anticipation of further

development, we collect much more information than was needed so far. Thus,
the proof of Lemma 3.2.5 may be skipped at first reading. Note that (3.2.3) is the
second point of Lemma 3.2.5.

Lemma 3.2.5The sequence of polynomials{Hn(x)}∞
n=0 has the following proper-

ties.
1. H0(x) = 1, H1(x) = x andHn+1(x) = xHn(x)−H′

n(x).

2. Hn(x) is a polynomial of degreen with leading termxn.

3. Hn(x) is even or odd according asn is even or odd.

4. 〈x,H2
n〉G = 0.

5. 〈Hk,Hℓ〉G =
√

2π k! δkℓ.

6. 〈 f ,Hn〉G = 0 for all polynomialsf (x) of degree< n.

7. xHn(x) = Hn+1(x)+nHn−1(x) for n≥ 1.

8. H′
n(x) = nHn−1(x).

9. H′′
n(x)−xH′

n(x)+nHn(x) = 0.

10. Forx 6= y,
n−1

∑
k=0

Hk(x)Hk(y)
k!

=
(Hn(x)Hn−1(y)−Hn−1(x)Hn(y))

(n−1)!(x−y)
.
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Property 2 shows that{Hn}n≥0 is a basis of polynomial functions, whereas prop-
erty 5 implies that it is an orthogonal basis for the scalar product〈 f ,g〉G defined
onL2(e−x2/2dx) (since the polynomial functions are dense in the latter space).

Remark 3.2.6Properties 7 and 10 are thethree-term recurrenceand theChristoffel–
Darboux identitysatisfied by the Hermite polynomials, respectively.

Proof of Lemma 3.2.5Properties 1, 2 and 3 are clear. To prove property 5, use
integration by parts to get that

∫
Hk(x)Hl (x)e

−x2/2dx = (−1)l
∫

Hk(x)
dl

dxl (e
−x2/2)dx

=
∫ [

dl

dxl
Hk(x)

]
e−x2/2dx

vanishes ifl > k (since the degree ofHk is strictly less thanl ), and is equal to√
2πk! if k = l , by property 2. Then, we deduce property 4 since, by property3,

H2
n is an even function and so is the functione−x2/2. Properties 2 and 5 suffice

to prove property 6. To prove property 7, we proceed by induction on n. By
properties 2 and 5 we have, forn≥ 1,

xHn(x) =
n+1

∑
k=0

〈xHn,Hk〉G
〈Hk,Hk〉G

Hk(x).

By property 6 thekth term on the right vanishes unless|k−n| ≤ 1, by property 4
thenth term vanishes, and by property 2 the(n+ 1)st term equals 1. To get the
(n−1)st term we observe that

〈xHn,Hn−1〉G
〈Hn−1,Hn−1〉G

=
〈xHn,Hn−1〉G
〈Hn,Hn〉G

〈Hn,Hn〉G
〈Hn−1,Hn−1〉G

= 1 ·n = n

by induction onn and property 5. Thus property 7 is proved. Property 8 is a direct
consequence of properties 1 and 7, and property 9 is obtainedby differentiating
the last identity in property 1 and using property 8. To proveproperty 10, call the
left side of the claimed identityF(x,y) and the right sideG(x,y). Using properties
2 and 5, followed by integration by parts and property 8, one sees that the integral

∫ ∫
e−x2/2−y2/2

Hk(x)Hℓ(y)F(x,y)(x−y)dxdy

equals the analogous integral withG(x,y) replacingF(x,y); we leave the details to
the reader. Equality of these integrals granted, property 10 follows since{Hk}k≥0

being a basis of the set of polynomials, it implies almost sure equality and hence



3.3 THE SEMICIRCLE LAW REVISITED 101

equality by continuity ofF,G. Thus the claimed properties of Hermite polynomi-
als are proved. ⊓⊔

Recall next the oscillator wave-functions, see Definition 3.2.1. Their basic
properties are contained in the following lemma, which is aneasy corollary of
Lemma 3.2.5. Note that (3.2.2) is just the first point of the lemma.

Lemma 3.2.7The oscillator wave-functions satisfy the following.

1.

∫
ψk(x)ψℓ(x)dx= δkℓ .

2. xψn(x) =
√

n+1ψn+1(x)+
√

nψn−1(x) .

3.
n−1

∑
k=0

ψk(x)ψk(y) =
√

n(ψn(x)ψn−1(y)−ψn−1(x)ψn(y))/(x−y) .

4. ψ ′
n(x) = −x

2
ψn(x)+

√
nψn−1(x) .

5. ψ ′′
n (x)+ (n+

1
2
− x2

4
)ψn(x) = 0.

We remark that the last relation above is the one-dimensional Schr̈odinger equa-
tion for the eigenstates of the one-dimensional quantum-mechanical harmonic os-
cillator. This explains the terminology.

3.3 The semicircle law revisited

Let XN ∈ H
(2)

N be a random Hermitian matrix from the GUE with eigenvalues
λ N

1 ≤ ·· · ≤ λ N
N , and let

LN = (δλ N
1 /

√
N + · · ·+ δλ N

N /
√

N)/N (3.3.1)

denote the empirical distribution of the eigenvalues of therescaled matrixXN/
√

N.
LN thus corresponds to the eigenvalues of a Gaussian Wigner matrix.

We are going to make the average empirical distributionL̄N explicit in terms
of Hermite polynomials, calculate the moments ofL̄N explicitly, check that the
moments ofL̄N converge to those of the semicircle law, and thus provide an al-
ternative proof of Lemma 2.1.7. We also derive a recursion for the moments of
L̄N and estimate the order of fluctuation of the renormalized maximum eigenvalue
λ N

N /
√

N above the spectrum edge, an observation that will be useful in Section
3.7.
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3.3.1 Calculation of moments of̄LN

In this section, we derive the following explicit formula for 〈L̄N,es·〉.

Lemma 3.3.1For any s∈ R, any N∈ N,

〈L̄N,es·〉 = es2/(2N)
N−1

∑
k=0

1
k+1

(
2k
k

)
(N−1) · · ·(N−k)

Nk

s2k

(2k)!
. (3.3.2)

Proof By Lemma 3.2.2,

〈L̄N,φ〉=
1
N

∫ ∞

−∞
φ
(

x√
N

)
K(N)(x,x)dx=

∫ ∞

−∞
φ(x)

K(N)(
√

Nx,
√

Nx)√
N

dx. (3.3.3)

This last identity shows that̄LN is absolutely continuous with respect to Lebesgue
measure, with densityK(N)(

√
Nx,

√
Nx)/

√
N.

Using points 3 and 5 of Lemma 3.2.7, we obtain that, for anyn,

K(n)(x,y)/
√

n =
ψn(x)ψn−1(y)−ψn−1(x)ψn(y)

x−y

and hence by L’Hôpital’s rule

K(n)(x,x)/
√

n = ψ ′
n(x)ψn−1(x)−ψ ′

n−1(x)ψn(x) .

Therefore

d
dx

K(n)(x,x)/
√

n = ψ ′′
n (x)ψn−1(x)−ψ ′′

n−1(x)ψn(x) = −ψn(x)ψn−1(x). (3.3.4)

By (3.3.3) the functionK(N)(
√

Nx,
√

Nx)/
√

N is the Radon–Nikodym derivative
of L̄N with respect to Lebesgue measure and hence we have the following repre-
sentation of the moment-generating function ofL̄N:

〈L̄N,es·〉 =
1
N

∫ ∞

−∞
esx/

√
NK(N)(x,x)dx. (3.3.5)

Integrating by parts once and then applying (3.3.4), we find that

〈L̄N,es·〉 =
1
s

∫ ∞

−∞
esx/

√
NψN(x)ψN−1(x)dx. (3.3.6)

Thus the calculation of the moment generating function ofL̄N boils down to the
problem of evaluating the integral on the right.

By Taylor’s theorem it follows from point 8 of Lemma 3.2.5 that, for anyn,

Hn(x+ t) =
n

∑
k=0

(
n
k

)
Hn−k(x)t

k =
n

∑
k=0

(
n
k

)
Hk(x)t

n−k.
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Let Sn
t =:

∫ ∞
−∞ etxψn(x)ψn−1(x)dx. By the preceding identity and orthogonality we

have

Sn
t =

√
n

n!
√

2π

∫ ∞

−∞
Hn(x)Hn−1(x)e

−x2/2+txdx

=

√
net2/2

n!
√

2π

∫ ∞

−∞
Hn(x+ t)Hn−1(x+ t)e−x2/2dx

= et2/2√n
n−1

∑
k=0

k!
n!

(
n
k

)(
n−1

k

)
t2n−1−2k .

Changing the index of summation in the last sum fromk to n−1−k, we then get

Sn
t = et2/2√n

n−1

∑
k=0

(n−1−k)!
n!

(
n

n−1−k

)(
n−1

n−1−k

)
t2k+1

= et2/2√n
n−1

∑
k=0

(n−1−k)!
n!

(
n

k+1

)(
n−1

k

)
t2k+1 .

From the last calculation combined with (3.3.6) and after a further bit of rear-
rangement we obtain (3.3.2). ⊓⊔

We can now present another

Proof of Lemma 2.1.7 (for Gaussian Wigner matrices)We have written the
moment generating function in the form (3.3.2), making it obvious that asN → ∞
the moments of̄LN tend to the moments of the semicircle distribution. ⊓⊔

3.3.2 The Harer–Zagier recursion and Ledoux’s argument

Recall that, throughout this chapter,λ N
N denotes the maximal eigenvalue of a GUE

matrix. Our goal in this section is to provide the proof of thefollowing lemma.

Lemma 3.3.2 (Ledoux’s bound)There exist positive constants c′ andC′ such that

P

(
λ N

N

2
√

N
≥ eN−2/3ε

)
≤C′e−c′ε , (3.3.7)

for all N ≥ 1 andε > 0.

Roughly speaking, the last inequality says that fluctuations of the rescaled top
eigenvaluẽλ N

N := λ N
N /2

√
N−1 above 0 are of order of magnitudeN−2/3. This is

ana priori indication that the random variablesN2/3λ̃ N
N converge in distribution,

as stated in Theorems 3.1.4 and 3.1.5. In fact, (3.3.7) is going to play a role in the
proof of Theorem 3.1.4, see Subsection 3.7.1.
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The proof of Lemma 3.3.2 is based on a recursion satisfied by the moments of
L̄N. We thus first introduce this recursion in Lemma 3.3.3 below,prove it, and
then show how to deduce from it Lemma 3.3.2. Write

〈L̄N,es·〉 =
∞

∑
k=0

b(N)
k

k+1

(
2k
k

)
s2k

(2k)!
.

Lemma 3.3.3 (Harer–Zagier recursions)For any integer numbers k and N,

b(N)
k+1 = b(N)

k +
k(k+1)

4N2 b(N)
k−1 , (3.3.8)

where if k= 0 we ignore the last term.

Proof of Lemma 3.3.3Define the (hypergeometric) function

Fn(t) = F

(
1−n

2

∣∣∣∣ t
)

:=
∞

∑
k=0

(−1)k

(k+1)!

(
n−1

k

)
tk , (3.3.9)

and note that (
t

d2

dt2
+(2− t)

d
dt

+(n−1)

)
Fn(t) = 0. (3.3.10)

By rearranging (3.3.2) it follows from (3.3.9) that

〈L̄N,es·〉 = ΦN

(
−s2

N

)
, (3.3.11)

where

Φn(t) = e−t/2Fn(t) .

From (3.3.10) we find that
(

4t
d2

dt2
+8

d
dt

+4n− t

)
Φn(t) = 0. (3.3.12)

Write nextΦn(t) = ∑∞
k=0a(n)

k tk. By (3.3.12) we have

0 = 4(k+2)(k+1)a(n)
k+1+4na(n)

k −a(n)
k−1 ,

where ifk = 0 we ignore the last term. Clearly we have, takingn = N,

(−1)ka(N)
k (2k)!

Nk
=

b(N)
k

k+1

(
2k
k

)
= 〈L̄N,x2k〉 .

The lemma follows. ⊓⊔
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Proof of Lemma 3.3.2From (3.3.8) and the definitions we obtain the inequalities

0≤ b(N)
k ≤ b(N)

k+1 ≤
(

1+
k(k+1)

4N2

)
b(N)

k

for N ≥ 1, k≥ 0. As a consequence, we deduce that

b(N)
k ≤ e

c k3

N2 , (3.3.13)

for some finite constantc > 0. By Stirling’s approximation (2.5.12) we have

∞
sup
k=0

k3/2

22k(k+1)

(
2k
k

)
< ∞ .

It follows from (3.3.13) and the last display that, for appropriate positive constants
c andC,

P

(
λ N

N

2
√

N
≥ eε

)
≤ E

(
λ N

N

2
√

Neε

)2k

(3.3.14)

≤ e−2εkNb(N)
k

22k(k+1)

(
2k
k

)
≤CNt−3/2e−2εt+ct3/N2

,

for all N ≥ 1, k≥ 0 and real numbersε, t > 0 such thatk = ⌊t⌋, where⌊t⌋ denotes
the largest integer smaller than or equal tot. Taking t = N2/3 and substituting
N−2/3ε for ε yields the lemma. ⊓⊔

Exercise 3.3.4Prove that, in the setup of this section, for every integerk it holds
that

lim
N→∞

E〈LN,xk〉2 = lim
N→∞

〈L̄N,xk〉2 . (3.3.15)

Using the fact that the moments ofL̄N converge to the moments of the semicircle
distribution, complete yet another proof of Wigner’s Theorem 2.1.1 in the GUE
setup.
Hint: Deduce from (3.3.3) that

〈L̄N,xk〉 =
1

Nk/2+1

∫
xkK(N)(x,x)dx.

Also, rewriteE〈LN,xk〉2 as

=
1

N2+k

1
N!

∫
· · ·
∫

(
N

∑
i=1

xk
i )

2
N

det
i, j=1

K(N)(xi ,x j)
N

∏
j=1

dxj

!
=

1
Nk+2

∫ ∫
x2kK(N)(x,y)2dxdy+

1
Nk+2

(∫
xkK(N)(x,x)dx

)2

= 〈L̄N,xk〉2 + I (N)
k ,
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whereI (N)
k is equal to

1

Nk+3/2

∫ ∫
x2k−xkyk

x−y
(ψN(x)ψN−1(y)−ψN−1(x)ψN(y))K(x,y)dxdy.

To prove the equality marked with the exclamation point, show that
∫ ∞

−∞
K(n)(x, t)K(n)(t,y)dt = K(n)(x,y) ,

while the expression forI (N)
k uses the Christoffel–Darboux formula (see Section

3.2.1). To complete the proof of (3.3.15), show that limN→∞ I (N)
k = 0, expanding

the expression

x2k−xkyk

x−y
(ψN(x)ψN−1(y)−ψN−1(x)ψN(y))

as a linear combination of the functionsψℓ(x)ψm(y) by exploiting the three-term
recurrence (see Section 3.2.1) satisfied by the oscillator wave-functions.

Exercise 3.3.5With the notation of Lemma 3.3.2, show that there existc′,C′ > 0
so that, for allN ≥ 1, if ε > 1 then

P

(
λ N

N

2
√

N
≥ eN−2/3ε

)
≤C′ 1

ε
3
4

e−c′ε
3
2 .

This bound improves upon (3.3.7) for largeε.
Hint: optimize differently over the parametert at the end of the proof of Lemma
3.3.2, replacingε there byεN−2/3.

Exercise 3.3.6The functionFn(t) defined in (3.3.9) is a particular case of the
generalhypergeometric function, see [GrKP94]. Let

xk̄ = x(x+1) · · ·(x+k−1)

be the ascending factorial power. The general hypergeometric function is given
by the rule

F

(
a1 · · · ap

b1 · · · bq

∣∣∣∣ t
)

=
∞

∑
k=0

ak̄
1 · · ·ak̄

p

bk̄
1 · · ·bk̄

q

tk

k!
.

(i) Verify the following generalization of (3.3.10):

d
dt

(
t

d
dt

+b1−1

)
· · ·
(

t
d
dt

+bq−1

)
F

(
a1 · · · ap

b1 · · · bq

∣∣∣∣ t
)

=

(
t

d
dt

+a1

)
· · ·
(

t
d
dt

+ap

)
F

(
a1 · · · ap

b1 · · · bq

∣∣∣∣ t
)

.
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(ii) (Proposed by D. Stanton) Check thatFn(t) in (3.3.9) is a Laguerre polynomial.

3.4 Quick introduction to Fredholm determinants

We have seen in Lemma 3.2.4 that a certain gap probability, i.e. the probability
that a set does not contain any eigenvalue, is given by a Fredholm determinant.
The asymptotic study of gap probabilities thus involves theanalysis of such de-
terminants. Toward this end, in this section we review key definitions and facts
concerning Fredholm determinants. We make no attempt to achieve great gen-
erality. In particular we do not touch here on any functionalanalytic aspects of
the theory of Fredholm determinants. The reader interestedonly in the proof of
Theorem 3.1.1 may skip Subsection 3.4.2 in a first reading.

3.4.1 The setting, fundamental estimates and definition of the Fredholm
determinant

Let X be a locally compact Polish space, withBX denoting its Borelσ -algebra.
Let ν be a complex-valued measure on(X,BX), such that

‖ν‖1 =
∫

X
|ν(dx)| < ∞ . (3.4.1)

(In many applications,X = R, andν will be a scalar multiple of the Lebesgue
measure on a bounded interval).

Definition 3.4.1A kernelis a Borel measurable, complex-valued functionK(x,y)
defined onX×X such that

‖K‖ := sup
(x,y)∈X×X

|K(x,y)| < ∞ . (3.4.2)

Thetraceof a kernelK(x,y) (with respect toν) is

tr(K) =

∫
K(x,x)dν(x) . (3.4.3)

Given two kernelsK(x,y) andL(x,y), define theircomposition(with respect toν)
as

(K ⋆L)(x,y) =

∫
K(x,z)L(z,y)dν(z). (3.4.4)

The trace in (3.4.3) and the composition in (3.4.4) are well defined because‖ν‖1 <

∞ and‖K‖ < ∞, and further,K ⋆L is itself a kernel. By Fubini’s Theorem, for any
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three kernelsK, L andM, we have

tr(K ⋆L) = tr(L⋆K) and(K ⋆L)⋆M = K ⋆ (L⋆M).

Warning We do not restrictK in Definition 3.4.1 to be continuous. Thus, we may
have situations where two kernelsK,K′ satisfyK = K′, ν × ν- a.e., but tr(K) 6=
tr(K′).

We turn next to a basic estimate.

Lemma 3.4.2Fix n > 0. For any two kernels F(x,y) and G(x,y) we have
∣∣∣∣

n
det

i, j=1
F(xi ,y j)−

n
det

i, j=1
G(xi ,y j)

∣∣∣∣≤ n1+n/2‖F −G‖ ·max(‖F‖,‖G‖)n−1 (3.4.5)

and ∣∣∣∣
n

det
i, j=1

F(xi ,y j)

∣∣∣∣≤ nn/2‖F‖n . (3.4.6)

The factornn/2 in (3.4.5) and (3.4.6) comes from Hadamard’s inequality (Theorem
A.3). In view of Stirling’s approximation (2.5.12), it is clear that the Hadamard
bound is much better than the boundn! we would get just by counting terms.

Proof Define

H(k)
i (x,y) =





G(x,y) if i < k,
F(x,y)−G(x,y) if i = k,

F(x,y) if i > k,

noting that, by the linearity of the determinant with respect to rows,

n
det

i, j=1
F(xi ,y j )−

n
det

i, j=1
G(xi ,y j) =

n

∑
k=1

n
det

i, j=1
H(k)

i (xi ,y j) . (3.4.7)

Considering the vectorsvi = v(k)
i with vi( j)= H(k)

i (xi ,y j), and applying Hadamard’s
inequality (Theorem A.3), one gets

∣∣∣∣
n

det
i, j=1

H(k)
i (xi ,y j)

∣∣∣∣≤ nn/2‖F −G‖ ·max(‖F‖,‖G‖)n−1 .

Substituting in (3.4.7) yields (3.4.5). Noting that the summation in (3.4.7) involves
only one nonzero term whenG = 0, one obtains (3.4.6). ⊓⊔

We are now finally ready to define the Fredholm determinant associated with a
kernelK(x,y). Forn > 0, put

∆n = ∆n(K,ν) =

∫
· · ·
∫ n

det
i, j=1

K(ξi ,ξ j)dν(ξ1) · · ·dν(ξn) , (3.4.8)
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setting∆0 = ∆0(K,ν) = 1. We have, by (3.4.6),
∣∣∣∣
∫

· · ·
∫ n

det
i, j=1

K(ξi ,ξ j)dν(ξ1) · · ·dν(ξn)

∣∣∣∣≤ ‖ν‖n
1‖K‖nnn/2 . (3.4.9)

So,∆n is well defined.

Definition 3.4.3TheFredholm determinantassociated with the kernelK is defined
as

∆(K) = ∆(K,ν) =
∞

∑
n=0

(−1)n

n!
∆n(K,ν).

(As in (3.4.8) and Definition 3.4.3, we often suppress the dependence onν from
the notation for Fredholm determinants.) In view of Stirling’s approximation
(2.5.12) and estimate (3.4.9), the series in Definition 3.4.3 converges absolutely,
and so∆(K) is well defined. The reader should not confuse the Fredholm determi-
nant∆(K) with the Vandermonde determinant∆(x): in the former, the argument
is a kernel while, in the latter, it is a vector.

Remark 3.4.4 Here is some motivation for calling∆(K) a determinant. Let
f1(x), . . . , fN(x), g1(x), . . . ,gN(x) be given. Put

K(x,y) =
N

∑
i=1

fi(x)gi(y).

Assume further that maxi supx fi(x) < ∞ and maxj supy g j(y) < ∞. ThenK(x,y) is
a kernel and so fits into the theory developed thus far. Paraphrasing the proof of
Lemma 3.2.4, we have that

∆(K) =
N

det
i, j=1

(
δi j −

∫
fi(x)g j(x)dν(x)

)
. (3.4.10)

For this reason, one often encounters the notation det(I −K) for the Fredholm
determinant ofK.

The determinants∆(K) inherit good continuity properties with respect to the‖ · ‖
norm.

Lemma 3.4.5For any two kernels K(x,y) and L(x,y) we have

|∆(K)−∆(L)| ≤
(

∞

∑
n=1

n1+n/2‖ν‖n
1 ·max(‖K‖,‖L‖)n−1

n!

)
· ‖K−L‖ . (3.4.11)
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Proof Sum the estimate (3.4.5). ⊓⊔
In particular, withK held fixed, and withL varying in such a way that‖K−L‖→
0, it follows that∆(L) → ∆(K). This is the only thing we shall need to obtain
the convergence in law of the spacing distribution of the eigenvalues of the GUE,
Theorem 3.1.1. On the other hand, the next subsections will be useful in the proof
of Theorem 3.1.2.

3.4.2 Definition of the Fredholm adjugant, Fredholm resolvent and a
fundamental identity

Throughout, we fix a measureν and a kernelK(x,y). We put∆ = ∆(K). All the
constructions under this heading depend onK andν, but we suppress reference to
this dependence in the notation in order to control clutter.Define, for any integer
n≥ 1,

K

(
x1 . . . xn

y1 . . . yn

)
=

n
det

i, j=1
K(xi ,y j) , (3.4.12)

set

Hn(x,y) =

∫
· · ·
∫

K

(
x ξ1 . . . ξn

y ξ1 . . . ξn

)
dν(ξ1) · · ·dν(ξn) (3.4.13)

and

H0(x,y) = K(x,y) .

We then have from Lemma 3.4.2 that

|Hn(x,y)| ≤ ‖K‖n+1‖ν‖n
1(n+1)(n+1)/2. (3.4.14)

Definition 3.4.6TheFredholm adjugantof the kernelK(x,y) is the function

H(x,y) =
∞

∑
n=0

(−1)n

n!
Hn(x,y) . (3.4.15)

If ∆(K) 6= 0 we define theresolventof the kernelK(x,y) as the function

R(x,y) =
H(x,y)
∆(K)

. (3.4.16)

By (3.4.14), the series in (3.4.15) converges absolutely and uniformly onX×X.
ThereforeH(·) is well defined (and continuous onX2p if K is continuous onX×
X). The main fact to bear in mind as we proceed is that

sup|F(x,y)| < ∞ (3.4.17)
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for F = K,H,R. These bounds are sufficient to guarantee the absolute convergence
of all the integrals we will encounter in the remainder of Section 3.4. Also it bears
emphasizing that the two-variable functionsH(x,y) (resp.,R(x,y) if defined) are
kernels.

We next prove a fundamental identity relating the Fredholm adjugant and de-
terminant associated with a kernelK.

Lemma 3.4.7 (The fundamental identity)Let H(x,y) be the Fredholm adjugant
of the kernel K(x,y). Then,

∫
K(x,z)H(z,y)dν(z) = H(x,y)−∆(K) ·K(x,y)

=

∫
H(x,z)K(z,y)dν(z) , (3.4.18)

and hence (equivalently)

K ⋆H = H −∆(K) ·K = H ⋆K . (3.4.19)

Remark 3.4.8Before proving the fundamental identity (3.4.19), we make some
amplifying remarks. If∆(K) 6= 0 and hence the resolventR(x,y) = H(x,y)/∆(K)

of K(x,y) is well defined, then the fundamental identity takes the form
∫

K(x,z)R(z,y)dν(z) = R(x,y)−K(x,y) =

∫
R(x,z)K(z,y)dν(z) (3.4.20)

and hence (equivalently)

K ⋆R= R−K = R⋆K .

It is helpful if not perfectly rigorous to rewrite the last formula as the operator
identity

1+R= (1−K)−1.

Rigor is lacking here because we have not taken the trouble toassociate linear
operators with our kernels. Lack of rigor notwithstanding,the last formula makes
it clear thatR(x,y) deserves to be called the resolvent ofK(x,y). Moreover, this
formula is useful for discovering composition identities which one can then verify
directly and rigorously.

Proof of Lemma 3.4.7Here are two reductions to the proof of the fundamental
identity. Firstly, it is enough just to prove the first of the equalities claimed in
(3.4.18) because the second is proved similarly. Secondly,proceeding term by
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term, sinceH0 = K and∆0 = 1, it is enough to prove that, forn > 0,

(−1)n−1

(n−1)!

∫
K(x,z)Hn−1(z,y)dν(z) =

(−1)n

n!
(Hn(x,y)−∆n ·K(x,y))

or, equivalently,

Hn(x,y) = ∆n ·K(x,y)−n
∫

K(x,z)Hn−1(z,y)dν(z) , (3.4.21)

where∆n = ∆n(K).

Now we can quickly give the proof of the fundamental identity(3.4.19). Ex-
panding by minors of the first row, we find that

K

(
x ξ1 . . . ξn

y ξ1 . . . ξn

)

= K(x,y)K

(
ξ1 . . . ξn

ξ1 . . . ξn

)

+
n

∑
j=1

(−1) jK(x,ξ j)K

(
ξ1 . . . ξ j−1 ξ j ξ j+1 . . . ξn

y ξ1 . . . ξ j−1 ξ j+1 . . . ξn

)

= K(x,y)K

(
ξ1 . . . ξn

ξ1 . . . ξn

)

−
n

∑
j=1

K(x,ξ j)K

(
ξ j ξ1 . . . ξ j−1 ξ j+1 . . . ξn

y ξ1 . . . ξ j−1 ξ j+1 . . . ξn

)
.

Integrating out the variablesξ1, . . . ,ξn in evident fashion, we obtain (3.4.21). Thus
the fundamental identity is proved. ⊓⊔

We extract two further benefits from the proof of the fundamental identity. Re-
call from (3.4.8) and Definition 3.4.3 the abbreviated notation ∆n = ∆n(K) and
∆(K).

Corollary 3.4.9 (i) For all n ≥ 0,

(−1)n

n!
Hn(x,y) =

n

∑
k=0

(−1)k

k!
∆k · (K ⋆ · · ·⋆K︸ ︷︷ ︸

n+1−k

)(x,y) . (3.4.22)

(ii) Further,

(−1)n

n!
∆n+1 =

n

∑
k=0

(−1)k

k!
∆k · tr(K ⋆ · · ·⋆K︸ ︷︷ ︸

n+1−k

) . (3.4.23)

In particular, the sequence of numbers

tr(K), tr(K ⋆K), tr(K ⋆K ⋆K), . . .
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uniquely determines the Fredholm determinant∆(K).

Proof Part (i) follows from (3.4.21) by employing an induction onn. We leave the
details to the reader. Part (ii) follows by puttingx = ξ andy = ξ in (3.4.22), and
integrating out the variableξ . ⊓⊔

Multiplicativity of Fredholm determinants

We now prove a result needed for our later analysis of GOE and GSE. A reader
interested only in GUE can skip this material.

Theorem 3.4.10Fix kernels K(x,y) and L(x,y) arbitrarily. We have

∆(K +L−L⋆K) = ∆(K)∆(L) . (3.4.24)

In the sequel we refer to this relation as themultiplicativityof the Fredholm deter-
minant construction.

Proof Let t be a complex variable. We are going to prove multiplicativity by
studying the entire function

ϕK,L(t) = ∆(K + t(L−L⋆K))

of t. We assume below thatϕK,L(t) does not vanish identically, for otherwise there
is nothing to prove. We claim that

ϕ ′
K,L(0) = −∆(K) tr(L−L⋆K)+ tr((L−L⋆K)⋆H)

= −∆(K) tr(L) , (3.4.25)

whereH is the Fredholm adjugant ofK, see equation (3.4.15). The first step
is justified by differentiation under the integral; to justify the exchange of limits
one notes that for any entire analytic functionf (z) andε > 0 one hasf ′(0) =

1
2π i

∫
|z|=ε

f (z)
z2 dz, and then uses Fubini’s Theorem. The second step follows by the

fundamental identity, see Lemma 3.4.7. This completes the proof of (3.4.25).

Sinceϕ0,L(t) = ∆(tL) equals 1 fort = 0, the productϕ0,L(t)ϕK,L(t) does not
vanish identically. Arbitrarily fix a complex numbert0 such thatϕ0,L(t0)ϕK,L(t0) 6=
0. Note that the resolvantS of t0L is defined. One can verify by straightforward
calculation that the kernels

K̃ = K + t0(L−L⋆K), L̃ = L+L⋆S, (3.4.26)

satisfy the composition identity

K +(t0 + t)(L−L⋆K) = K̃ + t(L̃− L̃⋆ K̃) . (3.4.27)
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With K̃ andL̃ as in (3.4.26), we haveϕK̃,L̃(t) = ϕK,L(t + t0) by (3.4.27) and hence

d
dt

logϕK,L(t)

∣∣∣∣
t=t0

= − tr(L̃)

by (3.4.25). Now the last identity holds also forK = 0 and the right side is inde-
pendent ofK. It follows that the logarithmic derivatives of the functionsϕ0,L(t)
andϕK,L(t) agree wherever neither has a pole, and so these logarithmic deriva-
tives must be identically equal. Integrating and exponentiating once we obtain an
identity ϕK,L(t) = ϕK,L(0)ϕ0,L(t) of entire functions oft. Finally, by evaluating
the last relation att = 1, we recover the multiplicativity relation (3.4.24). ⊓⊔

3.5 Gap probabilities at0 and proof of Theorem 3.1.1

In the remainder of this chapter, we letXN ∈ H
(2)

N be a random Hermitian matrix
from the GUE with eigenvaluesλ N

1 ≤ ·· · ≤ λ N
N . We initiate in this section the

study of thespacingsbetween eigenvalues ofXN. We focus on those eigenvalues
that lie near 0, and seek, for a fixedt > 0, to evaluate the limit

lim
N→∞

P[
√

Nλ N
1 , . . . ,

√
Nλ N

N 6∈ (−t/2,t/2)] , (3.5.1)

see the statement of Theorem 3.1.1. We note thata priori, because of Theorems
2.1.1 and 2.1.22, the limit in (3.5.1) has some chance of being nondegenerate
because theN random variables

√
Nλ N

1 ,. . .,
√

Nλ N
N are spread out over an interval

very nearly of length 4N. As we will show in Section 4.2, the computation of the
limit in (3.5.1) allows one to evaluate other limits, such asthe limit of the empirical
measure of the spacings in the bulk of the spectrum.

As in (3.2.4), set

K(n)(x,y) =
n−1

∑
k=0

ψk(x)ψk(y) =
√

n
ψn(x)ψn−1(y)−ψn−1(x)ψn(y)

x−y
,

where theψk(x) are the normalized oscillator wave-functions introduced in Defi-
nition 3.2.1. Set

S(n)(x,y) =
1√
n

K(n)

(
x√
n
,

y√
n

)
.

A crucial step in the proof of Theorem 3.1.1 is the following lemma, whose proof,
which takes most of the analysis in this section, is deferred.

Lemma 3.5.1With the above notation, it holds that

lim
n→∞

S(n)(x,y) =
1
π

sin(x−y)
x−y

, (3.5.2)
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uniformly on each bounded subset of the(x,y)-plane.

Proof of Theorem 3.1.1Recall that by Lemma 3.2.4,

P[
√

nλ (n)
1 , . . . ,

√
nλ (n)

n 6∈ A]

= 1+
∞

∑
k=1

(−1)k

k!

∫
√

n−1A
· · ·∫√

n−1A
detki, j=1K(n)(xi ,x j)∏k

j=1dxj

= 1+
∞

∑
k=1

(−1)k

k!

∫
A · · ·

∫
Adetki, j=1S(n) (xi ,x j)∏k

j=1dxj .

(The scaling of Lebesgue’s measure in the last equality explains the appearance
of the scaling by 1/

√
n in the definition ofS(n)(x,y).) Lemma 3.5.1 together with

Lemma 3.4.5 complete the proof of the theorem. ⊓⊔
The proof of Lemma 3.5.1 takes up the rest of this section. We begin by bring-

ing, in Subsection 3.5.1, a quick introduction to Laplace’smethod for the evalua-
tion of asymptotics of integrals, which will be useful for other asymptotic compu-
tations, as well. We then apply it in Subsection 3.5.2 to conclude the proof.

Remark 3.5.2 We remark that one is naturally tempted to guess that the ran-
dom variableWN =“width of the largest open interval symmetric about the origin
containing none of the eigenvalues

√
Nλ N

1 , . . . ,
√

Nλ N
N ” should possess a limit in

distribution. Note however that we do nota priori have tightness for that random
variable. But, as we show in Section 3.6, we do have tightness(see (3.6.34) be-
low) a posteriori. In particular, in Section 3.6 we prove Theorem 3.1.2, which
provides an explicit expression for the limit distributionof WN.

3.5.1 The method of Laplace

Laplace’s method deals with the asymptotic (ass→ ∞) evaluation of integrals of
the form ∫

f (x)sg(x)dx.

We will be concerned with the situation in which the functionf possesses a global
maximum at some pointa, and behaves quadratically in a neighborhood of that
maximum. More precisely, letf : R 7→ R+ be given, and for some constanta
and positive constantss0,K,L,M, letG = G (a,ε0,s0, f (·),K,L,M) be the class of
measurable functionsg : R 7→ R satisfying the following conditions:

(i) |g(a)| ≤ K;
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(ii) sup0<|x−a|≤ε0

∣∣∣ g(x)−g(a)
x−a

∣∣∣≤ L;

(iii)
∫

f (x)s0|g(x)|dx≤ M.

We then have the following.

Theorem 3.5.3 (Laplace)Let f : R→ R+ be a function such that, for some a∈ R

and some positive constantsε0, c, the following hold.

(a) f(x) ≤ f (x′) if either a− ε0 ≤ x≤ x′ ≤ a or a≤ x′ ≤ x≤ a+ ε0.

(b) For all ε < ε0, sup|x−a|>ε f (x) ≤ f (a)−cε2.

(c) f(x) has two continuous derivatives in the interval(a−2ε0,a+2ε0).

(d) f ′′(a) < 0.

Then, for any function g∈ G (a,ε0,s0, f (·),K,L,M), we have

lim
s→∞

√
s f(a)−s

∫
f (x)sg(x)dx=

√
−2π f (a)

f ′′(a)
g(a) , (3.5.3)

and moreover, for fixed f,a,ε0,s0,K,L,M, the convergence is uniform over the
classG (a,ε0,s0, f (·),K,L,M).

Note that by point (b) of the assumptions,f (a) > 0. The intuition here is that ass
tends to infinity the function( f (x)/ f (a))s nearx= a peaks more and more sharply
and looks at the microscopic level more and more like a bell-curve, whereasf (x)s

elsewhere becomes negligible. Formula (3.5.3) is arguablythe simplest nontrivial
application of Laplace’s method. Later we are going to encounter more sophisti-
cated applications.

Proof of Theorem 3.5.3Let ε(s) be a positive function defined fors≥ s0 such
thatε(s) →s→∞ 0 andsε(s)2 →s→∞ ∞, while ε0 = sups≥s0

ε(s). For example, we

could takeε(s) = ε0 · (s0/s)1/4. Fors≥ s0, write
∫

f (x)sg(x)dx= g(a)I1 + I2+ I3 ,

where

I1 =
∫
|x−a|≤ε(s) f (x)sdx,

I2 =
∫
|x−a|≤ε(s) f (x)s(g(x)−g(a))dx,

I3 =
∫
|x−a|>ε(s) f (x)sg(x)dx.

For |t| < 2ε0, put

h(t) =

∫ 1

0
(1− r)(log f )′′(a+ rt )dr ,
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thus defining a continuous function oft such thath(0) = f ′′(a)/2 f (a) and which
by Taylor’s Theorem satisfies

f (x) = f (a)exp(h(x−a)(x−a)2)

for |x−a|< 2ε0. We then have

I1 =
f (a)s
√

s

∫

|t|≤ε(s)
√

s
exp

(
h

(
t√
s

)
t2
)

dt ,

and hence

lim
s→∞

√
s f(a)−sI1 =

∫ ∞

−∞
exp
(
h(0)t2)dt =

√
−2π f (a)

f ′′(a)
.

We have|I2| ≤ Lε(s)I1 and hence

lim
s→∞

√
s f(a)−sI2 = 0.

We have, sinceε(s) < ε0,

|I3| ≤ M sup
x:|x−a|>ε(s)

| f (x)|s−s0 ≤ M f (a)s−s0

(
1− cε(s)2

f (a)

)s−s0

,

and hence

lim
s→∞

√
s f(a)−sI3 = 0.

This is enough to prove that the limit formula (3.5.3) holds and enough also to
prove the uniformity of convergence over all functionsg(x) of the classG . ⊓⊔

3.5.2 Evaluation of the scaling limit: proof of Lemma 3.5.1

The main step in the proof of Lemma 3.5.1 is the following uniform convergence
result, whose proof is deferred. Let

Ψν(t) = n
1
4 ψν

(
t√
n

)
,

with ν a quantity whose difference fromn is fixed (in the proof of Lemma 3.5.1,
we will useν = n,n−1,n−2).

Lemma 3.5.4Uniformly for t in a fixed bounded interval,

lim
n→∞

|Ψν (t)− 1√
π

cos
(

t − πν
2

)
| = 0. (3.5.4)



118 3. SPACINGS FORGAUSSIAN ENSEMBLES

With Lemma 3.5.4 granted, we can complete the
Proof of Lemma 3.5.1Recall that

S(n)(x,y) =
√

n
ψn(

x√
n)ψn−1(

y√
n)−ψn−1(

x√
n)ψn(

y√
n)

x−y
.

In order to prove the claimed uniform convergence, it is useful to get rid of the
division by(x−y) in S(n)(x,y). Toward this end, noting that for any differentiable
functions f ,g onR,

f (x)g(y)− f (y)g(x)
x−y

=

(
f (x)− f (y)

x−y

)
g(y)+ f (y)

(
g(y)−g(x)

x−y

)

= g(y)
∫ 1

0
f ′(tx+(1− t)y)dt− f (y)

∫ 1

0
g′(tx+(1− t)y)dt, (3.5.5)

we deduce

S(n)(x,y) = ψn−1(
y√
n
)
∫ 1

0
ψ ′

n(t
x√
n

+(1− t)
y√
n
)dt

−ψn(
y√
n
)

∫ 1

0
ψ ′

n−1(t
x√
n

+(1− t)
y√
n
)dt (3.5.6)

= ψn−1(
y√
n
)
∫ 1

0
(
√

nψn−1(z)−
z
2

ψn(z))|z=t x√
n+(1−t) y√

n
dt

−ψn(
y√
n
)

∫ 1

0
(
√

n−1ψn−2(z)−
z
2

ψn−1(z))|z=t x√
n
+(1−t) y√

n
dt ,

where we used in the last equality point 4 of Lemma 3.2.7. Using (3.5.4) (in the
caseν = n,n−1,n−2) in (3.5.6) and elementary trigonometric formulas shows
that

S(n)(x,y) ∼ 1
π

(
cos(y− π(n−1)

2
)

∫ 1

0
cos

(
tx+(1− t)y− π(n−1)

2

)
dt

−cos(y− πn
2

)
∫ 1

0
cos

(
tx+(1− t)y− π(n−2)

2

)
dt

)

∼ 1
π

sin(x−y)
x−y

,

which, Lemma 3.5.4 granted, completes the proof of Lemma 3.5.1. ⊓⊔
Proof of Lemma 3.5.4Recall the Fourier transform identity

e−x2/2 =
1√
2π

∫
e−ξ 2/2−iξxdξ .
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Differentiating under the integral, we find that

Hn(x)e
−x2/2 = (−1)n dn

dxn e−x2/2 =
1√
2π

∫
(iξ )ne−ξ 2/2−iξxdξ ,

or equivalently

ψν(x) =
iν ex2/4

(2π)3/4
√

ν!

∫
ξ νe−ξ 2/2−iξxdξ . (3.5.7)

We use the letterν here instead ofn to help avoid confusion at the next step. As a
consequence, settingCν,n =

√
n/(2π), we have

Ψν(t) =
iνet2/(4n)n1/4

(2π)3/4
√

ν!

∫
ξ νe−ξ 2/2−iξ t/

√
ndξ

=
(2π)1/4Cν,net2/(4n)n1/4+ν/2

√
ν!

∫
(ξ e−ξ 2/2)niν e−iξ tξ ν−ndξ

∼ (2π)1/4Cν,nn1/4+n/2
√

n!

∫
(ξ e−ξ 2/2)niν e−iξ tξ ν−ndξ

∼ Cν,nen/2
∫
|ξ e−ξ 2/2|nℜ[(isignξ )νe−iξ t ]|ξ ν−n|dξ ,

where Stirling’s approximation (2.5.12) and the fact thatΨν(t) is real were used
in the last line. Using symmetry, we can rewrite the last expressions as

2Cν,nen/2
∫ ∞

−∞
f (ξ )ngt(ξ )dξ ,

with f (x) = xe−x2/21x≥0 andg(x) = gt(x) = cos(xt− πν
2 )xν−n.

Considert as fixed, and letn → ∞ in one of the four possible ways such that
g(·) does not depend onn (recall thatν −n does not depend onn). Note thatf (x)
achieves its maximal value atx = 1 and

f (1) = e−1/2, f ′(1) = 0, f ′′(1) = −2e−1/2.

Hence, we can apply Laplace’s method (Theorem 3.5.3) to find that

Ψν(t) →n→∞
1√
π

cos
(

t − πν
2

)
.

Moreover, the convergence here is uniform fort in a fixed bounded interval, as
follows from the uniformity asserted for convergence in limit formula (3.5.3). ⊓⊔

Exercise 3.5.5Use Laplace’s method (Theorem 3.5.3) witha= 1 to prove (2.5.12):
ass→ ∞ along the positive real axis,

Γ(s) =

∫ ∞

0
xse−x dx

x
= ss

∫ ∞

0
(xe−x)sdx

x
∼
√

2π ss−1/2e−s.
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This recovers in particular Stirling’s approximation (2.5.12).

3.5.3 A complement: determinantal relations

Let integersℓ1, . . . , ℓp ≥ 0 and bounded disjoint Borel setsA1, . . . ,Ap be given.
Put

PN(ℓ1, . . . , ℓp;A1, . . . ,Ap)= P
[
ℓi =

∣∣{√Nλ N
1 , . . . ,

√
Nλ N

N

}
∩Ai

∣∣, for i = 1, . . . , p
]
.

We have the following.

Lemma 3.5.6Let s1, . . . ,sp be independent complex variables and let

ϕ = (1−s1)1A1 + · · ·+(1−sp)1Ap.

Then, the limit

P(ℓ1, . . . , ℓp;A1, . . . ,Ap) = lim
N→∞

PN(ℓ1, . . . , ℓp;A1, . . . ,Ap) (3.5.8)

exists and satisfies
∞

∑
ℓ1=0

· · ·
∞

∑
ℓp=0

P(ℓ1, . . . , ℓp;A1, . . . ,Ap)s
ℓ1
1 · · ·sℓp

p

= 1+
∞

∑
k=1

(−1)k

k!

∫ · · ·∫ detki, j=1
1
π

sin(xi−xj )
xi−xj

∏k
j=1ϕ(x j)dxj . (3.5.9)

That is, the generating function in the left side of (3.5.8) can be represented in
terms of a Fredholm determinant. We note that this holds in greater generality, see
Section 4.2.

Proof The proof is a slight modification of the method presented in Subsection
3.5.2. Note that the right side of (3.5.9) defines, by the fundamental estimate
(3.4.9), an entire function of the complex variabless1, . . . ,sp, whereas the left side
defines a function analytic in a domain containing the product of p copies of the
unit disc centered at the origin. Clearly we have

E
N

∏
i=1

(
1−ϕ

(√
Nλ N

i

))
= ∑

ℓ1,...,ℓp≥0
ℓ1+···+ℓp≤N

PN(ℓ1, . . . , ℓp;A1, . . . ,Ap)s
ℓ1
1 · · ·sℓp

p .

(3.5.10)
The function ofs1, . . . ,sp on the right is simply a polynomial, whereas the expec-
tation on the left can be represented as a Fredholm determinant. From this, the
lemma follows after representing the probabilityPN(ℓ1, . . . , ℓp;A1, . . . ,Ap) as ap-
dimensional Cauchy integral. ⊓⊔
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3.6 Analysis of the sine-kernel

Our goal in this section is to derive differential equations(in the parametert)
for the probability that no eigenvalue of the (properly rescaled) GUE lies in the
interval (−t/2, t/2). We will actually derive slightly more general systems of
differential equations that can be used to evaluate expressions like (3.5.9).

3.6.1 General differentiation formulas

Recalling the setting of our general discussion of Fredholmdeterminants in Sec-
tion 3.4, we fix a bounded open interval(a,b) ⊂ R, real numbers

a < t1 < · · · < tn < b

in the interval(a,b) and complex numbers

s1, . . . ,sn−1, s0 = 0 = sn .

Set

η = s11(t1,t2) + · · ·+sn−11(tn−1,tn) ,

and defineν so that it has densityη with respect to the Lebesgue measure on
X = R. We then have, forf ∈ L1[(a,b)],

〈 f ,ν〉 =

∫
f (x)dν(x) =

n−1

∑
i=1

si

∫ ti+1

ti
f (x)dx.

Motivated by Theorem 3.1.1, we fix the function

S(x,y) =
sin(x−y)
π(x−y)

(3.6.1)

on (a,b)2 as our kernel. As usual∆ = ∆(S) denotes the Fredholm determinant
associated withSand the measureν. We assume that∆ 6= 0 so that the Fredholm
resolventR(x,y) is also defined.

Before proceeding with the construction of a system of differential equations,
we provide a description of the main ideas, disregarding in this sketch issues of
rigor, and concentrating on the most important case ofn = 2. View the kernelsS
andR as operators onL1[(a,b)], writing multiplication instead of the⋆ operation.
As noted in Remark 3.4.8, we have, withS̃(x,y) = (x− y)S(x,y) and R̃(x,y) =

(x−y)R(x,y), that

(1−S)−1 = 1+R, S̃= [M,S], R̃= [M,R] ,
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whereM is the operation of multiplication byx and the bracket[A,B] = AB−BA is
the commutator of the operatorsA,B. Note also that under our special assumptions

S̃(x,y) = (sinxcosy−sinycosx)/π ,

and hence the operatorS̃ is of rank 2. But we have

R̃ = [M,R] = [M,(1−S)−1]

= −(1−S)−1[M,1−S](1−S)−1 = (1+R)S̃(1+R) ,

and henceR̃ is also of rank 2. LettingP(x) = (1+ R)cos(x)/
√

π andQ(x) =

(1+R)sin(x)/
√

π, we then obtaiñR= Q(x)P(y)−Q(y)P(x), and thus

R(x,y) =
Q(x)P(y)−Q(y)P(x)

x−y
. (3.6.2)

(See Lemma 3.6.2 below for the precise statement and proof.)One checks that
differentiating with respect to the endpointst1,t2 the function log∆(S) yields the
functionsR(ti , ti), i = 1,2, which in turn may be related to derivatives ofP and
Q by a careful differentiation, using (3.6.2). The system of differential equations
thus obtained, see Theorem 3.6.2, can then be simplified, after specialization to
the caset2 = −t1 = t/2, to yield the Painlevé V equation appearing in Theorem
3.1.2.

Turning to the actual derivation, we consider the parameters t1, . . . ,tn as vari-
able, whereas we consider the kernelS(x,y) and the parameterss1, . . . , sn−1 to be
fixed. Motivated by the sketch above, setf (x) = (sinx)/

√
π and

Q(x) = f (x)+

∫
R(x,y) f (y)dν(y), P(x) = f ′(x)+

∫
R(x,y) f ′(y)dν(y) .

(3.6.3)
We emphasize thatP(x), Q(x) andR(x,y) depend ont1, . . . ,tn (throughν), al-
though the notation does not show it. The main result of this section, of which
Theorem 3.1.2 is an easy corollary, is the following system of differential equa-
tions.

Theorem 3.6.1With the above notation, put, for i, j = 1, . . . ,n,

pi = P(ti), qi = Q(ti), Ri j = R(ti ,t j) .
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Then, for i, j = 1, . . . ,n with i 6= j, we have the following equations:

Ri j = (qi p j −q j pi)/(ti − t j) ,

∂q j/∂ ti = −(si −si−1) ·Rjiqi ,

∂ p j/∂ ti = −(si −si−1) ·Rji pi ,

∂qi/∂ ti = +pi + ∑
k6=i

(sk−sk−1) ·Rikqk ,

∂ pi/∂ ti = −qi + ∑
k6=i

(sk−sk−1) ·Rik pk ,

Rii = pi∂qi/∂ ti −qi∂ pi/∂ ti ,

(∂/∂ ti) log∆ = (si −si−1) ·Rii . (3.6.4)

The proof of Theorem 3.6.1 is completed in Subsection 3.6.2.In the rest of
this subsection, we derive a fundamental differentiation formula, see (3.6.10), and
derive several relations concerning the functionsP, Q introduced in (3.6.3), and
the resolventR.

In the sequel, we write
∫

Ii
for
∫ ti+1
ti . Recall from (3.4.8) that

∆ℓ =
n−1

∑
i1=1

· · ·
n−1

∑
iℓ=1

si1 · · ·siℓ

∫

Ii1

· · ·
∫

Iiℓ

S

(
ξ1 . . . ξℓ

ξ1 . . . ξℓ

)
dξ1 · · ·dξℓ .

Therefore, by the fundamental theorem of calculus,

∂
∂ ti

∆ℓ(x,y)

= −
ℓ

∑
j=1

n−1

∑
i1=1

· · ·
n−1

∑
i j−1=1

n−1

∑
i j+1=1

· · ·
n−1

∑
iℓ=1

si1 · · ·si j−1si j+1 · · ·sik(si −si−1)

×
∫

Ii1

· · ·
∫

Ii j−1

∫

Ii j+1

· · ·
∫

Iiℓ

S

(
ξ1 . . . ξi−1 ti ξi+1 . . . ξℓ

ξ1 . . . ξi−1 ti ξi+1 . . . ξℓ

) ℓ

∏
j=1
j 6=i

dξ j

= −ℓ(si −si−1)Hℓ−1(ti , ti) , (3.6.5)

with Hℓ−1 as in (3.4.13). Multiplying by(−1)ℓ/ℓ! and summing, using the esti-
mate (3.4.9) and dominated convergence, we find that

∂
∂ ti

∆ = (si −si−1)H(ti ,ti) . (3.6.6)

From (3.6.6) we get

∂
∂ ti

log∆ = (si −si−1)R(ti ,ti) . (3.6.7)
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We also need to be able to differentiateR(x,y). From the fundamental identity
(3.4.20), we have

∂
∂ ti

R(x,y) = −(si −si−1)R(x, ti)S(ti ,y)+
∫

S(x,z)
∂R(z,y)

∂ ti
ν(dz) . (3.6.8)

Substitutingy= z′ in (3.6.8) and integrating againstR(z′,y) with respect toν(dz′)
gives

∫ ∂R(x,z′)
∂ ti

R(z′,y)ν(dz′) = −(si −si−1)R(x,ti)
∫

S(ti ,z
′)R(z′,y)ν(dz′)

+

∫ ∫
S(x,z)

∂R(z,z′)
∂ ti

R(z′,y)ν(dz)ν(dz′) . (3.6.9)

Summing (3.6.8) and (3.6.9) and using again the fundamentalidentity (3.4.20)
then yields

∂
∂ ti

R(x,y) = (si−1−si)R(x,ti)R(ti ,y) . (3.6.10)

The next lemma will play an important role in the proof of Theorem 3.6.1.

Lemma 3.6.2The functions P,Q,R satisfy the following relations:

R(x,y) =
Q(x)P(y)−Q(y)P(x)

x−y
= R(y,x) , (3.6.11)

R(x,x) = Q′(x)P(x)−Q(x)P′(x) , (3.6.12)

∂
∂ ti

Q(x) = (si−1−si)R(x,ti)Q(ti) , (3.6.13)

and similarly

∂
∂ ti

P(x) = (si−1−si)R(x,ti)P(ti) . (3.6.14)

Proof We rewrite the fundamental identity (3.4.19) in the abbreviated form

R⋆S= R−S= S⋆R. (3.6.15)

To abbreviate notation further, put

R̃(x,y) = (x−y)R(x,y), S̃(x,y) = (x−y)S(x,y) .

From (3.6.15) we deduce that

R̃⋆S+R⋆ S̃= R̃− S̃.
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Applying the operation(·)⋆Ron both sides, we get

R̃⋆ (R−S)+R⋆ S̃⋆R= R̃⋆R− S̃⋆R.

Adding the last two relations and making the obvious cancellations and rearrange-
ments, we get

R̃= (1+R)⋆ S̃⋆ (1+R).

Together with the trigonometric identity

sin(x−y) = sinxcosy−sinycosx

as well as the symmetry

S(x,y) = S(y,x), R(x,y) = R(y,x) ,

this yields (3.6.11). An application of L’Hôpital’s rule then yields (3.6.12). Fi-
nally, by (3.6.10) and the definitions we obtain

∂
∂ ti

Q(x) = (si−1−si)R(x, ti)

(
f (ti)+

∫
R(ti ,y) f (y)dν(y)

)

= (si−1−si)R(x, ti)Q(ti) ,

yielding (3.6.13). Equation (3.6.14) is obtained similarly. ⊓⊔

Exercise 3.6.3An alternative to the elementary calculus used in deriving (3.6.5)
and (3.6.6), which is useful in obtaining higher order derivatives of the determi-
nants, resolvents and adjugants, is sketched in this exercise.
(i) Let D be a domain (connected open subset) inCn. With X a measure space, let
f (x,ζ ) be a measurable function onX×D, depending analytically onζ for each
fixedx and satisfying the condition

sup
ζ∈K

∫
| f (x,ζ )|dµ(x) < ∞

for all compact subsetsK ⊂ D. Prove that the function

F(ζ ) =

∫
f (x,ζ )dµ(x)

is analytic inD and that for each indexi = 1, . . . ,n and all compactK ⊂ D,

sup
ζ∈K

∫ ∣∣∣∣
∂

∂ζi
f (x,ζ )

∣∣∣∣dµ(x) < ∞ .

Further, applying Cauchy’s Theorem to turn the derivative into an integral, and
then Fubini’s Theorem, prove the identity of functions analytic in D:

∂
∂ζi

F(ζ ) =
∫ ( ∂

∂ζi
f (x,ζ )

)
dµ(x) .
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(ii) Using the fact that the kernelS is an entire function, extend the definitions of
Hℓ, H and∆ in the setup of this section to analytic functions in the parameters
t1, . . . ,tn,s1, . . . ,sn−1.
(iii) View the signed measureν as defining a family of distributionsη (in the
sense of Schwartz) on the interval(a,b) depending on the parameterst1, . . . ,tn, by
the formula

〈ϕ ,η〉 =
n−1

∑
i=1

si

∫ ti+1

ti
ϕ(x)dx,

valid for any smooth functionϕ(x) on (a,b). Show that∂η/∂ ti is a distribution
satisfying

∂
∂ ti

η = (si−1−si)δti (3.6.16)

for i = 1, . . . ,n, and that the distributional derivative(d/dx)η of η satisfies

d
dx

η =
n

∑
i=1

(si −si−1)δti = −
n

∑
i=1

∂η
∂ ti

. (3.6.17)

(iv) Use (3.6.16) to justify (3.6.5) and step (i) to justify (3.6.6).

3.6.2 Derivation of the differential equations: proof of Theorem 3.6.1

To proceed farther we need means for differentiatingQ(x) andP(x) both with
respect tox and with respect to the parameterst1, . . . ,tn. To this end we introduce
the further abbreviated notation

S′(x,y) =

(
∂
∂x

+
∂
∂y

)
S(x,y) = 0, R′(x,y) =

(
∂
∂x

+
∂
∂y

)
R(x,y)

and

(F ⋆′ G)(x,y) =

∫
F(x,z)G(z,y)dν ′(z) :=

n

∑
i=1

(si −si−1)F(x,ti)G(ti ,y) ,

which can be taken as the definition ofν ′. Below we persist for a while in writing
S′ instead of just automatically puttingS′ = 0 everywhere in order to keep the
structure of the calculations clear. From the fundamental identity (3.4.19),

R⋆S= R−S= S⋆R,

we deduce, after integrating by parts, that

R′ ⋆S+R⋆′S+R⋆S′ = R′−S′.
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Applying the operation⋆Ron both sides of the last equation we find that

R′ ⋆ (R−S)+R⋆′ (R−S)+R⋆S′⋆R= R′ ⋆R−S′⋆R.

Adding the last two equations and then making the obvious cancellations (includ-
ing now the cancellationS′ = 0) we find that

R′ = R⋆′ R.

Written out “in longhand” the last equation says that
(

∂
∂x

+
∂
∂y

)
R(x,y) =

n

∑
i=1

(si −si−1)R(x,ti)R(ti ,y) . (3.6.18)

Now we can differentiateQ(x) andP(x). We have from the last identity

Q′(x) = f ′(x)+

∫ ∂
∂x

R(x,y) f (y)dν(y)

= f ′(x)−
∫ ∂

∂y
R(x,y) f (y)dν(y)

+

∫ (∫
R(x, t)R(t,y)dν ′(t)

)
f (y)dν(y) .

Integrating by parts and then rearranging the terms, we get

Q′(x) = f ′(x)+

∫
R(x,y) f ′(y)dν(y)+

∫
R(x,y) f (y)dν ′(y)

+
∫ (∫

R(x, t)R(t,y)η(t)dt

)
f (y)dν(y)

= f ′(x)+
∫

R(x,y) f ′(y)dν(y)

+

∫
R(x, t)

(
f (t)+

∫
R(t,y) f (y)dν(y)

)
dν ′(t)

= P(x)+
n

∑
k=1

(sk−sk−1)R(x,tk)Q(tk) , (3.6.19)

and similarly

P′(x) = −Q(x)+
n

∑
k=1

(sk−sk−1)R(x,tk)P(tk) . (3.6.20)

Observing now that

∂
∂ ti

Q(ti) = Q′(ti)+
∂

∂ ti
Q(x)

∣∣∣∣
x=ti

,
∂

∂ ti
P(ti) = P′(ti)+

∂
∂ ti

P(x)

∣∣∣∣
x=ti

,
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and adding (3.6.19) and (3.6.13), we have

∂
∂ ti

Q(ti) = P(ti)+
n

∑
k=1,k6=i

(sk−sk−1)R(ti ,tk)Q(tk) . (3.6.21)

Similarly, by adding (3.6.20) and (3.6.14) we have

∂
∂ ti

P(ti) = −Q(ti)+
n

∑
k=1,k6=i

(sk−sk−1)R(ti ,tk)P(tk). (3.6.22)

It follows also via (3.6.12) and (3.6.13) that

R(ti , ti) = P(ti)
∂

∂ ti
Q(ti)−Q(ti)

∂
∂ ti

P(ti) . (3.6.23)

(Note that the terms involving∂Q(x)/∂ ti |x=ti cancel out to yield the above equal-
ity.) Unraveling the definitions, this completes the proof of (3.6.4) and hence of
Theorem 3.6.1. ⊓⊔

3.6.3 Reduction to Painlev́e V

In what follows, we complete the proof of Theorem 3.1.2. We take in Theorem
3.6.1 the valuesn = 2,s1 = s. Our goal is to figure out the ordinary differential
equation we get by reducing still farther to the caset1 =−t/2 andt2 = t/2. Recall
the sine-kernelS in (3.6.1), setη = dν

dx = s1(−t/2,t/2) and write∆ = ∆(S) for the
Fredholm determinant ofSwith respect to the measureν. Finally, setσ = σ(t) =

t d
dt log∆. We now prove the following.

Lemma 3.6.4With notation as above,

(tσ ′′)2 +4(tσ ′−σ)(tσ ′−σ +(σ ′)2) = 0, (3.6.24)

and, for each fixed s,∆ is analytic in t∈C, with the following expansions as t→ 0:

∆ = 1−
( s

π

)
t +O(t4), σ = −

( s
π

)
t −
( s

π

)2
t2−

( s
π

)3
t3 +O(t4) . (3.6.25)

Proof We first consider the notation of Theorem 3.6.1 specialized to n = 2, writ-
ing ∆(t1,t2) for the Fredholm determinant there. (Thus,∆ = ∆(t1,t2)|t1=−t2=t/2.)
Recall that

R21 = (q2p1−q1p2)/(t2− t1) = R12.
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From Theorem 3.6.1 specialized ton = 2 we have

1
2

(∂/∂ t2− ∂/∂ t1) log∆(t1, t2) = −1
2

s(p2
1 +q2

1+ p2
2+q2

2)+s2(t2− t1)R
2
21,

1
2

(∂q1/∂ t2− ∂q1/∂ t1) = −p1/2+sR12q2 ,

1
2

(∂ p1/∂ t2− ∂ p1/∂ t1) = +q1/2+sR12p2 . (3.6.26)

We now analyze symmetry. Temporarily, we write

p1(t1, t2), q1(t1, t2), p2(t1,t2), q2(t1,t2),

in order to emphasize the roles of the parameterst1 andt2. To begin with, since

S(x+c,y+c) = S(x,y) ,

for any constantc we have

∆(t1, t2) = ∆(t1 +c, t2+c) = ∆(−t2,−t1) . (3.6.27)

Further, we have (recall thatf (x) = (sinx)/
√

π)

p1(t1,t2) = f ′(t1)+
1

∆(t1, t2)

∞

∑
n=0

(−1)nsn+1

n!

×
∫ t2

t1
· · ·
∫ t2

t1
S

(
t1 x1 . . . xn

y x1 . . . xn

)
f ′(y) dx1 · · ·dxndy

= f ′(−t1)+
1

∆(−t2,−t1)

∞

∑
n=0

(−1)nsn+1

n!

×
∫ t2

t1
· · ·
∫ t2

t1
S

(
−t1 −x1 . . . −xn

−y −x1 . . . −xn

)
f ′(y) dx1 · · ·dxndy

= f ′(−t1)+
1

∆(−t2,−t1)

∞

∑
n=0

(−1)nsn+1

n!

×
∫ −t1

−t2
· · ·
∫ −t1

−t2
S

(
−t1 x1 . . . xn

y x1 . . . xn

)
f ′(y) dx1 · · ·dxndy

= p2(−t2,−t1) . (3.6.28)

Similarly, we have

q1(t1, t2) = −q2(−t2,−t1) . (3.6.29)
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Now we are ready to reduce to the one-dimensional situation.We specialize as
follows. Put

p = p(t) = p1(−t/2, t/2) = p2(−t/2,t/2) ,

q = q(t) = q1(−t/2, t/2) = −q2(−t/2,t/2) ,

r = r(t) = R12(−t/2, t/2) = −2pq/t ,

σ = σ(t) = t
d
dt

log∆(−t/2,t/2) . (3.6.30)

Note that, by the symmetry relations, writing′ for differentiation with respect to
t, we have

p′(t) =
1
2
(∂ p1/∂ t2− ∂ p1/∂ t1)|t2=−t1=t/2 ,

q′(t) =
1
2
(∂q1/∂ t2− ∂q1/∂ t1)|t2=−t1=t/2 ,

while

σ(t) =
t
2

(∂/∂ t2− ∂/∂ t1) log∆(t1,t2)|t2=−t1=t/2 .

From (3.6.26) and the above we get

σ = −st(p2 +q2)+4s2q2p2 ,

q′ = −p/2+2spq2/t , (3.6.31)

p′ = +q/2−2sp2q/t ,

while differentiatingσ (twice) and using these relations gives

σ ′ = −s(p2 +q2) ,

tσ ′′ = 4s2(p3q−q3p) . (3.6.32)

Using (3.6.32) together with the equation forσ from (3.6.31) to eliminate the
variablesp,q, we obtain finally

4t(σ ′)3 +4t2(σ ′)2−4σ(σ ′)2 +4σ2+(tσ ′′)2−8tσσ ′ = 0, (3.6.33)

or equivalently, we get (3.6.24). Note that the differential equation is independent
of s.

Turning to the proof of the claimed analyticity of∆ and of (3.6.25), we write

∆ = 1+
∞

∑
k=1

(−s)k

k!

∫ t/2

−t/2
· · ·
∫ t/2

−t/2

k
det

i, j=1

sin(xi −x j)

π(xi −x j)

k

∏
j=1

dxj

= 1+ lim
n→∞

n

∑
k=1

(−st)k

k!

∫ 1/2

−1/2
· · ·
∫ 1/2

−1/2

k
det

i, j=1

sin(txi − tx j)

π(txi − tx j)

k

∏
j=1

dxj .
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Each of the terms inside the limit in the last display is an entire function int, and
the convergence (inn) is uniform due to the boundedness of the kernel and the
Hadamard inequality, see Lemma 3.4.2. The claimed analyticity of ∆ in t follows.

We next explicitly compute a few terms of the expansion of∆ in powers oft.
Indeed,

∫ t/2

−t/2
dx= t,

∫ t/2

−t/2
· · ·
∫ t/2

−t/2

k
det

i, j=1

sin(xi −x j)

π(xi −x j)

k

∏
j=1

dxj = O(t4) for k≥ 2,

and hence the part of (3.6.25) dealing with∆ follows. With more computational
effort, which we omit, one verifies the other part of (3.6.25). ⊓⊔
Proof of Theorem 3.1.2 We use Lemma 3.6.4. Takes= 1 and set

F(t) = 1−∆ = 1−exp

(∫ t

0

σ(u)

u
du

)
for t ≥ 0.

Then by (3.1.1) we have

1−F(t) = lim
N→∞

P[
√

Nλ N
1 , . . . ,

√
Nλ N

N 6∈ (−t/2,t/2)] ,

completing the proof of the theorem. ⊓⊔

Remark 3.6.5We emphasize that we have not yet proved that the functionF(·)
in Theorem 3.1.2 is a distribution function, that is, we havenot shown tightness
for the sequence of gaps around 0. From the expansion at 0 ofσ(t), see (3.1.2),
it follows immediately that limt→0 F(t) = 0. To show thatF(t) → 1 ast → ∞
requires more work. One approach, that uses careful and nontrivial analysis of the
resolvent equation, see [Wid94] for the first rigorous proof, shows that in fact

σ(t) ∼−t2/4 ast → +∞ , (3.6.34)

implying that limt↑∞ F(t) = 1. An easier approach, which does not however yield
such precise information, proceeds from the CLT for determinantal processes de-
veloped in Section 4.2; indeed, it is straightforward to verify, see Exercise 4.2.40,
that for the determinantal process determined by the sine-kernel, the expected
number of points in an interval of lengthL around 0 increases linearly inL, while
the variance increases only logarithmically inN. This is enough to show that with
A = [−t/2,t/2], the right side of (3.1.1) decreases to 0 ast → ∞, which implies
that limt↑∞ F(t) = 1. In particular, it follows that the random variable givingthe
width of the largest open interval centered at the origin in which no eigenvalue of√

NXN appears is weakly convergent asN → ∞ to a random variable with distri-
butionF .
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We finally present an alternative formulation of Theorem 3.1.2 that is useful
in comparing with the limit results for the GOE and GSE. Recall the function
r = r(t) = R12(−t/2, t/2), see (3.6.30).

Lemma 3.6.6With F(·) as in Theorem 3.1.2, we have

1−F(t) = exp

(
− t

π
−
∫ t

0
(t −x)r(x)2dx

)
, (3.6.35)

and furthermore the differential equation

t2((tr)′′ +(tr))2 = 4(tr)2((tr)2 +((tr)′)2) (3.6.36)

is satisfied with boundary conditions

r(t) =
1
π

+
t

π2 +Ot↓0(t
2) . (3.6.37)

The function r(t) has a convergent expansion in powers of t valid for small t.

Proof Recallp andq from (3.6.30). We have

−σ
t

= p2+q2− 4p2q2

t
, tr =−2pq, p′ = q/2−2p2q/t, q′ =−p/2+2pq2/t ,

hence (3.6.36) holds and furthermore

d
dt

(σ
t

)
= −r2 , (3.6.38)

as one verifies by straightforward calculations. From the analyticity of ∆ it follows
that it is possible to extend bothr(t) andσ(t) to analytic functions defined in a
neighborhood of[0,∞) in the complex plane, and thus in particular both functions
have convergent expansions in powers oft valid for smallt. It is clear that

lim
t↓0

r(t) =
1
π

. (3.6.39)

Thus (3.6.35) and (3.6.37) follow from (3.6.33), (3.6.38),(3.6.39) and (3.6.25).
⊓⊔

3.7 Edge-scaling: proof of Theorem 3.1.4

Our goal in this section is to study the spacing of eigenvalues at the edge of the
spectrum. The main result is the proof of Theorem 3.1.4, which is completed in
Subsection 3.7.1 (some technical estimates involving the steepest descent method
are postponed to Subsection 3.7.2). For the proof of Theorem3.1.4, we need the
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following a priori estimate on the Airy kernel. Its proof is postponed to Subsection
3.7.3, where additional properties of the Airy function arestudied.

Lemma 3.7.1For any x0 ∈ R,

sup
x,y≥x0

ex+y|A(x,y)| < ∞ . (3.7.1)

3.7.1 Vague convergence of the largest eigenvalue: proof ofTheorem 3.1.4

Again we letXN ∈H
(2)

N be a random Hermitian matrix from the GUE with eigen-
valuesλ N

1 ≤ ·· · ≤ λ N
N . We now present the

Proof of Theorem 3.1.4As before put

K(n)(x,y) =
√

n
ψn(x)ψn−1(y)−ψn−1(x)ψn(y)

x−y
,

where theψn(x) is the normalized oscillator wave-function. Define

A(n)(x,y) =
1

n1/6
K(n)

(
2
√

n+
x

n1/6
,2
√

n+
y

n1/6

)
. (3.7.2)

In view of the basic estimate (3.4.9) in the theory of Fredholm determinants and
the crude bound (3.7.1) for the Airy kernel we can by dominated convergence
integrate to the limit on the right side of (3.1.5). By the bound (3.3.7) of Ledoux
type, if the limit

lim
t′→+∞

lim
N→∞

P

[
N2/3

(
λ N

i√
N
−2

)
6∈ (t, t ′) for i = 1, . . . ,N

]
(3.7.3)

exists then the limit (3.1.6) also exists and both limits areequal. Therefore we
can take the limit ast ′ → ∞ on the left side of (3.1.5) inside the limit asn→ ∞ in
order to conclude (3.1.6). We thus concentrate in the sequelon proving (3.1.5) for
t ′ < ∞.

We begin by extending by analyticity the definition ofK(n) and A(n) to the
complex planeC. Our goal will be to prove the convergence ofA(n) to A on
compact sets ofC, which will imply also the convergence of derivatives. Recall
that by part 4 of Lemma 3.2.7,

K(n)(x,y) =
ψn(x)ψ ′

n(y)−ψn(y)ψ ′
n(x)

x−y
− 1

2
ψn(x)ψn(y) ,

so that if we set

Ψn(x) := n1/12ψn(2
√

n+
x

n1/6
) ,
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then

A(n)(x,y) =
Ψn(x)Ψ′

n(y)−Ψn(y)Ψ′
n(x)

x−y
− 1

2n1/3
Ψn(x)Ψn(y) .

The following lemma plays the role of Lemma 3.5.1 in the studyof the spacing in
the bulk. Its proof is rather technical and takes up most of Subsection 3.7.2.

Lemma 3.7.2Fix a number C> 1. Then,

lim
n→∞

sup
u∈C:|u|<C

|Ψn(u)−Ai(u)| = 0. (3.7.4)

Since the functionsΨn are entire, the convergence in Lemma 3.7.2 entails the
uniform convergence ofΨ′

n to Ai′ on compact subsets ofC. Together with Lemma
3.4.5, this completes the proof of the theorem. ⊓⊔

Remark 3.7.3An analysis similar to, but more elaborate than, the proof ofTheo-
rem 3.1.4 shows that

lim
N→∞

P

[
N2/3

(
λ N

N−ℓ√
N

−2

)
≤ t

]

exists for each positive integerℓ and real numbert. In other words, the suitably
rescaledℓth largest eigenvalue converges vaguely and in fact weakly.Similar
statements can be made concerning the joint distribution ofthe rescaled topℓ
eigenvalues.

3.7.2 Steepest descent: proof of Lemma 3.7.2

In this subsection, we use the steepest descent method to prove Lemma 3.7.2.
The steepest descent method is a general, more elaborate version of the method
of Laplace discussed in Subsection 3.5.1, which is inadequate when oscillatory
integrands are involved. Indeed, consider the evaluation of integrals of the form

∫
f (x)sg(x)dx,

see (3.5.3), in the situation wheref andg are analytic functions and the integral
is a contour integral. The oscillatory nature off prevents the use of Laplace’s
method. Instead, the oscillatory integral is tamed by modifying the contour of
integration in such a way thatf can be written along the contour asef̃ with f̃ real,
and the oscillations ofg at a neighborhood of the critical points off̃ are slow. In
practice, one needs to consider slightly more general versions of this example, in
whichg itself may depend (weakly) ons.
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Proof of Lemma 3.7.2Throughout, we let

x = 2n1/2+
u

n1/6
= 2n1/2

(
1+

u

2n2/3

)
, Ψn(u) = n1/12ψn(x) .

We assume throughout the proof thatn is large enough so that|u| < C < n2/3.

Let ζ be a complex variable. By reinterpreting formula (3.5.7) above as a con-
tour integral we get the formula

ψn(x) =
ex2/4

i(2π)3/4
√

n!

∫ i∞

−i∞
ζ neζ 2/2−ζxdζ . (3.7.5)

The main effort in the proof is to modify the contour integralin the formula above
in such a way that the leading asymptotic order of all terms inthe integrand match,
and then keep track of the behavior of the integrand near its critical point. To carry
out this program, note that by Cauchy’s Theorem, we may replace the contour of
integration in (3.7.5) by any straight line in the complex plane with slope of ab-
solute value greater than 1 oriented so that height above thereal axis is increasing
(the condition on the slope is to ensure that no contributionappears from the con-
tour near∞). Sinceℜ(x) > 0 under our assumptions concerningu andn, we may
take the contour of integration in (3.7.5) to be the perpendicular bisector of the
line segment joiningx to the origin, that is, replaceζ by (x/2)(1+ ζ ), to obtain

ψn(x) =
e−x2/8(x/2)n+1

i(2π)3/4
√

n!

∫ i∞

−i∞
(1+ ζ )ne(x/2)2(ζ 2/2−ζ )dζ . (3.7.6)

Let logζ be the principal branch of the logarithm, that is, the branchreal on the
interval(0,∞) and analytic in the complement of the interval(−∞,0], and set

F(ζ ) = log(1+ ζ )+ ζ 2/2− ζ . (3.7.7)

Note that the leading term in the integrand in (3.7.6) has theform enF(ζ ), where
ℜ(F) has a maximum along the contour of integration atζ = 0, and a Taylor
expansion starting withζ 3/3 in a neighborhood of that point (this explains the
particular scaling we took foru). Put

ω =
(x

2

)2/3
, u′ = ω2−n/ω ,

where to define fractional powers of complex numbers such as that figuring in
the definition ofω we follow the rule thatζ a = exp(alogζ ) wheneverζ is in the
domain of our chosen branch of the logarithm. We remark that asn→ ∞ we have
u′ → u andω ∼ n1/3, uniformly for |u| < C. Now rearrange (3.7.6) to the form

Ψn(u) =
(2π)1/4n1/12(x/2)n+1/3e−x2/8

√
n!

In(u) , (3.7.8)



136 3. SPACINGS FORGAUSSIAN ENSEMBLES

where

In(u) =
1

2π i

∫ i∞

−i∞
ωeω3F(ζ )−u′ω log(1+ζ )dζ . (3.7.9)

To prove (3.7.4) it is enough to prove that

lim
n→∞

sup
|u|<C

|In(u)−Ai(u)| = 0, (3.7.10)

because we have

log
n1/12(x/2)n+1/3e−x2/8

e−n/2nn/2+1/4
=

(
n+

1
3

)
log
(

1+
u

2n2/3

)
− n1/3u

2
− u2

8n1/3

and hence

lim
n→∞

sup
|u|<C

∣∣∣∣∣
(2π)1/4n1/12(x/2)n+1/3e−x2/8

√
n!

−1

∣∣∣∣∣= 0,

by Stirling’s approximation (2.5.12) and some calculus.

To prove (3.7.10), we proceed by a saddle point analysis nearthe critical point
ζ = 0 of ℜ(F)(ζ ). The goal is to replace complex integration with real integra-
tion. This is achieved by making a change of contour of integration so thatF is
real along that contour. Ideally, we seek a contour so that the maximum ofF is
achieved at a unique point along the contour. We proceed to find such a contour
now, noting that since the maximum ofℜ(F)(ζ ) along the imaginary axis is 0 and
is achieved atζ = 0, we may seek contours that pass through 0 and such thatF is
strictly negative at all other points of the contour.

Turning to the actual construction, consider the wedge-shaped closed set

S= {reiθ |r ∈ [0,∞),θ ∈ [π/3,π/2]}

in the complex plane with “corner” at the origin. For eachρ > 0 let Sρ be the in-
tersection ofSwith the closed disc of radiusρ centered at the origin and let∂Sρ be
the boundary ofSρ . For eacht > 0 and all sufficiently largeρ , the curveF(∂Sρ)

winds exactly once about the point−t. Since, by the argument principle of com-
plex analysis, the winding number equals the difference between the number of
zeros and the number of poles of the functionF(·)+ t in the domainSρ , and the
functionF(·)+ t does not possess poles there, it follows that there exists a unique
solutionγ(t) ∈ Sof the equationF(ζ ) = −t (see Figure 3.7.1). Clearlyγ(0) = 0
is the unique solution of the equationF(ζ ) = 0 in S. We have the following.

Lemma 3.7.4The functionγ : [0,∞) → S has the following properties.
(i) lim t→∞ |γ(t)| = ∞.
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Fig. 3.7.1. The contour∂S3 (solid), its imageF(∂S3) (dashed), and the curveγ(·) (dash
and dots).

(ii) γ(t) is continuous for t≥ 0 and real analytic for t> 0.
(iii)

γ(t) = O(t1/2) as t↑ ∞ ,

γ ′(t) = O(t−1/2) as t↑ ∞ ,

γ(t) = eπ i/331/3t1/3+O(t4/3) as t↓ 0,

γ ′(t) = eπ i/33−2/3t−2/3+O(t1/3) as t↓ 0.

Proof (i) follows by noting thatF restricted toS is proper, that is for any sequence
zn ∈ S with |zn| → ∞ asn → ∞, it holds that|F(zn)| → ∞. The real analyticity
claim in (ii) follows from the implicit function theorem. (iii) follows from a direct
computation, and together withγ(0) = 0 implies the continuity claim in (ii). ⊓⊔

From Lemma 3.7.4 we obtain the formula

In(u) =
1

2π i

∫ ∞

0
ωe−ω3t

(
(1+ γ(t))−ωu′γ ′(t)− (1+ γ̄(t))−ωu′ γ̄ ′(t)

)
dt ,

by deforming the contour−i∞ → i∞ in (3.7.9) toγ − γ̄. After replacingt by t3/3n
in the integral above we obtain the formula

In(u) =
1

2π i

∫ ∞

0
(An(t,u)−Bn(t,u))dt , (3.7.11)

where

An(t,u) = ω exp

(
−ω3t3

3n

)(
1+ γ

(
t3

3n

))−ωu′

γ ′
(

t3

3n

)
t2

n
,

Bn(t,u) = ω exp

(
−ω3t3

3n

)(
1+ γ̄

(
t3

3n

))−ωu′

γ̄ ′
(

t3

3n

)
t2

n
.
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Put

A(t,u) = exp

(
− t3

3
−eπ i/3tu+ π i/3

)
,

B(t,u) = exp

(
− t3

3
−e−π i/3tu−π i/3

)
.

By modifying the contour of integration in the definition of the Airy function
Ai(x), see (3.7.16), we have

Ai(u) =
1

2π i

∫ ∞

0
(A(t,u)−B(t,u))dt . (3.7.12)

A calculus exercise reveals that, for any positive constantc and eacht0 ≥ 0,

lim
n→∞

sup
0≤t≤t0

sup
|u|<c

∣∣∣∣
An(t,u)

A(t,u)
−1

∣∣∣∣= 0 (3.7.13)

and clearly the analogous limit formula linkingBn(t,u) to B(t,u) holds also. There
exist positive constantsc1 andc2 such that

| log(1+ γ(t))| ≤ c1t
1/3, |γ ′(t)| ≤ c2max(t−2/3,t−1/2)

for all t > 0. There exists a positive constantn0 such that

ℜ(ω3) ≥ n/2, |ω | ≤ 2n1/3, |u′| < 2c

for all n≥ n0 and|u| < c. Also there exists a positive constantc3 such that

ec3t1/3 ≥ t1/6

for t ≥ 1. Consequently there exist positive constantsc4 andc5 such that

|ωeω3t(1+ γ(t))−ωu′γ ′(t)| ≤ c4n1/3e−nt/2+c5n1/3t t−2/3 ,

hence

|An(t,u)| ≤ c4e−t3/6+c5t (3.7.14)

for all n ≥ n0, t > 0 and |u| < c. Clearly we have the same majorization for
|Bn(t,u)|. Integral formula (3.7.12), uniformity of convergence (3.7.13) and ma-
jorization (3.7.14) together are enough to finish the proof of limit formula (3.7.10)
and hence of limit formula (3.7.4). ⊓⊔

Exercise 3.7.5Set

S(n)
zn (x,y) =

1√
n

K(n)(zn +x/
√

n,zn +y/
√

n) .

Apply the steepest descent method to show that ifzn/
√

n →n→∞ c with |c| < 2,

thenS(n)
zn (x,y) converges to the rescaled sine-kernel sin[g(c)(x− y)]/(π(x− y)),
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uniformly in x,y in compacts, whereg(c) = πσ(c) =
√

4−c2/2 andσ(·) is the
semicircle density, see (2.1.3).
Hint: use (3.7.6) and note the different behavior of the functionF at 0 whenc< 2.

3.7.3 Properties of the Airy functions and proof of Lemma 3.7.1

Throughout this subsection, we will consider various contours in the complex
plane. We introduce the following convenient notation: forcomplex numbersa,b,
we let [a,b] denote the contour joininga to b along the segment connecting them,
i.e. the contour(t 7→ (1− t)a+ tb) : [0,1] → C. We also write[a,c∞) for the ray
emanating froma in the directionc, that is the contour(t 7→ a+ct) : [0,∞) → C,
and write(c∞,a] = −[a,c∞). With this notation, and performing the change of
variablesζ 7→ −w, we can rewrite (3.1.3) as

Ai(x) =
1

2π i

∫

(e−2π i/3∞,0]+[0,e2π i/3∞)
exw−w3/3dw. (3.7.15)

Note that the rapid decay of the integrand in (3.7.15) along the indicated con-
tour ensures that Ai(x) is well defined and depends holomorphically onx. By
parametrizing the contour appearing in (3.7.15) in evidentfashion, we also obtain
the formula

Ai(x) =
1

2π i

∫ ∞

0
exp

(
− t3

3

)(
exp

(
−xte

π i
3 +

π i
3

)
−exp

(
−xte−

π i
3 − π i

3

))
dt .

(3.7.16)
In the statement of the next lemma, we use the notationx ↑ ∞ to mean thatx goes
to ∞ along the real axis. Recall also the definition of Euler’s Gamma function, see
(2.5.5):Γ(s) =

∫ ∞
0 e−xxs−1dx, for swith positive real part.

Lemma 3.7.6(a)For any integerν ≥ 0, the derivativeAi (ν)(x) satisfies

Ai (ν)(x) → 0, as x↑ ∞ . (3.7.17)

(b) The functionAi(x) is a solution of(3.1.4)that satisfies

Ai(0) =
1

32/3Γ(2/3)
, Ai ′(0) = − 1

31/3Γ(1/3)
. (3.7.18)

(c) Ai(x) > 0 andAi ′(x) < 0 for all x > 0 .

Proof Forx≥ 0 real,c∈ C satisfyingc3 = 1 andk≥ 0 integer, define

I(x,c,k) =

∫

[0,c∞)
wkewx−w3/3dw= ck+1

∫ ∞

0
tkexct−t3/3dt . (3.7.19)
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As x ↑ ∞ we haveI(x,e±2π i/3,k) → 0 by dominated convergence. This proves
(3.7.17). Next, (3.7.18) follows from (3.7.19) and the definition of Γ(·). We next
prove that Ai(x) > 0 for x > 0. Assume otherwise that for somex0 > 0 one has
Ai(x0) ≤ 0. By (3.7.29), if Ai(x0) = 0 then Ai′(x0) 6= 0. Thus, for somex1 > 0,
Ai(x1) < 0. Since Ai(0) = 0 and Ai(x) → 0 asx ↑ ∞, Ai(·) possesses a global
minimum at somex2 ∈ (0,∞), and Ai′′(x2)≥ 0, contradicting the Airy differential
equation. ⊓⊔

We next evaluate the asymptotics of the Airy functions at infinity. For two
functions f ,g, we write f ∼ g asx ↑ ∞ if lim x↑∞ f (x)/g(x) = 1.

Lemma 3.7.7For x ↑ ∞ we have the following asymptotic formulas:

Ai(x) ∼ π−1/2x−1/4e−
2
3x3/2

/2. (3.7.20)

Ai ′(x) ∼−π−1/2x1/4e−
2
3x3/2

/2. (3.7.21)

Proof Making the substitutionw 7→ x1/2(u− 1) and deforming the contour of
integration in (3.7.15), we obtain

2π ix1/4e2x2/3/3Ai(x) = x3/4
∫

C′
ex3/2(u2−u3/3)du, (3.7.22)

where

C′ = (e−2π i/3∞,−i
√

3]+ [−i
√

3, i
√

3]+ [i
√

3,e2π i/3∞) =: C′
1 +C′

2 +C′
3 .

Since the infimum of the real part ofu2−u3/3 on the raysC′
1 andC′

3 is strictly
negative, the contribution of the integral overC′

1 andC′
3 to the right side of (3.7.22)

vanishes asx ↑ ∞. The remaining integral (overC′
2) gives

i
∫ √

3x3/4

−
√

3x3/4
e−t2+it3x−3/4/3dt → i

∫ ∞

−∞
e−t2dt = i

√
π asx ↑ ∞ ,

by dominated convergence. This completes the proof of (3.7.20). A similar proof
gives (3.7.21). Further details are omitted. ⊓⊔

Proof of Lemma 3.7.1Fix x0 ∈ R. By (3.7.20), (3.7.21) and the Airy differential
equation (3.1.4), there exists a positive constantC (possibly depending onx0) such
that

max(|Ai(x)|, |Ai ′(x)|, |Ai ′′(x)|) ≤Ce−x

for all realx≥ x0 and hence forx,y≥ x0,

|x−y| ≥ 1⇒ |A(x,y)| ≤ 2C2e−x−y .
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But by the variant (3.5.5) of Taylor’s Theorem noted above wealso have, for
x,y≥ x0,

|x−y|< 1⇒ |A(x,y)| ≤ 2C2e2e−x−y .

Thus the lemma is proved. ⊓⊔

Exercise 3.7.8Show that
∫ ∞

0 Ai(x)dx= 1/3.
Hint: for ρ > 0, let γρ denote the path(t 7→ ρe2π it) : [5/6,7/6] → C, and define
the contourCρ = (e2π i/3∞,ρe2π i/3]+ γρ +[ρe−2π i/3,e−2π i/3∞). Show that

∫ ∞

0
Ai(x)dx=

1
2π i

∫

Cρ
w−1e−w3/3dw,

and takeρ → 0 to conclude.

Exercise 3.7.9Write x ↓ −∞ if x→−∞ along the real axis. Prove the asymptotics

Ai(x) ∼ sin(2
3|x|3/2 + π

4 )√
π|x|1/4

asx ↓ −∞ (3.7.23)

and

Ai ′(x) ∼−cos(2
3|x|3/2 + π

4 )|x|1/4

√
π

asx ↓ −∞ . (3.7.24)

Conclude that Lemma 3.7.1 can be strengthened to the statement

sup
x,y∈R

ex+y|A(x,y)| < ∞ . (3.7.25)

Exercise 3.7.10The proof of Lemma 3.7.7 as well as the asymptotics in Exercise
3.7.17 are based on finding an appropriate explicit contour of integration. An al-
ternative to this approach utilizes the steepest descent method. Provide the details
of the proof of (3.7.20), using the following steps.

(a) Replacingζ by x1/2ζ in (3.1.3), deduce the integral representation, forx > 0,

Ai(x) =
x1/2

2π i

∫

C
ex3/2H(ζ )dζ , H(ζ ) = ζ 3/3− ζ . (3.7.26)

(b) Modify the contourC to another (implicitly defined) contourC′, so that
ℑ(H(C′)) is constant, and the deformed contourC′ “snags” the critical pointζ = 1
of H, so that the imageH(C′) runs on the real axis from−∞ to−2/3 and back.
Hint: Consider the closed sets

S′ = {1+ reiθ |r ≥ 0, θ ∈ [π/3,π/2]}
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and the intersection ofS′ with the closed disc of radiusρ about 1, and apply a
reasoning similar to the proof of Lemma 3.7.2 to find a curveγ(t) such that

Ai(x) =
e−2x3/2/3x1/2

2π i

∫ ∞

0
e−x3/2t(γ ′(t)− γ̄ ′(t))dt for x > 0. (3.7.27)

Identify the asymptotics ofγ(t) and its derivative ast → 0 andt → ∞.
(c) Apply Laplace’s method, Lemma D.9, to obtain (3.7.20).

Exercise 3.7.11Another solution of (3.1.4), denoted Bi(x), is obtained by replac-
ing the contour in (3.7.15) with the contour(e−2π i/3∞,0]+ [0,∞)+ (e2π i/3∞,0]+

[0,∞), that is

Bi(x) =
1

2π

∫

(e−2π i/3∞,0]+2[0,∞)+(e2π i/3∞,0]
exw−w3/3dw. (3.7.28)

Show that Bi(x) satisfies (3.1.4) with the boundary conditions[Bi(0) Bi′(0)] =[
1

31/6Γ(2/3)
31/6

Γ(1/3)

]
. Show that for anyx∈ R,

det

[
Ai(x) Ai ′(x)
Bi(x) Bi ′(x)

]
=

1
π

, (3.7.29)

concluding that Ai and Bi are linearly independent solutions. Show also that
Bi(x) > 0 and Bi′(x) > 0 for all x > 0. Finally, repeat the analysis in Lemma
3.7.7, using the substitutionw 7→ x1/2(u+1) and the (undeformed!) contour

C = (−e−2π i/3∞,−1]+ [−1,1]+ [1,∞)+e−2π i/3∞,−1]+ [−1,1]+ [1,∞) ,

and conclude that

Bi(x) ∼ π−1/2x−1/4e
2
3x3/2

, (3.7.30)

Bi ′(x) ∼−π−1/2x1/4e
2
3x3/2

. (3.7.31)

3.8 Analysis of the Tracy–Widom distribution and proof of Theorem 3.1.5

We will study the Fredholm determinant

∆ = ∆(t) := 1+
∞

∑
k=1

(−1)k

k!

∫ ∞
t · · ·∫ ∞

t A

(
x1 . . . xk

x1 . . . xk

)
∏k

j=1dxj

whereA(x,y) is the Airy kernel and as before we write

A

(
x1 . . . xk

y1 . . . yk

)
=

k
det

i, j=1
A(xi ,y j) .
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We are going to explain why∆(t) is a distribution function, which, together with

Theorem 3.1.4, will complete our proof of weak convergence of n2/3

(
λ (n)

n√
n −2

)
.

Further, we are going to link∆(t) to the Painlevé II differential equation.

We begin by putting the study of the Tracy–Widom distribution ∆(t) into a
framework compatible with the general theory of Fredholm determinants devel-
oped in Section 3.4. Letν denote the measure on the real line with density
dν/dx= 1(t,∞)(x) with respect to the Lebesgue measure (althoughν depends on
t, we suppress this dependence from the notation). We have then

∆ = 1+
∞

∑
k=1

(−1)k

k!

∫
· · ·
∫

A

(
x1 . . . xk

x1 . . . xk

) k

∏
j=1

dν(x j) .

Put

H(x,y) = A(x,y)+
∞

∑
k=1

(−1)k

k!

∫
· · ·
∫

A

(
x x1 . . . xk

y x1 . . . xk

) k

∏
j=1

dν(x j) .

In view of the basic estimate (3.4.9) and the crude bound (3.7.1) for the Airy
kernel, we must have∆(t) → 1 ast ↑ ∞. Similarly, we have

sup
t≥t0

sup
x,y∈R

ex+y|H(x,y)| < ∞ (3.8.1)

for each realt0 and

lim
t↑∞

sup
x,y∈R

ex+y|H(x,y)−A(x,y)|= 0. (3.8.2)

Note that because∆ can be extended to a not-identically-vanishing entire analytic
function oft, it follows that∆ vanishes only for isolated real values oft. Put

R(x,y) = H(x,y)/∆ ,

provided of course that∆ 6= 0; a similar proviso applies to each of the following
definitions since each involvesR(x,y). Put

Q(x) = Ai(x)+

∫
R(x,y)Ai(y)dν(y) ,

P(x) = Ai ′(x)+

∫
R(x,y)Ai ′(y)dν(y) ,

q = Q(t), p = P(t) , u =

∫
Q(x)Ai(x)dν(x) ,

v =

∫
Q(x)Ai ′(x)dν(x) =

∫
P(x)Ai(x)dν(x) , (3.8.3)

the last equality by symmetryR(x,y) = R(y,x). Convergence of all these integrals
is easy to check. Note that each of the quantitiesq, p, u andv tends to 0 ast ↑ ∞.
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More precise information is also available. For example, from (3.8.1) and (3.8.2)
it follows that

q(x)/Ai(x) →x→∞ 1, (3.8.4)

because forx large, (3.7.20) implies that for some constantC independent ofx,
∫ ∞

x
R(x,y)Ai (y)dy≤C

∫ ∞

x
e−x−yAi(y)dy≤CAi(x)e−2x .

3.8.1 The first standard moves of the game

We follow the trail blazed in the discussion of the sine-kernel in Section 3.6. The
first few steps we can get through quickly by analogy. We have

∂
∂ t

log∆ = R(t, t) , (3.8.5)

∂
∂ t

R(x,y) = −R(x,t)R(t,y) . (3.8.6)

As before we have a relation

R(x,y) =
Q(x)P(y)−Q(y)P(x)

x−y
= R(y,x) (3.8.7)

and hence by L’Hôpital’s rule we have

R(x,x) = Q′(x)P(x)−Q(x)P′(x) . (3.8.8)

We have the differentiation formulas

∂
∂ t

Q(x) = −R(x, t)Q(t) = −Q(t)R(t,x) , (3.8.9)

∂
∂ t

P(x) = −R(x, t)P(t) = −P(t)R(t,x) . (3.8.10)

Here the Airy function and its derivative are playing the roles previously played
by sine and cosine, but otherwise to this point our calculation is running just as
before. Actually the calculation to this point is simpler since we are focusing on a
single interval of integration rather than on several.

3.8.2 The wrinkle in the carpet

As before we introduce the abbreviated notation

A′(x,y) =

(
∂
∂x

+
∂
∂y

)
A(x,y), R′(x,y) =

(
∂
∂x

+
∂
∂y

)
R(x,y) ,
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(F ⋆′ G)(x,y) =

∫
F(x,z)G(z,y)dν ′(z) = F(x,t)G(t,y) .

Here’s the wrinkle in the carpet that changes the game in a critical way: A′ does
not vanish identically. Instead we have

A′(x,y) = −Ai(x)Ai(y) , (3.8.11)

which is an immediate consequence of the Airy differential equationy′′−xy= 0.
Calculating as before but this timenotputtingA′ to zero we find that

R′ = R⋆′ R+A′+R⋆A′+A′ ⋆R+R⋆A′⋆R.

Written out “in longhand” the last equation says that

(
∂
∂x

+
∂
∂y

)
R(x,y) = R(x, t)R(t,y)−Q(x)Q(y) . (3.8.12)

The wrinkle “propagates” to produce the extra term on the right. We now have

Q′(x) = Ai(x)+

∫ ( ∂
∂x

R(x,y)

)
Ai(y)dν(y)

= Ai ′(x)−
∫ ( ∂

∂y
R(x,y)

)
Ai(y)dν(y)

+R(x, t)
∫

R(t,y)Ai(y)dν(y)−Q(x)u

= Ai(x)+

∫
R(x,y)Ai ′(y)dν(y)+

∫
R(x,y)Ai (y)dν ′(y)

+R(x, t)
∫

R(t,y)Ai(y)dν(y)−Q(x)u

= Ai(x)+
∫

R(x,y)Ai ′(y)dν(y)

+R(x, t)(Ai(t)+
∫

R(t,y)Ai(y)dν(y))−Q(x)u

= P(x)+R(x, t)Q(t)−Q(x)u. (3.8.13)

Similar manipulations yield

P′(x) = xQ(x)+R(x, t)P(t)+P(x)u−2Q(x)v. (3.8.14)

This is more or less in analogy with the sine-kernel case. Butthe wrinkle continues
to propagate, producing the extra terms involving the quantitiesu andv.
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3.8.3 Linkage to Painlev́e II

The derivatives of the quantitiesp, q, u andv with respect tot we denote simply
by a prime. We calculate these derivatives as follows. Observe that

q′ =
∂
∂ t

Q(x)

∣∣∣∣
x=t

+Q′(t), p′ =
∂
∂ t

P(x)

∣∣∣∣
x=t

+P′(t) .

By adding (3.8.9) to (3.8.13) and (3.8.10) to (3.8.14) we have

q′ = p−qu, p′ = tq+ pu−2qv. (3.8.15)

It follows also via (3.8.8) that

∂
∂ t

log∆(t) = R(t, t) = q′p− p′q = p2− tq2−2pqu+2q2v. (3.8.16)

We have

u′ =

∫ ( ∂
∂ t

Q(x)

)
Ai(x)dν(x)+

∫
Q(x)Ai (x)d

(
∂ν
∂ t

)
(x)

= −Q(t)
∫

R(t,x)Ai(x)dν(x)−Q(t)Ai(t) = −q2 .

v′ =
∫ ( ∂

∂ t
Q(x)

)
Ai ′(x)dν(x)+

∫
Q(x)Ai ′(x)d

(
∂ν
∂ t

)
(x)

= −Q(t)
∫

R(t,x)Ai ′(x)dν(x)−Q(t)Ai ′(t) = −pq.

We have a first integral

u2−2v= q2;

at least it is clear that thet-derivative here vanishes, but then the constant of inte-
gration has to be 0 because all the functions here tend to 0 ast ↑ ∞. Finally,

q′′ = (p−qu)′ = p′−q′u−qu′ = tq+ pu−2qv− (p−qu)u−q(−q2)

= tq+ pu−2qv− pu+qu2+q3 = tq+2q3, (3.8.17)

which is Painlevé II; thatq(t) ∼ Ai(t) ast → ∞ was already proved in (3.8.4).

It remains to prove that the functionF2 defined in (3.1.6) is a distribution func-
tion. By adding equations (3.8.12) and (3.8.6) we get

(
∂
∂x

+
∂
∂y

+
∂
∂ t

)
R(x,y) = −Q(x)Q(y) . (3.8.18)

By evaluating both sides atx = t = y and also using (3.8.5) we get

∂ 2

∂ t2 log∆ = −q2 . (3.8.19)
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Let us now writeq(t) and∆(t) to emphasize thet-dependence. In view of the
rapid decay of∆(t)−1, (log∆(t))′ andq(t) ast ↑ ∞ we must have

∆(t) = exp

(
−
∫ ∞

t
(x− t)q(x)2dx

)
, (3.8.20)

whence the conclusion thatF2(t) = ∆(t) satisfiesF2(∞) = 1 and, because of the
factor (x− t) in (3.8.20) and the fact thatq(·) does not identically vanish, also
F2(−∞) = 0. In other words,F2 is a distribution function. Together with (3.8.17)
and Theorem 3.1.4, this completes the proof of Theorem 3.1.5. ⊓⊔

Remark 3.8.1The Painlevé II equationq′′ = tq+2q3 has been studied extensively.
The following facts, taken from [HaM80], are particularly relevant: any solution
of Painlevé II that satisfiesq(t)→t→∞ 0 satisfies also that ast → ∞, q(t)∼α Ai(t)
for someα ∈ R, and for each fixedα, such a solution exists and is unique. For
α = 1, which is the case of interest to us, see (3.1.8), one then gets

q(t) ∼
√
−t/2, t →−∞ . (3.8.21)

We defer additional comments to the bibliographical notes.

Remark 3.8.2The analysis in this section would have proceeded verbatim if the
Airy kernelA(x,y) were replaced bysA(x,y) for anys∈ (0,1), the only difference
being that the boundary condition for (3.1.8) would be replaced byq(t) ∼ sAi (t)
as t → ∞. On the other hand, by Corollary 4.2.23 below, the kernelsA(n)(x,y)
replacesA(n)(x,y) if one erases each eigenvalue of the GUE with probabilitys. In
particular, one concludes that for anyk fixed,

lim
t→∞

limsup
N→∞

P(N1/6(λ N
N−k−2

√
N) ≤ t) = 0. (3.8.22)

This observation will be useful in the proof of Theorem 3.1.7.

Exercise 3.8.3Using (3.7.20), (3.8.4) and (3.8.21), deduce from the representation
(3.1.7) ofF2 that

lim
t→∞

1

t3/2
log[1−F2(t)] = −4

3
,

lim
t→−∞

1
t3 logF2(t) = − 1

12
,

Note the different decay rate of the upper and lower tails of the distribution of the
(rescaled) largest eigenvalue.
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3.9 Limiting behavior of the GOE and the GSE

We prove Theorems 3.1.6 and 3.1.7 in this section, using the tools developed in
Sections 3.4, 3.6 and 3.7, along with some new tools, namely,Pfaffians and matrix
kernels. The multiplicativity of Fredholm determinants, see Theorem 3.4.10, also
plays a key role.

3.9.1 Pfaffians and gap probabilities

We begin our analysis of the limiting behavior of the GOE and GSE by proving a
series of integration identities involving Pfaffians; the latter are needed to handle
the novel algebraic situations created by the factors|∆(x)|β with β ∈ {1,4} ap-
pearing in the joint distribution of eigenvalues in the GOE and GSE, respectively.
Then, with Remark 3.4.4 in mind, we use the Pfaffian integration identities to
obtain determinant formulas for squared gap probabilitiesin the GOE and GSE.

Pfaffian integration formulas

Recall that Matk×ℓ(C) denotes the space ofk-by-ℓ matrices with complex entries,
with Matn(C) = Matn×n(C) andIn ∈ Matn(C) denoting the identity matrix. Let

Jn =




0 1
−1 0

...

0 1
−1 0



∈ Mat2n(C)

be the block-diagonal matrix consisting ofn copies of

[
0 1

−1 0

]
strung along

the diagonal. Given a family of matrices

{X(i, j) ∈ Matk×ℓ(C) : i = 1, . . . ,mandj = 1, . . . ,n} ,

let

X(i, j)|m,n =




X(1,1) . . . X(1,n)
...

...
X(m,1) . . . X(m,n)


 ∈ Matkm×ℓn(C) .

For example,Jn = δi, j

[
0 1

−1 0

]
|n,n ∈ Mat2n(C).

Next, recall a basic definition.
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Definition 3.9.1 (Pfaffians)Let X ∈ Mat2n(C) be antisymmetric, that is,XT =

−X, Xj ,i = −Xi, j . ThePfaffianof X is defined by the formula

PfX =
1

2nn! ∑
σ∈S2n

(−1)σ
n

∏
i=1

Xσ(2i−1),σ(2i) ,

where(−1)σ denotes the sign of the permutationσ .

For example, PfJn = 1, which explains the normalization12nn! .

We collect without proof some standard facts related to Pfaffians.

Theorem 3.9.2Let X∈ Mat2n(C) be antisymmetric. The following hold:
(i) Pf(YTXY) = (PfX)(detY) for every Y∈ Mat2n(C);
(ii) (PfX)2 = detX;
(iii) PfX = ∑2n−1

i=1 (−1)i+1Xi,2nPfX{i,2n}, where X{i,2n} is the submatrix obtained
by striking out the ith row, ith column,(2n)th row and(2n)th column.

We next give a general integration identity involving Pfaffians, which is the
analog forβ ∈ {1,4} of Lemma 3.2.3.

Proposition 3.9.3Let f1, . . . , f2n and g1, . . . ,g2n be C-valued measurable func-
tions on the real line. Assume that all products fig j are integrable. For x∈ R,
put

F(x) = [ fi(x) gi(x)]|2n,1 ∈ Mat2n×2(C).

Then, for all measurable sets A⊂ R,

Pf
∫

A
F(x)J1F(x)Tdx=

1
n!

∫

A
· · ·
∫

A
det[F(x j)]|1,n

n

∏
i=1

dxi . (3.9.1)

Here and throughout the discussion of Pfaffian integration identities, measurable
means Lebesgue measurable.

Proof Expand the right side of (3.9.1) as

1
2nn! ∑

σ∈S2n

(−1)σ
∫

A
· · ·
∫

A

n

∏
i=1

det

[
fσ(2i−1)(xi) gσ(2i−1)(xi)

fσ(2i)(xi) gσ(2i)(xi)

] n

∏
i=1

dxi . (3.9.2)

The(i, j) entry of the matrix appearing on the left side of (3.9.1) can be expressed

as
∫

Adet

[
fi(x) gi(x)
f j(x) g j(x)

]
dx. Therefore, by Fubini’s Theorem, the expansion

(3.9.2) matches term for term the analogous expansion of theleft side of (3.9.1)
according to the definition of the Pfaffian. ⊓⊔
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To evaluate gap probabilities in the GOE and GSE, we will specialize Proposi-
tion 3.9.3 in several different ways, varying bothF andn. To begin the evaluation,
let ϕ denote a function on the real line of the formϕ(x) = eC1x2+C2x+C3, where
C1 < 0,C2 andC3 are real constants, and letOn denote the span overC of the set
of functions{xi−1ϕ(x)}n−1

i=0 . Later we will make use of specially chosen bases for
On consisting of suitably modified oscillator wave-functions, but initially these
are not needed. Recall that∆(x) = ∏1≤i< j≤n(x j −xi) for x = (x1, . . . ,xn) ∈ Rn.

The application of (3.9.1) to the GSE is the following.

Proposition 3.9.4Let{ fi}2n
i=1 be any family of elements ofO2n. For x∈ R, put

F(x) = [ f ′i (x) fi(x) ]|2n,1 ∈ Mat2n×2(C) .

Then, for all measurable sets A⊂ R,

Pf
∫

A
F(x)J1F(x)Tdx= c

∫

A
· · ·
∫

A
∆(x)4

n

∏
i=1

ϕ(xi)
2dxi , (3.9.3)

where c= c({ fi}) is a complex number depending only on the family{ fi}, not on
A. Further, c6= 0 if and only if{ fi}2n

i=1 is a basis forO2n overC.

Proof By Theorem 3.9.2(i), we may assume without loss of generality that fi(x) =

xi−1ϕ(x), and it suffices to show that (3.9.3) holds withc 6= 0. By identity (3.9.1)
and the confluent alternant identity (2.5.30), identity (3.9.3) does indeed hold for
suitable nonzeroc independent ofA. ⊓⊔

The corresponding result for the GOE uses indefinite integrals of functions. To
streamline the handling of the latter, we introduce the following notation, which
is used throughout Section 3.9. For each integrable real-valued functionf on the
real line we define a continuous functionε f by the formula

(ε f )(x) =

∫
1
2

sign(x−y) f (y)dy= −
∫ ∞

x
f (y)dy+

1
2

∫
f (y)dy

=

∫ x

0
f (y)dy− 1

2

∫
sign(y) f (y)dx, (3.9.4)

where sign(x) = 1x>0− 1x<0, and we write
∫

f (x)dx =
∫ ∞
−∞ f (x)dx to abbreviate

notation. Note that(ε f )′(x) = f (x) almost everywhere, that is,ε inverts dif-
ferentiation. Note also that the operationε reverses parity and commutes with
translation.

The application of (3.9.1) to the GOE is the following.

Proposition 3.9.5Let { fi}n
i=1 be any family of elements ofOn. Let a 6= 0 be a
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complex constant. For each measurable set A⊂ R and x∈ R, put

Fe
A(x) =

[
fi(x) ε(1A fi)(x)

]
|n,1 ∈ Matn×2(C) .

If n is even, let FA(x) = Fe
A(x) ∈ Matn′×2(C). Otherwise, if n is odd, let FA(x) ∈

Matn′×2(C) be the result of adjoining the row[0 a] at the bottom of FeA(x). Then,
for all measurable sets A⊂ R,

Pf
∫

A
FA(x)J1FA(x)Tdx= c

∫

A
· · ·
∫

A
|∆(x)|

n

∏
i=1

ϕ(xi)dxi , (3.9.5)

where c= c({ fi},a) is a complex number depending only on the data({ fi},a),
not on A. Further, c6= 0 if and only if{ fi}n

i=1 is a basis forOn overC.

Proof By Theorem 3.9.2(i), we may assume without loss of generality that fi(x) =

xi−1ϕ(x), and it suffices to show that (3.9.5) holds withc 6= 0 independent ofA.
For x∈ R, let f (x) = [ fi(x) ] |n,1 ∈ Matn×1(C). Let An

+ be the subset ofAn ⊂ Rn

consisting ofn-tuples in strictly increasing order. Then, using the symmetry of the
integrand of (3.9.5) and the Vandermonde determinant identity, one can verify that
the integral

∫
An

+
det[ f (y j )]|1,n ∏n

1dyi equals the right side of (3.9.5) withc = 1/n!.
Putr = ⌊n/2⌋. Consider, forz∈ Rr , then×n matrix

ΨA(z) =





[
[ε(1A fi)|z1

−∞]|n,1 [ fi(zj) ε(1A fi)|
zj+1
zj ]|n,r

]
if n is odd,

[ fi(zj ) ε(1A fi)|
zj+1
zj ]|n,r if n is even,

wherezr+1 = ∞, andh|ts = h(t)− h(s). By integrating every other variable, we
obtain a relation

∫

Ar
+

detΨA(z)
r

∏
1

dzi =
∫

An
+

det[ f (y j)]|1,n

n

∏
1

dyi .

Consider, forz∈ Rr , then×n matrix

ΦA(z) =

{
[[FA(zj)]|1,r a

∫
A f (x)dx] if n is odd,

[FA(zj)]|1,r if n is even.

BecauseΦA(z) arises fromΨA(z) by evident column operations, we deduce that
detΦA(z) = c1detΨA(z) for some nonzero complex constantc1 independent ofA
andz. Since the function detΦA(z) of z∈ Rr is symmetric, we have

∫

Ar
+

detΦA(z)
r

∏
1

dzi =
1
r!

∫

Ar
detΦA(z)

r

∏
1

dzi .

If n is even, we conclude the proof by using the Pfaffian integration identity (3.9.1)
to verify that the right side above equals the left side of (3.9.5).

Assume for the rest of the proof thatn is odd. Fori = 1, . . . ,n, let Fe,i
A (x) be the
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result of striking out theith row fromFe
A(x) and similarly, letΦi

A(z) be the result
of striking theith row and last column fromΦA(z). Then we have expansions

Pf

[ ∫
AFe

A(x)J1Fe
A(x)Tdx a

∫
A f (x)dx

−a
∫
A f (x)Tdx 0

]

= a
n

∑
i=1

(−1)i+1(

∫

A
fi(x)dx)

(
Pf
∫

A
Fe,i

A (x)J1Fe,i
A (x)Tdx

)
,

detΦA(z) = a
n

∑
i=1

(−1)i+n(
∫

A
fi(x)dx)detΦi

A(z) ,

obtained in the first case by Theorem 3.9.2(iii), and in the second by expanding
the determinant by minors of the last column. Finally, by applying (3.9.1) term
by term to the latter expansion, and comparing the resultingterms with those of
the former expansion, one verifies that1

r!

∫
Ar detΦA(z)∏r

1dzi equals the left side
of (3.9.5). This concludes the proof in the remaining case ofoddn. ⊓⊔

The next lemma gives further information about the structure of the antisym-
metric matrix

∫
AFA(x)J1FA(x)Tdx appearing in Proposition 3.9.5. Letηn =

√
2In

for evenn, andηn =

[ √
2In 0
0 1/

√
2

]
for oddn.

Lemma 3.9.6In the setup of Proposition 3.9.5, for all measurable sets A⊂ R,
∫

A
FA(x)J1FA(x)Tdx=

∫
FR(x)J1FR(x)Tdx−

∫

Ac
ηnFR(x)J1FA(x)Tηndx. (3.9.6)

Proof Let Li, j (resp.,Ri, j ) denote the(i, j) entry of the matrix on the left (resp.,
right). To abbreviate notation we write〈 f ,g〉 =

∫
f (x)g(x)dx. For i, j < n+ 1,

using antisymmetry of the kernel1
2sign(x−y), we have

1
2

Li, j =
1
2
(〈1A fi ,ε(1A f j)〉− 〈1A f j ,ε(1A fi)〉) = 〈1A fi ,ε(1A f j )〉

= 〈 fi ,ε f j 〉− 〈1Ac fi ,ε f j 〉− 〈1A fi ,ε(1Ac f j)〉

= 〈 fi ,ε f j 〉− 〈1Ac fi ,ε f j 〉+ 〈ε(1A fi),1Ac f j 〉 =
1
2

Ri, j ,

which concludes the proof in the case of evenn. In the case of oddn it remains
only to consider the cases max(i, j) = n+1. If i = j = n+1, thenLi, j = 0= Ri, j . If
i < j = n+1, thenLi, j = a〈1A, fi〉= Ri, j . If j < i = n+1, thenLi, j =−a〈1A, f j 〉=

Ri, j . The proof is complete. ⊓⊔

Determinant formulas for squared gap probabilities

By making careful choices for the functionsfi in Propositions 3.9.4 and 3.9.5,
and applying Theorems 3.9.2(ii) and 2.5.2, we are going to obtain determinant
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formulas for squared gap probabilities. Toward that end, for fixed σ > 0 and real
ξ , let

φn(x) = φn,σ ,ξ (x) = σ1/2ψn(σ−1x+ ξ ) , (3.9.7)

andφ−1 ≡ 0 for convenience. The functionsφn are shifted and scaled versions of
the oscillator wave-functions, see Definition 3.2.1.

We are ready to state the main results for gap probabilities in the GSE and GOE.
These should be compared with Lemma 3.2.4 and Remark 3.4.4. The result for
the GSE is as follows.

Proposition 3.9.7For x∈ R, put

H(x) =
1

σ
√

2

[
φ2i−1(x) φ ′

2i−1(x)
εφ2i−1(x) φ2i−1(x)

]
|1,n ∈ Mat2×2n(C) (3.9.8)

andH̃(x) = J1H(x)J−1
n . Then, for all measurable sets A⊂ R,

det

(
I2n−

∫

A
H̃(x)TH(x)dx

)
=

(∫
Ac· · ·

∫
Ac ∆(x)4 ∏n

i=1 φ0(xi)
2dxi∫ · · ·∫ ∆(x)4 ∏n

i=1 φ0(xi)2dxi

)2

. (3.9.9)

To prove the proposition we will interpretH as the transpose of a matrix of the
form F appearing in Proposition 3.9.4, which is possible becauseε inverts differ-
entiation.

The result for the GOE is as follows.

Proposition 3.9.8Let r = ⌊n/2⌋. Let n′ = n if n is even, and otherwise, if n is odd,
let n′ = n+1. Letℓ∈ {1,2} have the same parity as n. For x∈ R, and measurable
sets A⊂ R, put

Ge
A(x) =

1
σ

[
φ2i−ℓ(x) φ ′

2i−ℓ(x)
ε(1Aφ2i−ℓ)(x) ε(1Aφ ′

2i−ℓ)(x)

]
|1,r ∈ Mat2×2r(C) .

If n is even, put GA(x) = Ge
A(x) ∈ Mat2×n′(C). Otherwise, if n is odd, let GA(x) ∈

Mat2×n′(C) be obtained from GeA(x) by adjoining the block
[

φn−1(x) 0
ε(1Aφn−1)(x) 1/〈φn−1,1〉

]

on the far right. Also put̃GA(x) = J1GA(x)J−1
n′/2. Then, for all measurable sets

A⊂ R,

det

(
In′ −

∫

A
G̃R(x)TGAc(x)dx

)
=

(∫
Ac· · ·

∫
Ac |∆(x)|∏n

i=1 φ0(xi)dxi∫ · · ·∫ |∆(x)|∏n
i=1 φ0(xi)dxi

)2

.

(3.9.10)
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To prove the proposition we will interpretGA as a matrix of the formFT
A ηn ap-

pearing on the right side of (3.9.6) in Lemma 3.9.6.

Before commencing the proofs we record a series of elementary properties of
the functionsφi following immediately from Lemmas 3.2.5 and 3.2.7. These
properties will be useful throughout Section 3.9. As above,we write 〈 f ,g〉 =∫

f (x)g(x)dx. Let k, ℓ,n≥ 0 be integers. LetOn = On,σ ,ξ denote the span of the
set{φi}n−1

i=0 overC.

Lemma 3.9.9The following hold:

φ0(x) = σ1/2(2π)−1/4e−
(σ−1x+ξ )2

4 , (3.9.11)

sup
x

eγ|x||φn(x)| < ∞ for every real constantγ, (3.9.12)

φn = ε(φ ′
n) = (εφn)

′ , (3.9.13)

〈φk,φℓ〉 = σ2δkℓ = −〈εφk,φ ′
ℓ〉 , (3.9.14)

〈φk,εφℓ〉 = 0 and 〈φk,φ ′
ℓ〉 = 0 for k+ ℓ even , (3.9.15)

〈φn,1〉 = 0 for n odd, (3.9.16)

σφ ′
n = −

√
n+1
2

φn+1 +

√
n

2
φn−1 , (3.9.17)

〈φn,1〉 > 0 for n even, (3.9.18)

εφn ∈ On−1 for n odd , (3.9.19)

(σ−1x+ ξ )φn(x) =
√

n+1φn+1(x)+
√

nφn−1(x) , (3.9.20)
n−1

∑
i=0

φi(x)φi(y)
σ2 =

φn(x)φ ′
n(y)−φ ′

n(x)φn(y)
x−y

− φn(x)φn(y)
2σ2 , (3.9.21)

σ2φ ′′
n (x) =

(
(σ−1x+ ξ )2

4
−n− 1

2

)
φn(x) . (3.9.22)

Proof of Proposition 3.9.7Using property (3.9.19), and recalling thatε inverts
differentiation, we observe that, withϕ = φ0 and F(x) = H(x)T, the integra-
tion identity (3.9.3) holds with a constantc independent ofA. Further, we have∫

H̃(x)TH(x)dx= I2n by (3.9.14) and (3.9.15), and hence

det

(
In−

∫

A
H̃(x)TH(x)dx

)
=

(
Pf
∫

Ac
F(x)J1F(x)Tdx

)2

,

after some algebraic manipulations using part (ii) of Theorem 3.9.2 and the fact
that detJn = 1. Thus, by (3.9.3) withA replaced byAc, the integration identity
(3.9.9) holds up to a constant factor independent ofA. Finally, since (3.9.9) obvi-
ously holds forA = /0, it holds for allA. ⊓⊔
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Proof of Proposition 3.9.8Taking ηn as in Lemma 3.9.6,ϕ = φ0 andFA(x) =

η−1
n GA(x)T, the integration identity (3.9.5) holds with a constantc independent

of A. Further, we haveIn =
∫

J−1
n′/2FR(x)J1FR(x)Tdx by (3.9.14), (3.9.15) and

(3.9.16), and hence

det

(
In′ −

∫

A
G̃(x)TGAc(x)dx

)
=

(
Pf
∫

Ac
FAc(x)J1FAc(x)Tdx

)2

by Lemma 3.9.6 withA replaced byAc, after some algebraic manipulations using
part (ii) of Theorem 3.9.2 and the fact that detJn = 1. Thus, by (3.9.5) with
A replaced byAc, the integration identity (3.9.10) holds up to a constant factor
independent ofA. Finally, since (3.9.10) obviously holds forA = /0, it holds for
all A. ⊓⊔

3.9.2 Fredholm representation of gap probabilities

In this section, by reinterpreting formulas (3.9.9) and (3.9.10), we represent the
square of a gap probability for the GOE or GSE as a Fredholm determinant of a
matrix kernel, see Theorem 3.9.19.

Matrix kernels and a revision of the Fredholm setup

We make some specialized definitions to adapt Fredholm determinants as defined
in Section 3.4 to the study of limits in the GOE and GSE.

Definition 3.9.10For k ∈ {1,2}, let Kerk denote the space of Borel-measurable
functionsK : R×R → Matk(C). We call elements of Ker1 scalar kernels, ele-
ments of Ker2 matrix kernels, and elements of Ker1 ∪Ker2 simply kernels. We
often view a matrix kernelK ∈ Ker2 as a 2×2 matrix with entriesKi, j ∈ Ker1.

We are now using the term “kernel” in a sense somewhat differing from that in
Section 3.4. On the one hand, usage is more general because boundedness is not
assumed any more. On the other hand, usage is more specialized in that kernels
are always functions defined onR×R.

Definition 3.9.11GivenK,L ∈ Kerk, we defineK ⋆L by the formula

(K ⋆L)(x,y) =

∫
K(x,t)L(t,y)dt ,

whenever
∫ |Ki,ℓ(x, t)Lℓ, j(t,y)|dt < ∞ for all x,y∈ R andi, j, ℓ ∈ {1, . . . ,k}.
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Since the definition of Fredholm determinant made in Section3.4 applies only
to bounded kernels on measure spaces of finite total mass, to use it efficiently we
have to make the next several definitions.

Given a real constantγ ≥ 0, letwγ(x) = exp(γ|x+ γ|− γ2) for x∈ R. Note that
wγ(x) = eγx for x > −γ andw0(x) ≡ 1.

Definition 3.9.12 (γ-twisting) Givenk∈ {1,2}, a kernelK ∈ Kerk, and a constant
γ ≥ 0, we define theγ-twistedkernelK(γ) ∈ Kerk by

K(γ)(x,y) =





K(x,y)wγ (y) if k = 1,

[
wγ(x)K11(x,y) wγ (x)K12(x,y)wγ (y)

K21(x,y) K22(x,y)wγ (y)

]
if k = 2 .

We remark thatK ∈ Kerγ2 ⇒ KT
11,K22 ∈ Kerγ1 whereKT

11(x,y) = K11(y,x).

As before, let Leb denote Lebesgue measure on the real line. For γ ≥ 0, let
Lebγ (dx) = wγ (x)−1Leb(dx), noting that Leb0 = Leb, and that Lebγ has finite
total mass forγ > 0.

Definition 3.9.13Givenk ∈ {1,2}, a kernelK ∈ Kerk, and a constantγ ≥ 0, we
write K ∈ Kerγk if there exists some open setU ⊂ R and constantc > 0 such that
Lebγ (U) < ∞ and maxi, j |(K(γ))i, j | ≤ c1U×U .

Note that Kerγk is closed under the operation⋆ because, forK,L ∈ Kerγk, we have

(K ⋆L)(γ)(x,y) =

∫
K(γ)(x, t)L(γ)(t,y)Lebγ (dt) (3.9.23)

and henceK ⋆L ∈ Kerγk.

We turn next to the formulation of a version of the definition of Fredholm de-
terminant suited to kernels of the class Kerγ

k.

Definition 3.9.14Givenk ∈ {1,2}, γ ≥ 0, andL ∈ Kerγk, we define Fredγk(L) by
specializing the setup of Section 3.4 as follows.

(i) ChooseU ⊂ R open andc > 0 such that maxi, j |(L(γ))i, j | ≤ c1U×U .
(ii) Let X = U ×I , whereI = {1},{1,2} according ask = 1,2.
(iii) Let ν = (restriction of Lebγ to U)⊗ (counting measure onI ).
(iv) Let K((s, i),(t, j)) = L(γ)(s, t)i, j for (s, i),(t, j) ∈ X.

Finally, we let Fredγk(L) = ∆(K), where the latter is given as in Definition 3.4.3,
with inputsX, ν andK as defined above.
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The complex number Fredγ
k(L) is independent of the choice ofU andc made in

point (i) of the definition, and hence well defined. The definition is contrived so
that if L ∈ Kerγi

k for i = 1,2, then Fredγi
k (L) is independent ofi, as one verifies by

comparing the expansions of these Fredholm determinants term by term.

Two formal properties of Fredγk(·) deserve emphasis.

Remark 3.9.15If K,L ∈ Kerγk, then multiplicativity holds in the form

Fredγ
k(K +L−K ⋆L) = Fredγ

k(K)Fredγ
k(L) ,

by (3.9.23) and Theorem 3.4.10. Further, by Corollary 3.4.9, if K ∈ Kerγ2 satisfies
K21 ≡ 0 orK12 ≡ 0, then

Fredγ
2(K) = Fredγ

1(K
T
11)Fredγ

1(K22) .

The analog of Remark 3.4.4 in the present situation is the following.

Remark 3.9.16Let γ ≥ 0 be a constant. LetU ⊂ R be an open set such that
Lebγ (U) < ∞. Let G,G̃ : R → Mat2×2n(C) be Borel-measurable. Assume further
that all entries of the matrices

[
wγ(x) 0

0 1

]
G(x),

[
1 0
0 wγ (x)

]
G̃(x)

are bounded forx∈U . Let

K(x,y) = G(x)G̃(y)T ∈ Mat2(C)

for x,y∈ R. Let A⊂U be a Borel set. Then1A×AK ∈ Kerγ2 and

Fredγ
2(1A×AK) = det

(
I2n−

∫

A
G̃(x)TG(x)dx

)
.

If K ∈ Kerγk and Fredγk(K) 6= 0, then one can adapt the Fredholm adjugant con-
struction, see equation (3.4.15), to the present situation, and one can verify that
there exists uniqueR∈Kerγk such that the resolvent equationR−K = K⋆R= R⋆K
holds.

Definition 3.9.17The kernelR∈ Kerγk associated as above withK ∈Kerγk is called
theresolventof K with respect toγ, and we writeR= Resγk(K).

This definition is contrived so that ifK ∈ Kerγi
k for i = 1,2, then Resγi

k (K) is in-
dependent ofi. In fact, we will need to use this definition only fork = 1, and the
only resolvents that we will need are those we have already used to analyze GUE
in the bulk and at the edge of the spectrum.
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Finally, we introduce terminology pertaining to useful additional structure a
kernel may possess.

Definition 3.9.18We say thatK ∈ Kerk for k ∈ {1,2} is smoothif K is infinitely
differentiable. We say thatL∈Ker1 is symmetric(resp.,antisymmetric) if L(x,y)≡
L(y,x) (resp.,L(x,y) ≡−L(y,x)). We say thatK ∈ Ker2 is self-dualif K21 andK12

are antisymmetric andK11(x,y)≡K21(x,y). Given smoothL∈Ker1 andK ∈Ker2,
we say thatK is thedifferential extensionof L if

K(x,y) ≡




∂L
∂x (x,y) − ∂ 2L

∂x∂y(x,y)

L(x,y) − ∂L
∂y(x,y)


 .

Note that ifK ∈ Ker2 is smooth,K21 is antisymmetric, andK is the differential
extension ofK21, thenK is self-dual andK21(x,y) =

∫ x
y K11(t,y)dt.

Main results

Fix real constantsσ > 0 andξ . With φn = φn,σ ,ξ as defined by formula (3.9.7),
we put

Kn,σ ,ξ ,2(x,y) =
1

σ2

n−1

∑
i=0

φi(x)φi(y) . (3.9.24)

The kernelKn,σ ,ξ ,2(x,y) is nothing new: we have previously studied it to obtain
limiting results for the GUE.

We come to the novel definitions. We writeKn = Kn,σ ,ξ ,2 to abbreviate. Let

Kn,σ ,ξ ,1(x,y) =

[
Kn(x,y) − ∂Kn

∂y (x,y)

− 1
2sign(x−y)+

∫ x
y Kn(t,y)dt Kn(x,y)

]

+

√
n

2σ3

[
φn−1(x)εφn(y) −φn−1(x)φn(y)

(
∫ x

y φn−1(t)dt)εφn(y) εφn(x)φn−1(y)

]

+








φn−1(x)
〈φn−1,1〉 0

∫ x
y φn−1(t)dt
〈φn−1,1〉

φn−1(y)
〈φn−1,1〉


 if n is odd,

0 if n is even,

(3.9.25)
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and

Kn,σ ,ξ ,4(x,y) =
1
2

[
K2n+1(x,y) − ∂K2n+1

∂y (x,y)∫ x
y K2n+1(t,y)dt K2n+1(x,y)

]
(3.9.26)

+

√
2n+1
4σ3

[
φ2n(x)εφ2n+1(y) −φ2n(x)φ2n+1(y)

(
∫ x

y φ2n(t)dt)εφ2n+1(y) εφ2n+1(x)φ2n(y)

]
.

We then have the following representations of squares of gapprobabilities as Fred-
holm determinants of matrix kernels.

Theorem 3.9.19Let γ ≥ 0 and a Borel set A⊂ R be given. Assume either that
γ > 0 or that A is bounded. Letβ ∈ {1,4}. Then we have


∫

Ac· · ·
∫

Ac |∆(x)|β ∏n
i=1 φ0,σ ,ξ (xi)

√
β dxi

∫ · · ·∫ |∆(x)|β ∏n
i=1 φ0,σ ,ξ (xi)

√
β dxi




2

= Fredγ
2(1A×AKn,σ ,ξ ,β ) . (3.9.27)

It is easy to check using Lemma 3.9.9 that the right side is defined. For compari-
son, we note that under the same hypotheses onγ andA we have

∫
Ac · · ·

∫
Ac |∆(x)|2 ∏n

i=1 φ0,σ ,ξ (xi)
2dxi∫ · · ·∫ |∆(x)|2 ∏n

i=1 φ0,σ ,ξ (xi)2dxi
= Fredγ

1(1A×AKn,σ ,ξ ,2) . (3.9.28)

The latter is merely a restatement in the present setup of Lemma 3.2.4.

Before commencing the proof we need to prove a Pfaffian analogof (3.9.21).
For integersn > 0, put

Ln(x,y) = Ln,σ ,ξ (x,y) = σ−2 ∑
0≤ℓ<n

(−1)ℓ=(−1)n

∣∣∣∣
εφℓ(x) εφℓ(y)
φℓ(x) φℓ(y)

∣∣∣∣ .

Lemma 3.9.20

Ln(x,y) =

√
n

2σ3 εφn−1(x)εφn(y)+
1

σ2

n−1

∑
i=0

εφi(x)φi(y) .

Proof In view of (3.9.13), it is enough to prove

∑
0≤ℓ<n

(−1)ℓ=(−1)n

∣∣∣∣
φℓ(x) φℓ(y)
φ ′

ℓ(x) φ ′
ℓ(y)

∣∣∣∣=
√

n
2σ

φn−1(x)φn(y)+
n−1

∑
i=0

φi(x)φ ′
i (y) .

Let F1(x,y) and F2(x,y) denote the left and right sides of the equation above,
respectively. Fixα ∈ {1,2} and integersj,k≥ 0 arbitrarily. By means of (3.9.14)
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and (3.9.17), one can verify that
∫∫

Fα(x,y)φ j(x)φk(y)dxdy is independent ofα,
which is enough by (3.9.14) to complete the proof. ⊓⊔
Proof of Theorem 3.9.19Given smoothL∈Ker1, to abbreviate notation, letLext∈
Ker2 denote the differential extension ofL, see Definition 3.9.18.

First we prove the caseβ = 4 pertaining to the GSE. LetH(x) be as defined
in Proposition 3.9.7. By straightforward calculation based on Lemma 3.9.20, one
can verify that

H(x)J−1
n H(y)TJ1 =

1
2

Lext
2n+1,σ ,ξ (x,y) = Kn,σ ,ξ ,4(x,y) .

Then formula (3.9.27) in the caseβ = 4 follows from (3.9.9) and Remark 3.9.16.

We next prove the caseβ = 1 pertaining to the GOE. We use all the notation
introduced in Proposition 3.9.8. One verifies by straightforward calculation using
Lemma 3.9.20 that

GR(x)J1GR(y)TJ−1
n = Lext

n,σ ,ξ (x,y)+Mext
n,σ ,ξ (x,y) ,

where

Mn,σ ,ξ (x,y) =

{
εφn−1(x)−εφn−1(y)

〈1,φn−1〉 if n is odd,

0 if n is even.

Further, with

Q(x,y) = GAc(x)J1GR(y)TJ−1
n , E(x,y) =

[
0 0

1
2sign(x−y) 0

]
, (3.9.29)

QA = 1A×AQ andEA = 1A×AE, we have

−EA+QA +EA⋆QA = 1A×AKn,σ ,ξ ,1 .

Finally, formula (3.9.27) in the caseβ = 1 follows from (3.9.10) combined with
Remarks 3.9.15 and 3.9.16. ⊓⊔

Remark 3.9.21Because the kernelLn,σ ,ξ is smooth and antisymmetric, the proof
above actually shows thatKn,σ ,ξ ,4 is both self-dual and the differential extension
of its entry in the lower left. Further, the proof shows the same forKn,σ ,ξ ,1 +E.

3.9.3 Limit calculations

In this section we evaluate various limits of the form limn→∞ K(γ)
n,σn,ξn,β , paying

strict attention to uniformity of the convergence, see Theorems 3.9.22 and 3.9.24
below. Implications of these to spacing probabilities are summarized in Corollar-
ies 3.9.23 and 3.9.25 below.
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Statements of main results

Recall the symmetric scalar kernels, see Theorem 3.1.1, andDefinition 3.1.3,

Ksine(x,y) = Ksine,2(x,y) =
1
π

sin(x−y)
x−y

, (3.9.30)

KAiry (x,y) = KAiry ,2(x,y) =
Ai(x)Ai ′(y)−Ai ′(x)Ai (y)

x−y
. (3.9.31)

It is understood that these kernels are defined forx = y in the unique way making
them continuous (and in fact infinitely differentiable). The subscript 2 refers to
theβ parameter for the GUE.

We define matrix variants of the sine-kernel, and state the main result on con-
vergence toward these variants. Let

Ksine,1(x,y) =

[
Ksine(x,y) − ∂Ksine

∂y (x,y)

− 1
2sign(x−y)+

∫ x
y Ksine(t,y)dt Ksine(x,y)

]
,

(3.9.32)

Ksine,4(x,y) =
1
2

[
Ksine(x,y) − ∂Ksine

∂y (x,y)∫ x
y Ksine(t,y)dt Ksine(x,y)

]
. (3.9.33)

The subscripts 1 and 4 refer to theβ parameters for the GOE and GSE, respec-
tively. Note that each of the kernelsKsine,4 and, withE as in (3.9.29),E+Ksine,1 is
self-dual and the differential extension of its entry in thelower left. In other words,
the kernelsKsine,β have properties analogous to those ofKn,σ ,ξ ,β mentioned in Re-
mark 3.9.18.

We will prove the following limit formulas.

Theorem 3.9.22For all bounded intervals I⊂ R,

lim
n→∞

Kn,
√

n,0,1(x,y) = Ksine,1(x,y) , (3.9.34)

lim
n→∞

Kn,
√

n,0,2(x,y) = Ksine,2(x,y) , (3.9.35)

lim
n→∞

Kn,
√

2n,0,4(x,y) = Ksine,4(x,y) , (3.9.36)

uniformly for x,y∈ I.

Limit formula (3.9.35) is merely a restatement of Lemma 3.5.1, and to the proof
of the latter there is not much to add in order to prove the other two limit formu-
las. Using these we will prove the following concerning the bulk limits Fbulk,β (t)
considered in Theorem 3.1.6.
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Corollary 3.9.23For β ∈ {1,2,4} and constants t> 0, the limits Fbulk,β (t) exist.
More precisely, with I= (−t/2, t/2)⊂ R,

(1−Fbulk,1(t))
2 = Fred0

2(1I×I Ksine,1) , (3.9.37)

1−Fbulk,2(t) = Fred0
1(1I×I Ksine,2) , (3.9.38)

(1−Fbulk,4(t/2))2 = Fred0
2(1I×I Ksine,4) . (3.9.39)

Further, forβ ∈ {1,2,4},

lim
t→∞

Fbulk,β (t) = 1. (3.9.40)

Formula (3.9.38) merely restates the limit formula in Theorem 3.1.1. Note that the
limit formulas limt↓0Fbulk,β (t) = 0 for β ∈ {1,2,4} hold automatically as a conse-
quence of the Fredholm determinant formulas (3.9.37), (3.9.38) and (3.9.39), re-
spectively. The caseβ = 2 of (3.9.40) was discussed previously in Remark 3.6.5.
We will see that the casesβ ∈ {1,4} are easily deduced from the caseβ = 2 by
using decimation and superposition, see Theorem 2.5.17.

We turn to the study of the edge of the spectrum. We introduce matrix variants
of the Airy kernelKAiry and then state limit results. Let

KAiry ,1(x,y)

=

[
KAiry (x,y) − ∂KAiry

∂y (x,y)

− 1
2sign(x−y)+

∫ x
y KAiry (t,y)dt KAiry (x,y)

]

+
1
2

[
Ai(x)(1−

∫ ∞
y Ai(t)dt) −Ai(x)Ai (y)

(
∫ x

y Ai(t)dt)(1− ∫∞
y Ai(t)dt) (1− ∫∞

x Ai(t)dt)Ai(y)

]
, (3.9.41)

KAiry ,4(x,y)

=
1
2

[
KAiry (x,y) − ∂KAiry

∂y (x,y)∫ x
y KAiry (t,y)dt KAiry (x,y)

]

+
1
4

[
−Ai(x)

∫ ∞
y Ai(t)dt −Ai(x)Ai (y)

−(
∫ x

y Ai(t)dt)(
∫ ∞

y Ai(t)dt) −(
∫ ∞
x Ai(t)dt)Ai(y)

]
. (3.9.42)

Although it is not immediately apparent, the scalar kernelsappearing in the lower
left of KAiry ,β for β ∈ {1,4} are antisymmetric, as can be verified by using formula
(3.9.58) below and integration by parts. More precisely, each of the kernelsKAiry ,4

andE + KAiry ,1 (with E as in (3.9.29)) is self-dual and the differential extension
of its entry in the lower left. In other words, the kernelsKAiry ,β have properties
analogous to those ofKn,σ ,ξ ,β mentioned in Remark 3.9.18.

We will prove the following limit formulas.
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Theorem 3.9.24For constantsγ ≥ 0 and intervals I⊂ R bounded below,

lim
n→∞

K(γ)

n,n1/6,2
√

n,1
(x,y) = K(γ)

Airy ,1(x,y) , (3.9.43)

lim
n→∞

K(γ)

n,n1/6,2
√

n,2
(x,y) = K(γ)

Airy ,2(x,y) , (3.9.44)

lim
n→∞

K(γ)

n,(2n)1/6,2
√

2n,4
(x,y) = K(γ)

Airy ,4(x,y) , (3.9.45)

uniformly for x,y∈ I.

The proofs of the limit formulas are based on a strengtheningof Lemma 3.7.2
capable of handling intervals unbounded above, see Proposition 3.9.30. The limit
formulas imply, with some extra arguments, the following results concerning the
edge limitsFedge,β (t) considered in Theorem 3.1.7.

Corollary 3.9.25For β ∈ {1,2,4} and real constants t, the edge limits Fedge,β (t)
exist. More precisely, with I= (t,∞), andγ > 0 any constant,

Fedge,1(t)
2 = Fredγ

2(1I×I KAiry ,1) , (3.9.46)

Fedge,2(t) = Fredγ
1(1I×I KAiry ,2) , (3.9.47)

Fedge,4(t/22/3)2 = Fredγ
2(1I×I KAiry ,4) . (3.9.48)

Further, forβ ∈ {1,2,4},

lim
t→−∞

Fedge,β (t) = 0. (3.9.49)

We will show below, see Lemma 3.9.33, that forγ ≥ 0 andβ ∈ {1,2,4}, the

γ-twisted kernelK(γ)
Airy ,β is bounded on sets of the formI × I with I an interval

bounded below, and hence all Fredholm determinants on the right are defined.
Note that the limits limt→+∞ Fedge,β (t) = 1 for β ∈ {1,2,4} follow automatically
from formulas (3.9.46), (3.9.47) and (3.9.48), respectively. In particular, formula
(3.9.47) provides another route to the proof of Theorem 3.1.4 concerning edge-
scaling in the GUE which, bypassing the Ledoux bound (Lemma 3.3.2), handles
the “right-tightness” issue directly.

Proofs of bulk results

The proof of Theorem 3.9.22 is based on the following refinement of (3.5.4).

Proposition 3.9.26For all integers k≥ 0, integersδ , and bounded intervals I of
real numbers, we have

lim
n→∞

∣∣∣∣∣

(
d
dx

)k(
φn+δ ,

√
n,0(x)−

cos(x−π(n+ δ )/2)√
π

)∣∣∣∣∣= 0,
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uniformly for x∈ I.

Proof The casek = 0 of the proposition is exactly (3.5.4). Assume hereafter that
k > 0. By (3.9.17) and (3.9.20) we have

φ ′
n+δ ,

√
n,0(x) =

√
n+ δ

n
φn+δ−1,

√
n,0(x)−

xφn+δ ,
√

n,0(x)

2n
.

Repeated differentiation of the latter yields a relation which finishes the proof by
induction onk. ⊓⊔

Proposition 3.9.27For δ ,κ ∈ {0,1} and bounded intervals I⊂ R we have

lim
n→∞

(
∂
∂y

)κ
Kn+δ ,

√
n,0,2(x,y) =

(
∂
∂y

)κ
Ksine,2(x,y) ,

uniformly for x,y∈ I.

The proof is a straightforward modification of the proof of Lemma 3.5.1, using
Proposition 3.9.26 to justify differentiation under the integral. We omit the details.

The following elementary properties of the oscillator wave-functions will also
be needed.

Proposition 3.9.28We have

lim
n→∞
n:even

n1/4
∫ ∞

−∞
ψn(x)dx= 2. (3.9.50)

In the bulk case only the order of magnitude established hereis needed, but in the
edge case we will need the exact value of the limit.

Proof By (3.9.11) in the caseσ = 1 andξ = 0 we have

ψ0(x) = 2−1/4π−1/4e−x2/4,

∫
ψ0(x)dx= 23/4π1/4 . (3.9.51)

By (3.9.17) in the caseξ = 0 andσ = 1 we have

∫
ψn(x)dx∫
ψ0(x)dx

=

√√√√n/2

∏
i=1

2i −1
2i

=

√
n!

2n((n/2)!)2 ∼ 4

√
2

πn
,

by the Stirling approximation, see (2.5.12). Then (3.9.50)follows from (3.9.51).
⊓⊔
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Proposition 3.9.29We have

∞
sup
n=1
n:odd

∣∣∣∣
∫ ∞

0
ψn(x)dx

∣∣∣∣< ∞ . (3.9.52)

Proof For odd positive integersn we have a recursion
∫ ∞

0
ψn+2(x)dx =

2√
n+2

ψn+1(0)+

√
n+1
n+2

∫ ∞

0
ψn(x)dx,

which follows directly from (3.9.17) in the caseξ = 0 andσ = 1. Iterating, and
using also the special case

√
n+1ψn+1(0) = −

√
nψn−1(0) (3.9.53)

of (3.9.20), we obtain the relation

(−1)(n+5)/2
∫ ∞

0
ψn+4(x)dx−

√
n+3
n+4

√
n+1
n+2

(−1)(n+1)/2
∫ ∞

0
ψn(x)dx

= (−1)(n+1)/2ψn+1(0)
2√

n+4

(
−
√

n+2
n+3

+

√
n+3
n+2

)
,

for odd positive integersn. By (3.9.51) and (3.9.53), the right side is positive and
in any case isO(n−5/4). The bound (3.9.52) follows. ⊓⊔
Proof of Theorem 3.9.22The equality (3.9.35) is the caseκ = 0 of Proposition
3.9.27. To prove (3.9.34) and (3.9.36), in view of Propositions 3.9.26 and 3.9.27,
we just have to verify the (numerical) limit formulas

lim
n→∞
n:odd

1
〈φn−1,

√
n,0,1〉

= lim
n→∞
n:odd

1

n3/4〈ψn−1,1〉
= 0,

lim
n→∞
n:odd

εφn,
√

n,0(0)

n
= lim

n→∞
n:odd

1

2n1/4

∫ ∞

0
ψn(x)dx= 0.

These hold by Propositions 3.9.28 and 3.9.29, respectively. The proof of Theo-
rem 3.9.22 is complete. ⊓⊔
Proof of Corollary 3.9.23 For β ∈ {1,2,4}, let λ (β ,n) = (λ (β ,n)

1 , . . . ,λ (β ,n)
n ) be

a random vector inRn with law possessing a density with respect to Lebesgue
measure proportional to|∆(x)|β eβ |x|2/4. We have by Theorem 3.9.19, formula
(3.9.11) and the definitions that

P({σ(λ (1,n)− ξ )}∩ I = /0)2 = Fred0
2(1I×I Kn,σ ,ξ ,1) ,

P({σ(λ (2,n)− ξ )}∩ I = /0) = Fred0
1(1I×I Kn,σ ,ξ ,2) ,

P({σ(
√

2λ (4,n)− ξ )}∩ I = /0)2 = Fred0
2(1I×I Kn,σ ,ξ ,4) .



166 3. SPACINGS FORGAUSSIAN ENSEMBLES

The proofs of (3.9.37), (3.9.38) and (3.9.39) are completedby using Lemma 3.4.5
and Theorem 3.9.22. It remains only to prove the statement (3.9.40). Forβ = 2,
it is a fact which can be proved in a couple of ways described inRemark 3.6.5.
The caseβ = 2 granted, the casesβ ∈ {1,4} can be proved by using decimation
and superposition, see Theorem 2.5.17. Indeed, consider first the caseβ = 1. To
derive a contradiction, assume limt→∞ Fbulk,1(t) = 1−δ for someδ > 0. Then, by
the decimation relation (2.5.25), limt→∞ Fbulk,2(t)≤ 1−δ 2, a contradiction. Thus,
limt→∞ Fbulk,1(t) = 1. This also implies by symmetry that the probability that no
(rescaled) eigenvalue of the GOE appears in[0,t], denotedF̃1(t), decays to 0 as
t → ∞. By the decimation relation (2.5.26), we then have

1−Fbulk,4(t) ≤ 2F̃1(2t) →t→∞ 0.

This completes the proof of (3.9.40). ⊓⊔

Proofs of edge results

The proof of Theorem 3.9.24 is similar in structure to that ofTheorem 3.9.22. We
begin by refining Lemma 3.7.2.

Proposition 3.9.30For all constantsγ ≥ 0, integers k≥ 0, integersδ and intervals
I bounded below we have

lim
n→∞

eγxφ (k)

n+δ ,n1/6,2
√

n
(x) = eγx Ai (k)(x) (3.9.54)

uniformly for x∈ I.

We first need to prove two lemmas. The first is a classical trickgiving growth
information about solutions of one-dimensional Schrödinger equations. The sec-
ond applies the first to the Schrödinger equation (3.9.22) satisfied by oscillator
wave-functions.

Lemma 3.9.31Fix real numbers a< b. Letφ and V be infinitely differentiable
real-valued functions defined on the interval(a,∞) satisfying the following:
(i) φ ′′ = Vφ ; (ii) φ > 0 on [b,∞); (iii) limx→∞(logφ)′(x) = −∞;
(iv) V > 0 on [b,∞); (v) V ′ ≥ 0 on [b,∞).
Then(logφ)′ ≤−

√
V on[b,∞).

The differentiability assumptions, while satisfied in our intended application, are
much stronger than needed.

Proof Suppose rather that the conclusion does not hold. After replacing b by
some point of the interval(b,∞) we may assume thatφ

′
φ (b) > −

√
V(b). After



3.9 LIMITING BEHAVIOR OF THE GOE AND THE GSE 167

making a linear change of both independent and dependent variables, we may
assume thatb = 0, V(0) = 1 and henceφ ′

φ (0) > −1. Consider the function

θ (x) = coshx+ φ ′
φ (0)sinhx. Clearly we haveθ (0) = 1, θ ′

θ (0) = φ ′
φ (0) andθ ′′ = θ .

Further, becauseφ
′

φ (0) > −1, we haveθ > 0 andθ ′
θ > −1 on [0,∞). Finally, we

have

(θφ ′−θ ′φ)(0) = 0,
d
dx

(θφ ′−θ ′φ) = θφ (V −1)≥ 0 on[0,∞) ,

and henceφ
′

φ ≥ θ ′
θ > −1 on[0,∞), which is a contradiction. ⊓⊔

Lemma 3.9.32Fix n > 0 and putφn(x) = φn,n1/6,2
√

n(x). Then for x≥ 1 we have

φn(x) > 0 and(logφn)
′(x) ≤−(x−1/2)1/2.

Proof Let ζ be the rightmost of the finitely many zeroes of the functionφn. Then
φn does not change sign on(ζ ,∞) and in fact is positive by (3.9.20). The logarith-
mic derivative ofφn tends to−∞ asx→+∞ becauseφn is a polynomial inx times
a Gaussian density function ofx. In the present case the Schrödinger equation
(3.9.22) takes the form

φ ′′
n (x) = (x+n−2/3x2/4−1/(2n1/3))φn(x) . (3.9.55)

We finally apply Lemma 3.9.31 witha = max(1,ζ ) < b, thus obtaining the esti-
mate

(logφn)
′(b) ≤−

√
b−1/2 for b∈ (ζ ,∞)∩ (1,∞) .

This inequality forces one to haveζ < 1 because the function ofb on the left side
tends to+∞ asb ↓ ζ . ⊓⊔
Proof of Proposition 3.9.30We writeφn,δ (x) instead ofφn+δ ,n1/6,2

√
n(x) to abbre-

viate. We have

φn,δ±1(x)−φn,δ (x) =
xφn,δ (x)

2n1/6
√

n+ δ
+

(√
n

n+ δ
−1

)
φn,δ (x)∓ n1/6

√
n+ δ

φ ′
n,δ (x) ,

by (3.9.20) and (3.9.17), and by means of this relation we caneasily reduce to the
caseδ = 0. Assume thatδ = 0 hereafter and write simplyφn = φn,0.

By Lemma 3.7.2, the limit (3.9.54) holds on bounded intervals I . Further, from
Lemma 3.7.7 and the Airy equation Ai′′(x) = xAi(x), we deduce that

eγx Ai (k)(x) is bounded on intervals bounded below. (3.9.56)
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Thus it is enough to establish the following bound, for arbitrary constantsγ ≥ 0
and integersk≥ 0:

∞
sup
n=1

sup
x≥1

|eγxφ (k)
n (x)| < ∞ . (3.9.57)

Since in any case sup∞
n=1φn(1) < ∞, we get the bound (3.9.57) fork = 0,1 and all

γ ≥ 0 by Lemma 3.9.32. We then get (3.9.57) fork ≥ 2 and allγ ≥ 0 by (3.9.55)
and induction onk. ⊓⊔

Growth ofKAiry ,β is under control in the following sense.

Lemma 3.9.33For β ∈ {1,2,4}, γ ≥ 0 and intervals I bounded below, K(γ)
Airy ,β is

bounded on I× I.

Proof We have

KAiry (x,y) =

∫ ∞

0
Ai(x+ t)Ai(y+ t)dt . (3.9.58)

To verify this formula, first apply∂
∂x + ∂

∂y to both sides, using (3.9.56) to justify

differentiation under the integral, then apply the Airy equation Ai′′(x) = xAi (x) to
verify equality of derivatives, and finally apply (3.9.56) again to fix the constant
of integration. By further differentiation under the integral, it follows that for all
integersk, ℓ ≥ 0, constantsγ ≥ 0 and intervalsI bounded below,

sup
x,y∈I

∣∣∣∣e
γ(x+y) ∂ k+ℓ

∂xk∂yℓ
KAiry (x,y)

∣∣∣∣< ∞ . (3.9.59)

The latter is more than enough to prove the lemma. ⊓⊔

The following is the analog of Proposition 3.9.27.

Proposition 3.9.34For δ ,κ ∈ {0,1}, constantsγ ≥ 0 and intervals I⊂R bounded
below, we have

lim
n→∞

eγ(x+y)
(

∂
∂y

)κ
Kn+δ ,n1/6,2

√
n,2(x,y) = eγ(x+y)

(
∂
∂y

)κ
KAiry ,2(x,y) , (3.9.60)

uniformly for x,y∈ I.
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Proof To abbreviate we writeφn,δ = φn+δ ,n1/6,2
√

n. We have

Kn+δ ,n1/6,2
√

n,2(x,y)

=

∫ ∞

0
φn,δ (x+ t)φn,δ (y+ t)dt

+
1

4n2/3

∫ ∞

0
(x+y+2t)φn,δ(x+ t)φn,δ (y+ t)dt (3.9.61)

+
1

2n1/3

∫ ∞

0

(
φ ′

n,δ (x+ t)φn,δ(y+ t)+ φn,δ(x+ t)φ ′
n,δ(y+ t)

)
dt .

This is proved using (3.9.12), (3.9.21) and (3.9.22), following the pattern set in
proving (3.9.58) above. In the caseκ = 0 we then get the desired uniform con-
vergence (3.9.50) by Proposition 3.9.30 and dominated convergence. After differ-
entiating under the integrals in (3.9.58) and (3.9.61), we get the desired uniform
convergence forκ = 1 in similar fashion. ⊓⊔
Proof of Theorem 3.9.24The limit (3.9.44) follows from Proposition 3.9.34. To
see (3.9.43) and (3.9.45), note that by definitions (3.9.41)and (3.9.42), and Propo-
sitions 3.9.30 and 3.9.34, we just have to verify the (numerical) limit formulas

lim
n→∞
n:even

1
4
〈φn,n1/6,2

√
n,1〉 = lim

n→∞
n:even

n1/4

4
〈ψn,1〉 =

1
2

,

lim
n→∞
n:odd

1
〈φn−1,n1/6,2

√
n,1〉

= lim
n→∞
n:odd

1

n1/4〈ψn−1,1〉
=

1
2

.

These hold by Proposition 3.9.28. The proof of Theorem 3.9.24 is complete. ⊓⊔
Proof of Corollary 3.9.25With the notationλ (β ,n) as defined at the beginning of
the proof of Corollary 3.9.23, we have by Theorem 3.9.19, formula (3.9.11) and
the definitions that

P({σ(λ (1,n)− ξ )}∩ I = /0)2 = Fredγ
2(1I×I Kn,σ ,ξ ,1) ,

P({σ(λ (2,n)− ξ )}∩ I = /0) = Fredγ
1(1I×I Kn,σ ,ξ ,2) ,

P({σ(
√

2λ (4,n)− ξ )}∩ I = /0)2 = Fredγ
2(1I×I Kn,σ ,ξ ,4)) .

To finish the proofs of (3.9.46), (3.9.47) and (3.9.48), use Lemma 3.4.5 and The-
orem 3.9.24. The statement (3.9.49) holds forβ = 2 by virtue of Theorem 3.1.5,
and forβ = 1 as a consequence of the decimation relation (2.5.25).

The argument forβ = 4 is slightly more complicated. We use some information
on determinantal processes as developed in Section 4.2. By (3.8.22), the sequence
of laws of the second eigenvalue of the GUE, rescaled at the “edge scaling”, is
tight. Exactly as in the argument above concerningβ = 1, this property is inherited
by the sequence of laws of the (rescaled) second eigenvalue of the GOE. Using
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(2.5.26), we conclude that the same applies to the sequence of laws of the largest
eigenvalue of the GSE. ⊓⊔

Remark 3.9.35An alternative to using the decimation relations (2.5.25) and
(2.5.26) in the proof of lower tail tightness is to use the asymptotics of solutions
of the Painlevé II equations, see Remark 3.8.1. It has the advantage of leading to
more precise tail estimates onFedge,β . We sketch the argument in Exercise 3.9.36.

Exercise 3.9.36Using Exercise 3.8.3, (3.7.20), (3.8.4), (3.8.21) and Theorem
3.1.7, show that forβ = 1,2,4,

lim
t→∞

1

t3/2
log[1−Fedge,β (t)] = −2β

3
,

lim
t→−∞

1
t3 logFedge,β (t) = − β

24
.

Again, note the different rates of decay for the upper and lower tails of the distri-
bution of the largest eigenvalue.

3.9.4 Differential equations

We derive differential equations for the ratios

ρbulk,β (t) =
(1−Fbulk,β (t/2))2

1−Fbulk,2(t)
, ρedge,β (t) =

Fedge,β (t/22/3)2

Fedge,2(t)
, (3.9.62)

for β ∈ {1,4}, thus finishing the proofs of Theorems 3.1.6 and 3.1.7.

Block matrix calculations

We aim to represent each of the quantitiesρbulk,β (t) andρedge,β (t) as a Fredholm
determinant of a finite rank kernel. Toward that end we prove the following two
lemmas.

Fix a constantγ ≥ 0. Fix kernels

[
a b
c d

]
,

[
0 0
e 0

]
∈ Kerγ2 , σ ,w∈ Kerγ1 . (3.9.63)

Assume that

d = σ +w, Fredγ
1(σ) 6= 0. (3.9.64)
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Below, for brevity, we suppress⋆, writing AB for A⋆B. Put

K1 =

[
a−be (a−be)b
c−de w+(c−de)b

]
, (3.9.65)

K4 =

[
a−be

2
(a−be)b

4
c−de+e(a−be)

2 w+ eb−d
2 + (c−de+e(a−be))b

4

]
, (3.9.66)

R =

[
0 0
0 Resγ1(σ)

]
∈ Kerγ2 .

That R is well defined and belongs to Kerγ
2 follows from assumption (3.9.64).

ThatK1 andK4 are well defined will be proved below. Recall that fork ∈ {1,2}
andL1,L2 ∈ Kerγk, againL1L2 ∈ Kerγk, by (3.9.23).

Lemma 3.9.37With data(3.9.63)and under assumption(3.9.64), the kernelsK1

andK4 are well defined, and have the following properties:

K1,K4 ∈ Kerγ2 , (3.9.67)

Fredγ
2(K1 +K1R) =

Fredγ
2

([
a b

−e+c d

])

Fredγ
1(σ)

, (3.9.68)

Fredγ
2(K4 +K4R) =

Fredγ
2

(
1
2

[
a b
c d

])

Fredγ
1(σ)

. (3.9.69)

Proof Put

B =

[
0 b
0 0

]
, E =

[
0 0
e 0

]
, S=

[
0 0
0 σ

]
.

Note thatB,E,S∈ Kerγ2. GivenL1, . . . ,Ln ∈ Kerγ2 with n≥ 2, let

m(L1,L2) = L1 +L2−L1L2 ∈ Kerγ2,

m(L1, . . . ,Ln) = m(m(L1, . . . ,Ln−1),Ln) ∈ Kerγ2 for n > 2 .

Put

L1 = m

([
a b

−e+c d

]
,E,−B,−R

)
,

L4 = m

(
−E,

1
2

[
a b
c d

]
,E,−1

2
B,−R

)
.

Ones verifies that

K β = Lβ −Lβ S, Lβ = K β +K β R (3.9.70)
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for β ∈ {1,4} by straightforward calculation with 2× 2 matrices in which one
uses the first part of assumption (3.9.64), namelyd = σ + w, and the resolvent
identityR−S= RS= SR. Relation (3.9.70) establishes thatK1 andK4 are well
defined and proves (3.9.67). By Remark 3.9.15, we have

Fredγ
2(cB) = 1, Fredγ

2(±E) = 1, Fredγ
2(R)Fredγ

1(σ) = 1,

wherec is any real constant, and forL1, . . . ,Ln ∈ Kerγ2 with n≥ 2,

Fredγ
2(m(L1, . . . ,Ln)) = Fredγ

2(L1) · · ·Fredγ
2(Ln) .

We can now evaluate Fredγ
2(Lβ ), thus proving (3.9.68) and (3.9.69). ⊓⊔

The next lemma shows thatK β can indeed be of finite rank in cases of interest.

Lemma 3.9.38Let K∈ Ker2 be smooth, self-dual, and the differential extension
of its entry K21 ∈ Ker1 in the lower left. Let I= (t1,t2) be a bounded interval. Let

[
a(x,y) b(x,y)
c(x,y) d(x,y)

]
= 1I×I (x,y)K(x,y), e(x,y) =

1
2

1I×I (x,y)sign(x−y) ,

thus defining a,b,c,d,e∈ Ker01. Let

φ(x) =
1
2
(K11(x, t1)+K11(x,t2)) , (3.9.71)

ψ(x) = K11(x, t2)−K11(x,t1) , (3.9.72)

Φ(x) =
1
2

(∫ x

t1
φ(y)dy−

∫ t2

x
φ(y)dy

)
. (3.9.73)

Let K β for β ∈ {1,4} be as defined in(3.9.65)and (3.9.66), respectively, with
w = 0. Then

K1(x,y) = 1I×I (x,y)

[
φ(x)
Φ(x)

][
1 ψ(y)

]
, (3.9.74)

K4(x,y) = 1I×I (x,y)

[
φ(x)/2 0
Φ(x) −1

][
1 ψ(y)/2
0 φ(y)/2

]
. (3.9.75)

We omit the straightforward proof.

Proof of Theorem 3.1.6

We begin by recalling basic objects from the analysis of the GUE in the bulk of
the spectrum. Reverting to the briefer notation introducedin equation (3.6.1), we
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write S(x,y) = Ksine,2(x,y) for the sine-kernel. Explicitly, equation (3.9.38) says
that

1−Fbulk,2(t) = 1+
∞

∑
n=1

(−1)n

n!

∫

[− t
2 , t

2 ]n
S

(
x1 . . . xn

x1 . . . xn

) n

∏
i=1

dxi .

Let R(x,y; t) be the resolvent kernel introduced in Section 3.6.1 (obtained from
the sine-kernel with the choicen = 2, s0 = 0 = s2, s1 = 1 andt2 = −t1 = t/2).
Explicitly, R(x,y; t) is given by

(1−Fbulk,2(t))R(x,y; t)= S(x,y)+
∞

∑
n=1

(−1)n

n!

∫

[− t
2 , t

2 ]n
S

(
x x1 · · · xn

y x1 · · · xn

) n

∏
i=1

dxi ,

and satisfies

S(x,y)+
∫ t/2

−t/2
S(x,z)R(z,y; t)dz= R(x,y; t) (3.9.76)

by the fundamental identity, see Lemma 3.4.7. Recall the functions

Q(x; t) =
sinx√

π
+

∫ t/2

−t/2
R(x,y; t)

siny√
π

dy,

P(x; t) =
cosx√

π
+

∫ t/2

−t/2
R(x,y; t)

cosy√
π

dy,

which are as in definition (3.6.3) as specialized to the casen = 2, s0 = 0, s1 = 1,
s2 = 0, t1 = −t/2 andt2 = t/2 studied in Section 3.6.3. Finally, as in (3.6.30), let

p = p(t) = P(−t/2;t), q = q(t) = Q(−t/2;t) ,

noting that

r = r(t) = −2pq/t , (3.9.77)

is the function appearing in Theorem 3.1.6.

We introduce a systematic method for extracting useful functions of t from
R(x,y; t). A smooth (infinitely differentiable) functionφ(x; t) defined for realx
and positivet will be called atest-function. Given two test-functionsφ1 andφ2,
we define

〈φ1|φ2〉t = t
∫ 1/2

−1/2
φ1(tx; t)φ2(tx; t)dx

+t2
∫ 1/2

−1/2

∫ 1/2

−1/2
φ1(tx; t)R(tx,ty; t)φ2(ty; t)dxdy.

We call the resulting function oft anangle bracket. Because

R(x,y; t) ≡ R(y,x; t) ≡ R(−x,−y; t) , (3.9.78)
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the pairing〈·|·〉t is symmetric and, furthermore,

φ1(−x; t)φ2(−x; t) ≡−φ1(x; t)φ2(x; t) ⇒ 〈φ1|φ2〉t ≡ 0. (3.9.79)

Given a test-functionφ = φ(x; t), we also define

φ± = φ±(t) = φ(±t/2, t), φ ′ = φ ′(x; t) =
∂φ
∂x

(x; t) .

Now consider the test-functions

f (x; t) =
sinx√

π
,

g(x; t) =
1
2
(S(x, t/2)+S(x,−t/2)) ,

h(x; t) =
1
2
(S(x, t/2)−S(x,−t/2)) ,

G(x; t) =

∫ x

0
g(z; t)dz.

By the resolvent identity (3.9.76) and the symmetry (3.9.78) we have

p(t) = f ′+(t)+ 〈g| f ′〉t , −q(t) = f +(t)+ 〈h| f 〉t . (3.9.80)

It follows by (3.9.77) thatr(t) is also expressible in terms of angle brackets. To
link the functionr(t) to the ratios (3.9.62) in the bulk case, we begin by expressing
the latter in terms of angle brackets, as follows.

Lemma 3.9.39For each constant t> 0 we have

ρbulk,1(t) = 1−2G+(t)−2〈h|G〉t , (3.9.81)

ρbulk,4(t) = (1−G+(t)−〈h|G〉t)(1+
1
2
〈g|1〉t) . (3.9.82)

Proof Let I = (−t/2, t/2) and define inputs to Lemma 3.9.37 as follows:

[
a(x,y) b(x,y)
c(x,y) d(x,y)

]
= 21I×I (x,y)Ksine,4(x,y) ,

e(x,y) = 1I×I (x,y)
1
2

sign(x−y) ,

σ(x,y) = 1I×I (x,y)S(x,y) , w = 0.
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Then we have

K1(x,y) = 1I×I (x,y)

[
g(x; t)
G(x; t)

][
1 2h(x; t)

]
,

K4(x,y) = 1I×I (x,y)

[
g(x; t)/2 0
G(x; t) −1

][
1 h(y; t)
0 g(x; t)/2

]
,

R(x,y) = 1I×I (x,y)

[
0 0
0 R(x,y; t)

]
,

where the first two formulas can be checked using Lemma 3.9.38, and the last
formula holds by the resolvent identity (3.9.76).

The right sides of (3.9.68) and (3.9.69) equalρbulk,β (t) for β ∈ {1,4}, respec-
tively, by Corollary 3.9.23. Using Remark 3.9.15, one can check that the left side
of (3.9.68) equals the right side of (3.9.81), which concludes the proof of the latter.
A similar argument shows that the left side of (3.9.69) equals

det

(
I2−

[
G+(t)+ 〈h|G〉t −〈h|1〉t

1
2〈g|G〉t − 1

2〈g|1〉t

])
.

But 〈h|1〉t and〈g|G〉t are forced to vanish identically by (3.9.79). This concludes
the proof of (3.9.82). ⊓⊔

Toward the goal of evaluating the logarithmic derivatives of the right sides of
(3.9.81) and (3.9.82), we prove a final lemma. Given a test-functionφ = φ(x; t),
let Dφ = (Dφ)(x; t) = (x ∂

∂x + t ∂
∂ t )φ(x; t). In the statement of the lemma and the

calculations following we drop subscripts oft for brevity.

Lemma 3.9.40For all test-functionsφ1,φ2 we have

〈φ ′
1|φ2〉+ 〈φ1|φ ′

2〉 = (3.9.83)

(φ+
1 + 〈g+h|φ1〉)(φ+

2 + 〈g+h|φ2〉)− (φ−
1 + 〈g−h|φ1〉)(φ−

2 + 〈g−h|φ2〉) ,

t
d
dt
〈φ1|φ2〉 =

〈φ1|φ2〉+ 〈Dφ1|φ2〉+ 〈φ1|Dφ2〉+ 〈φ1| f 〉〈 f |φ2〉+ 〈φ1| f ′〉〈 f ′|φ2〉 . (3.9.84)

Proof The resolvent identity (3.9.76) and the symmetryS(x,y) ≡ S(y,x) yield the
relation

〈g±h|φ〉t =

∫ t/2

−t/2
R(±t/2,x; t)φ(x)dx.

Formula (3.6.18) withn = 2, s0 = 0 = s2, s1 = 1, t2 = −t1 = t/2 states that
(

∂
∂x

+
∂
∂y

)
R(x,y; t) = R(x,−t/2;t)R(−t/2,y; t)−R(x,t/2;t)R(t/2,y; t).
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These facts, along with the symmetry (3.9.78) and integration by parts, yield
(3.9.83) after a straightforward calculation. Similarly,using the previously proved
formulas for ∂

∂ t R(x,y; t), (x− y)R(x,y; t), P′(x; t) and Q′(x; t), see Section 3.6,
along with the trick

(
1+x

∂
∂x

+y
∂
∂y

)
R=

∂
∂x

(x−y)R+y

(
∂
∂x

+
∂
∂y

)
R,

one gets
(

1+x
∂
∂x

+y
∂
∂y

+ t
∂
∂ t

)
R(x,y; t) = P(x; t)P(y; t)+Q(x; t)Q(y; t) ,

whence formula (3.9.83) by differentiation under the integral. ⊓⊔
To apply the preceding lemma we need the following identities for which the

verifications are straightforward.

h+Dh= f + f , g+Dg= f ′+ f ′, DG = f ′+ f , t
d
dt

G+ = f ′+ f + . (3.9.85)

The notation here is severely abbreviated. For example, thethird relation written
out in full reads(DG)(x; t) = f ′+(t) f (x) = f ′(t/2) f (x). The other relations are
interpreted similarly.

We are ready to conclude. We claim that

t
d
dt

(1−2G+−2〈h|G〉)

= −2( f + + 〈h| f 〉)( f ′+ + 〈 f |G〉) = 2q( f ′+ + 〈 f |G〉)
= 2q( f ′+ + 〈g| f ′〉−2( f ′+ + 〈g| f ′〉)(G+ + 〈h|G〉))
= 2pq(1−2G+−2〈h|G〉) = −tr(1−2G+−2〈h|G〉) . (3.9.86)

At the first step we apply (3.9.79), (3.9.84) and (3.9.85). Atthe second and fourth
steps we apply (3.9.80). At the third step we apply (3.9.83) with φ1 = − f ′ and
φ2 = G, using (3.9.79) to simplify. At the last step we apply (3.9.77). Thus the
claim (3.9.86) is proved. The claim is enough to prove (3.1.11) since both sides
of the latter tend to 1 ast ↓ 0. Similarly, we have

t
d
dt

(1+ 〈g|1〉) = p〈 f ′|1〉 = −2pq(1+ 〈g|1〉)= tr(1+ 〈g|1〉) ,

which is enough in conjunction with (3.1.11) to verify (3.1.12). The proof of
Theorem 3.1.6 is complete. ⊓⊔

Proof of Theorem 3.1.7

The pattern of the proof of Theorem 3.1.6 will be followed rather closely, albeit
with some extra complications. We begin by recalling the main objects from the



3.9 LIMITING BEHAVIOR OF THE GOE AND THE GSE 177

analysis of the GUE at the edge of the spectrum. We revert to the abbreviated
notationA(x,y) = KAiry ,2(x,y). Explicitly, equation (3.9.47) says that

Fedge,2(t) = 1+
∞

∑
n=1

(−1)n

n!

∫

[t,∞)n
A

(
x1 . . . xn

x1 . . . xn

) n

∏
i=1

dxi .

Let R(x,y; t) be the resolvent kernel studied in Section 3.8. Explicitly,R(x,y; t) is
given by

Fedge,2(t)R(x,y; t) = A(x,y)+
∞

∑
n=1

(−1)n

n!

∫

(t,∞)n
A

(
x x1 · · · xn

y x1 · · · xn

) n

∏
i=1

dxi ,

and by Lemma 3.4.7 satisfies

A(x,y)+

∫ ∞

t
A(x,z)R(z,y; t)dz= R(x,y; t) . (3.9.87)

Recall the functions

Q(x; t) = Ai(x)+
∫ ∞

t
R(x,y; t)Ai(y)dy, q = q(t) = Q(t; t) ,

which are as in definition (3.8.3), noting thatq is the function appearing in Theo-
rem 3.1.7.

Given any smooth functionsφ1 = φ1(x; t) andφ2 = φ2(x; t) defined onR2, we
define

〈φ1|φ2〉t =

∫ ∞

0
φ1(t +x; t)φ2(t +x; t)dx

+
∫ ∞

0

∫ ∞

0
φ1(t +x; t)R(t +x,t +y; t)φ2(t +y; t)dxdy,

provided that the integrals converge absolutely for each fixedt. We call the result-
ing function oft anangle bracket. Since the kernelR(x,y; t) is symmetric inx and
y, we have〈φ1|φ2〉t = 〈φ2|φ1〉t .

We will only need finitely many explicitly constructed pairs(φ1,φ2) to substi-
tute into〈·|·〉t . For each of these pairs it will be clear using the estimates (3.9.56)
and (3.9.59) that the integrals above converge absolutely,and that differentiation
under the integral is permissible.

We now define the finite collection of smooth functions of(x,t) ∈ R2 from
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which we will draw pairs to substitute into〈·|·〉t . Let

f = f (x; t) = Ai(x) ,

g = g(x; t) = A(t,x) ,

F = F(x; t) = −
∫ ∞

x
f (z)dz,

G = G(x; t) = −
∫ ∞

x
g(z; t)dz.

Given any smooth functionφ = φ(x; t), it is convenient to define

φ ′ = φ ′(x; t) =
∂φ
∂x

(x; t) ,

φ− = φ−(t) = φ(t; t) ,

Dφ = (Dφ)(x; t) =

(
∂
∂x

+
∂
∂y

)
φ(x; t) .

We have

D f = f ′, DF = F ′ = f , G′ = g,
d
dt

F− = f− , (3.9.88)

Dg = − f− f , DG = − f−F , G− = −(F−)2/2,
d
dt

G− = − f−F−, (3.9.89)

the first four relations clearly, and the latter four following from the integral rep-
resentation (3.9.58) ofA(x,y). We further have

q = f− + 〈 f |g〉 , (3.9.90)

by (3.9.87). The next lemma linksq to the ratios (3.9.62) in the edge case by
expressing these ratios in terms of angle brackets. Forβ ∈ {1,4} let




hβ
gβ
fβ


=




−1 − 1
2F−

1
2

δβ ,1
2 + 1

4F−

0 1



[

g
f

]
,

[
Gβ
Fβ

]
=




1
2 − δβ ,1

4 F− δβ ,1
2 + 1

4F−

0
δβ ,1

2
1
2






G
1
F


 .
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Lemma 3.9.41For each real t we have

ρedge,1(t) = det

(
I2−

[
−F−(t)/2+ 〈h1|G1〉t 〈h1|F1〉t

〈 f1|G1〉t 〈 f1|F1〉t

])
, (3.9.91)

ρedge,4(t) = det


I3−



〈h4|G4〉t/2 −〈h4|1〉t/2 〈h4|F4〉t/2
〈g4|G4〉t/2 −〈g4|1〉t/2 〈g4|F4〉t/2
〈 f4|G4〉t −〈 f4|1〉t 〈 f4|F4〉t




 .

(3.9.92)

It is easy to check that all the angle brackets are well defined.

Proof We arbitrarily fix realt, along withβ ∈{1,4} andγ > 0. LetK = E+KAiry ,1

if β = 1 and otherwise letK = 2KAiry ,4 if β = 4. Let I = (t,∞) and define inputs
to Lemma 3.9.37 as follows.

[
a(x,y) b(x,y)
c(x,y) d(x,y)

]
= 1I×I (x,y)K(x,y) ,

e(x,y) = 1I×I (x,y)
1
2

sign(x−y) ,

σ(x,y) = 1I×I (x,y)A(x,y) ,

w(x,y) =
1
2

(
δβ ,1−

∫ ∞

x
Ai(z)dz

)
Ai(y) .

Using Lemma 3.9.38 witht1 = t andt2 →∞, one can verify after a straightforward
if long calculation that ifβ = 1, then

K1(x,y) = 1I×I (x,y)

[
g1(y; t) 0
G1(y; t) F1(y; t)

][
1 h1(x; t)
0 f1(x; t)

]
,

whereas, ifβ = 4, then

K4(x,y) = 1I×I (x,y)

[
g4(x; t)/2 0 0
G4(x; t) −1 F4(x; t)

]


1 h4(y; t)/2
0 g4(y; t)/2
0 f4(y; t)


 .

We also have

R(x,y) = 1I×I (x,y)

[
0 0
0 R(x,y; t)

]
.

The right sides of (3.9.68) and (3.9.69) equalρedge,β (t) for β ∈ {1,4}, respec-
tively, by Corollary 3.9.25. Using Remark 3.9.15, and the identity

∫ ∞

t
gβ (x; t)dx= −

δβ ,1

2
F−(t) ,

which follows from (3.9.88) and the definitions, one can check that forβ = 1 the
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left side of (3.9.68) equals the right side of (3.9.91), and that forβ = 4, the left
side of (3.9.69) equals the right side of (3.9.92). This completes the proof. ⊓⊔

One last preparation is required. For the rest of the proof wedrop the subscript
t, writing 〈φ1|φ2〉 instead of〈φ1|φ2〉t . Forφ1 ∈ { f ,g} andφ2 ∈ {1,F,G}, we have

d
dt
〈φ1|φ2〉 = 〈Dφ1|φ2〉+ 〈φ1|Dφ2〉− 〈 f |φ1〉〈 f |φ2〉 , (3.9.93)

〈φ ′
1|φ2〉+ 〈φ1|φ ′

2〉 = −(φ−
1 + 〈g|φ1〉)(φ−

2 + 〈g|φ2〉)+ 〈 f |φ1〉〈 f |φ2〉 , (3.9.94)

as one verifies by straightforwardly applying the previously obtained formulas for(
∂
∂x + ∂

∂y

)
R(x,y; t) and ∂

∂ t R(x,y; t), see Section 3.8.

We now calculate using (3.9.88), (3.9.89), (3.9.90), (3.9.93) and (3.9.94). We
have

d
dt

(1+ 〈g|1〉) = q(−〈 f |1〉) ,
d
dt

(−〈 f |1〉) = −〈 f ′|1〉+ 〈 f | f 〉〈1| f 〉 = q(1+ 〈g|1〉) ,
d
dt

(1−〈 f |F〉) = −〈 f ′|F〉− 〈 f | f 〉+ 〈 f | f 〉〈 f |F〉 = q(F− + 〈g|F〉) ,
d
dt

(F− + 〈g|F〉) = q(1−〈 f |F〉) ,

〈g|1〉 = −(G− + 〈g|G〉)(1+ 〈g|1〉)+ 〈 f |G〉〈 f |1〉 ,
〈g|F〉+ 〈 f |G〉 = −(G− + 〈g|G〉)(F− + 〈g|F〉)+ 〈 f |F〉〈 f |G〉 .

The first four differential equations are easy to integrate,and moreover the con-
stants of integration can be fixed in each case by noting that the angle brackets
tend to 0 ast → +∞, as doesq. In turn, the last two algebraic equations are easily
solved for〈g|G〉 and〈 f |G〉. Letting

x = x(t) = exp

(
−
∫ ∞

t
q(x)dx

)
,

we thus obtain the relations
[

〈g|G〉 〈g|1〉 〈g|F〉
〈 f |G〉 〈 f |1〉 〈 f |F〉

]
(3.9.95)

=

[
x+x−1

2 − x−x−1

2 F− +(F−)2/2−1 x+x−1

2 −1 x−x−1

2 −F−

x+x−1

2 F−− x−x−1

2 − x−x−1

2 1− x+x−1

2

]
.

It remains only to use these formulas to evaluate the determinants on the right sides
of (3.9.91) and (3.9.92) in terms ofx andF−. The former determinant evaluates
to x and the latter tox+2+x−1

4 . The proof of Theorem 3.1.7 is complete. ⊓⊔
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Remark 3.9.42The evaluations of determinants which conclude the proof above
are too long to suffer through by hand. Fortunately one can organize them into
manipulations of matrices with entries that are (Laurent) polynomials in variables
x andF−, and carry out the details with a computer algebra system.

3.10 Bibliographical notes

The study of spacings between eigenvalues of random matrices in the bulk was
motivated by “Wigner’s surmise” [Wig58], that postulated adensity of spacing
distributions of the formCse−s2/4. Soon afterwords, it was realized that this was
not the case [Meh60]. This was followed by the path-breakingwork [MeG60],
that established the link with orthogonal polynomials and the sine-kernel. Other
relevant papers from that early period include the series [Dys62b], [Dys62c],
[Dys62d] and [DyM63]. An important early paper concerning the orthogonal
and symplectic ensembles is [Dys70]. Both the theory and a description of the
history of the study of spacings of eigenvalues of various ensembles can be found
in the treatise [Meh91]. The results concerning the largesteigenvalue are due to
[TrW94a] for the GUE (with a 1992 ArXiv online posting), and [TrW96] for the
GOE and GSE; a good review is in [TrW93]. These results have been extended
in many directions; at the end of this section we provide a brief description and
pointers to the relevant (huge) literature.

The book [Wil78] contains an excellent short introduction to orthogonal poly-
nomials as presented in Section 3.2. Other good references are the classical
[Sze75] and the recent [Ism05]. The three term recurrence and the Christoffel–
Darboux identities mentioned in Remark 3.2.6 hold for any system of polynomials
orthogonal with respect to a given weight on the real line.

Section 3.3.1 follows [HaT03], who proved (3.3.11) and observed that differ-
ential equation (3.3.12) implies a recursion for the moments of L̄N discovered by
[HaZ86] in the course of the latter’s investigation of the moduli space of curves.
Their motivation came from the following: at least formally, we have the expan-
sion

〈L̄N,es·〉 = ∑
p≥0

s2p

2p!
〈L̄N,x2p〉.

Using graphical rules for the evaluation of expectations ofproducts of Gaussian
variables (Feynman’s diagrams), one checks that〈L̄N,x2p〉 expands formally into

∑
g≥0

1
N2gN C tr(X2p),g(1)
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with N C tr(X2p),g(1) the number of perfect matchings on one vertex of degree 2p
whose associated graph has genusg. Hence, computing〈L̄N,es·〉 as in Lemma
3.3.1 gives exact expressions for the numbersN C tr(X2p),g(1). The link between
random matrices and the enumeration of maps was first described in the physics
context in [t’H74] and [BrIPZ78], and has since been enormously developed, also
to situations involving multi-matrices, see [GrPW91], [FrGZJ95] for a descrip-
tion of the connection to quantum gravity. In these cases, matrices do not have in
general independent entries but their joint distribution is described by a Gibbs
measure. When this joint distribution is a small perturbation of the Gaussian
law, it was shown in [BrIPZ78] that, at least at a formal level, annealed mo-
ments〈L̄N,x2p〉 expands formally into a generating function of the numbers of
maps. For an accessible introduction, see [Zvo97], and for adiscussion of the as-
sociated asymptotic expansion (in contrast with formal expansion), see [GuM06],
[GuM07], [Mau06] and the discussion of Riemann–Hilbert methods below.

The sharp concentration estimates forλmax contained in Lemma 3.3.2 are de-
rived in [Led03].

Our treatment of Fredholm determinants in Section 3.4 is forthe most part
adapted from [Tri85]. The latter gives an excellent short introduction to Fredholm
determinants and integral equations from the classical viewpoint.

The beautiful set of nonlinear partial differential equations (3.6.4), contained in
Theorem 3.6.1, is one of the great discoveries reported in [JiMMS80]. Their work
follows the lead of the theory of holonomic quantum fields developed by Sato,
Miwa and Jimbo in the series of papers [SaMJ80]. The link between Toeplitz
and Fredholm determinants and the Painlevé theory of ordinary differential equa-
tions was earlier discussed in [WuMTB76], and influenced theseries [SaMJ80].
See the recent monograph [Pal07] for a discussion of these developments in the
original context of the evaluation of correlations for two dimensional fields. To
derive the equations (3.6.4) we followed the simplified approach of [TrW93], how-
ever we altered the operator-theoretic viewpoint of [TrW93] to a “matrix algebra”
viewpoint consistent with that taken in our general discussion in Section 3.4 of
Fredholm determinants. The differential equations have a Hamiltonian structure
discussed briefly in [TrW93]. The same system of partial differential equations is
discussed in [Mos80] in a wider geometrical context. See also [HaTW93].

Limit formula (3.7.4) appears in the literature as [Sze75, Eq. 8.22.14, p. 201]
but is stated there without much in the way of proof. The relatively short self-
contained proof of (3.7.4) presented in Section 3.7.2 is based on the ideas of
[PlR29]; the latter paper is, however, devoted to the asymptotic behavior of the
Hermite polynomialsHn(x) for real positivex only.
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In Section 3.8, we follow [TrW02] fairly closely. It is possible to work out a sys-
tem of partial differential equations for the Fredholm determinant of the Airy ker-
nel in the multi-interval case analogous to the system (3.6.4) for the sine-kernel.
See [AdvM01] for a general framework that includes also non-Gaussian models.
As in the case of the sine-kernel, there is an interpretationof the system of partial
differential equations connected to the Airy kernel in the multi-interval case as an
integrable Hamiltonian system, see [HaTW93] for details.

The statement contained in Remark 3.8.1, taken from [HaM80], is a solution
of a connection problem. For another early solution to connection problems, see
[McTW77]. The book [FoIKN06] contains a modern perspectiveon Painlevé
equations and related connection problems, via the Riemann–Hilbert approach.
Precise asymptotics on the Tracy–Widom distribution are contained in [BaBD08]
and [DeIK08].

Section 3.9 borrows heavily from [TrW96] and [TrW05], againreworked to our
“matrix algebra” viewpoint.

Our treatment of Pfaffians in Section 3.9.1 is classical, see[Jac85] for more
information. We avoided the use of quaternion determinants; for a treatment based
on these, see e.g. [Dys70] and [Meh91].

An analog of Lemma 3.2.2 exists forβ = 1,4, see Theorem 6.2.1 and its proof
in [Meh91] (in the language of quaternion determinants) andthe exposition in
[Rai00] (in the Pfaffian language).

As mentioned above, the results of this chapter have been extended in many
directions, seeking to obtainuniversalityresults, stating that the limit distributions
for spacings at the bulk and the edge of the GOE/GUE/GSE appear also in other
matrix models, and in other problems. Four main directions for such universality
occur in the literature, and we describe these next.

First, other classical ensembles have been considered (seeSection 4.1 for what
ensembles mean in this context). These involve the study of other types of orthog-
onal polynomials than the Hermite polynomials (e.g., Laguerre or Jacobi). See
[For93], [For94], [TrW94b], [TrW00], [Joh00], [John01], [For06], and the book
[For05].

Second, one may replace the entries of the random matrix by non-Gaussian
entries. In that case, the invariance of the law under conjugation is lost, and no ex-
plicit expression for the joint distribution of the eigenvalues exist. It is, however,
remarkable that it is still possible to obtain results concerning the top eigenvalue
and spacings at the edge that are of the same form as Theorems 3.1.4 and 3.1.7,
in case the law of the entries possesses good tail properties. The seminal work is
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[Sos99], who extended the combinatorial techniques in [SiS98b] to show that the
dominant term in the evaluation of traces of large powers of random matrices does
not depend on the law of the entry, as long as the mean is zero, the variance as in
the GOE/GUE, and the distribution of the entries is symmetric. This has been ex-
tended to other models, and specifically to certain Wishart matrices, see [Sos02b]
and [Péc09]. Some partial results relaxing the symmetry assumption can be found
in [PeS07], [PeS08b], although at this time the universality at the edge of Wigner
matrices with entries possessing non-symmetric distribution remains open. When
the entries possess heavy tail, limit laws for the largest eigenvalue change, see
[Sos04], [AuBP07]. Concerning the spacing in the bulk, universality was proved
when the i.i.d. entries are complex and have a distribution that can be written as
convolution with a Gaussian law, see [Joh01b] (for the complex Wigner case) and
[BeP05] (for the complex Wishart case). The proof is based onan application
of the Itzykson–Zuber–Harish-Chandra formula, see the bibliographical notes for
Chapter 4. Similar techniques apply to the study of the largest eigenvalue of so
calledspikedmodels, which are matrices of the formXTX∗ with X possessing
i.i.d. complex entries andT a diagonal real matrix, all of whose entries except for
a finite number equal to 1, and to small rank perturbations of Wigner matrices,
see [BaBP05], [Péc06], [FeP07], [Kar07b] and [Ona08]. Finally, a wide ranging
extension of the universality results in [Joh01b] to Hermitian matrices with inde-
pendent entries on and above the diagonal appears in [ERSY09], [TaV09b] and
[ERS+09].

Third, one can consider joint distribution of eigenvalues of the form (2.6.1), for
general potentialsV. This is largely motivated by applications in physics. When
deriving the bulk and edge asymptotics, one is naturally ledto study the asymp-
totics of orthogonal polynomials associated with the weight e−V . At this point,
the powerful Riemann–Hilbert approach to the asymptotics of orthogonal poly-
nomials and spacing distributions can be applied. Often, that approach yields the
sharpest estimates, especially in situations where the orthogonal polynomials are
not known explicitly, thereby proving universality statements for random matri-
ces. Describing this approach in detail goes beyond the scope of this book (and
bibliography notes). For the origins and current state of the art of this approach we
refer the reader to the papers [FoIK92], [DeZ93], [DeZ95], [DeIZ97], [DeVZ97]
[DeKM+98], [DeKM+99], [BlI99], to the books [Dei99], [DeG09] and to the
lecture [Dei07]. See also [PaS08a].

Finally, expressions similar to the joint distribution of the eigenvalues of ran-
dom matrices have appeared in the study of various combinatorial problems. Ar-
guably, the most famous is the problem of the longest increasing subsequence of
a random permutation, also known asUlam’s problem, which we now describe.
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Let Ln denote the length of the longest increasing subsequence of arandom per-
mutation on{1, . . . ,n}. The problem is to understand the asymptotics of the law
of Ln. Based on his subadditive ergodic theorem, Hammersley [Ham72] showed
thatLn/

√
n converges to a deterministic limit and, shortly thereafter, [VeK77] and

[LoS77] independently proved that the limit equals 2. It wasconjectured (in anal-
ogy with conjectures for first passage percolation, see [AlD99] for some of the
history and references) thatL̃n := (Ln−2

√
n)/n1/6 has variance of order 1. Using

a combinatorial representation, due to Gessel, of the distribution of Ln in terms
of an integral over an expression resembling a joint distribution of eigenvalues
(but with non-Gaussian potentialV), [BaDJ99] applied the Riemann–Hilbert ap-
proach to prove that not only is the conjecture true, but in fact L̃n asymptotically
is distributed according to the Tracy–Widom distributionF2. Subsequently, di-
rect proofs that do not use the Riemann–Hilbert approach (but do use the random
matrices connection) emerged, see [Joh01a], [BoOO00] and [Oko00]. Certain
growth models also fall in the same pattern, see [Joh00] and [PrS02]. Since then,
many other examples of combinatorial problems leading to a universal behavior
of the Tracy–Widom type have emerged. We refer the reader to the forthcoming
book [BaDS09] for a thorough discussion.

We have not discussed, neither in the main text nor in these bibliographical
notes, the connections between random matrices and number theory, more specif-
ically the connections with the Riemann zeta function. We refer the reader to
[KaS99] for an introduction to these links, and to [Kea06] for a recent account.
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Some generalities

In this chapter, we introduce several tools useful in the study of matrix ensem-
bles beyond GUE, GOE and Wigner matrices. We begin by settingup in Section
4.1 a general framework for the derivation of joint distribution of eigenvalues in
matrix ensembles and then we use it to derive joint distribution results for several
classical ensembles, namely, the GOE/GUE/GSE, the Laguerre ensembles (corre-
sponding to Gaussian Wishart matrices), the Jacobi ensembles (corresponding to
random projectors) and the unitary ensembles (corresponding to random matrices
uniformly distributed in classical compact Lie groups). InSection 4.2, we study
a class of point processes that aredeterminantal; the eigenvalues of the GUE, as
well as those for the unitary ensembles, fall within this class. We derive a repre-
sentation for determinantal processes and deduce from it a CLT for the number
of eigenvalues in an interval, as well as ergodic consequences. In Section 4.3,
we analyze time-dependent random matrices, where the entries are replaced by
Brownian motions. The introduction of Brownian motion allows us to use the
powerful theory of Ito integration. Generalizations of theWigner law, CLTs, and
large deviations are discussed. We then present in Section 4.4 a discussion of
concentration inequalities and their applications to random matrices, substantially
extending Section 2.3. Concentration results for matriceswith independent en-
tries, as well as for matrices distributed according to Haarmeasure on compact
groups, are discussed. Finally, in Section 4.5, we introduce a tridiagonal model of
random matrices, whose joint distribution of eigenvalues generalizes the Gaussian
ensembles by allowing for any value ofβ ≥ 1 in Theorem 2.5.3. We refer to this
matrix model as thebeta ensemble.

186



4.1 JOINT DISTRIBUTIONS FOR CLASSICAL MATRIX ENSEMBLES 187

4.1 Joint distribution of eigenvalues in the classical matrix ensembles

In Section 2.5, we derived an expression for the joint distribution of eigenvalues
of a GUE or GOE matrix which could be stated as an integration formula, see
(2.5.22). Although we did not emphasize it in our derivation, a key point was that
the distribution of the random matrices was invariant underthe action of a group
(orthogonal for the GOE, unitary for the GUE). A collection of matrices equipped
with a probability measure invariant under a large group of symmetries is gener-
ally called anensemble. It is our goal in this section to derive integration formulas,
and hence joint distribution of eigenvalues, for several ensembles of matrices, in
a unified way, by following in the footsteps of Weyl. The pointof view we adopt
is that of differential geometry, according to which we consider ensembles of ma-
trices as manifolds embedded in Euclidean spaces. The prerequisites and notation
are summarized in Appendix F.

The plan for Section 4.1 is as follows. In Section 4.1.1, after briefly recalling
notation, we present the main results of Section 4.1, namelyintegration formu-
las yielding joint distribution of eigenvalues in three classical matrix ensembles
linked to Hermite, Laguerre and Jacobi polynomials, respectively, and also Weyl’s
integration formulas for the classical compact Lie groups.We then state in Section
4.1.2 a special case of Federer’s coarea formula and illustrate it by calculating the
volumes of unitary groups. (A proof of the coarea formula in the “easy version”
used here is presented in Appendix F.) In Section 4.1.3 we present a general-
ized Weyl integration formula, Theorem 4.1.28, which we prove by means of the
coarea formula and a modest dose of Lie group theory. In Section 4.1.4 we verify
the hypotheses of Theorem 4.1.28 in each of the setups discussed in Section 4.1.1,
thus completing the proofs of the integration formulas by anupdated version of
Weyl’s original method.

4.1.1 Integration formulas for classical ensembles

Throughout this section, we letF denote any of the (skew) fieldsR, C or H. (See
Appendix E for the definition of the skew field of quaternionsH. Recall thatH
is a skew field, but not a field, because the product inH is not commutative.)
We setβ = 1,2,4 according asF = R,C,H, respectively. (Thusβ is the dimen-
sion of F over R.) We next recall matrix notation which in greater detail is set
out in Appendix E.1. Let Matp×q(F) be the space ofp× q matrices with en-
tries inF, and write Matn(F) = Matn×n(F). For each matrixX ∈ Matp×q(F), let
X∗ ∈ Matq×p(F) be the matrix obtained by transposingX and then applying the
conjugation operation∗ to every entry. We endow Matp×q(F) with the structure
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of Euclidean space (that is, with the structure of finite-dimensional real Hilbert
space) by settingX ·Y = ℜ tr X∗Y. Let GLn(F) be the group of invertible ele-
ments of Matn(F), and let Un(F) be the subgroup of GLn(F) consisting of unitary
matrices; by definitionU ∈ Un(F) iff UU∗ = In iff U∗U = In.

The Gaussian ensembles

The first integration formula that we present pertains to theGaussian ensembles,
that is, to the GOE, GUE and GSE. LetHn(F) = {X ∈ Matn(F) : X∗ = X}. Let
ρHn(F) denote the volume measure onHn(F). (See Proposition F.8 for the general
definition of the volume measureρM on a manifoldM embedded in a Euclidean
space.) LetρUn(F) denote the volume measure on Un(F). (We will check below,
see Proposition 4.1.14, that Un(F) is a manifold.) The measuresρHn(F) andρUn(F)

are just particular normalizations of Lebesgue and Haar measure, respectively. Let
ρ [Un(F)] denote the (finite and positive) total volume of Un(F). (For any manifold
M embedded in a Euclidean space, we writeρ [M] = ρM(M).) We will calculate
ρ [Un(F)] explicitly in Section 4.1.2. Recall that ifx = (x1, . . . ,xn), then we write
∆(x) = ∏1≤i< j≤n(x j − xi). The notion of eigenvalue used in the next result is
defined for generalF in a uniform way by Corollary E.12 and is the standard one
for F = R,C.

Proposition 4.1.1For every nonnegative Borel-measurable functionϕ onHn(F)

such thatϕ(X) depends only on the eigenvalues of X, we have

∫
ϕdρHn(F) =

ρ [Un(F)]

(ρ [U1(F)])nn!

∫

Rn
ϕ(x)|∆(x)|β

n

∏
i=1

dxi , (4.1.1)

where for every x= (x1, . . . ,xn) ∈ Rn we writeϕ(x) = ϕ(X) for any X∈ Hn(F)

with eigenvalues x1, . . . ,xn.

According to Corollary E.12, the hypothesis thatϕ(X) depends only on the eigen-
values ofX could be restated as the condition thatϕ(UXU∗) = ϕ(X) for all
X ∈ Hn(F) andU ∈ Un(F).

Suppose now thatX ∈ Hn(F) is random. Suppose more precisely that the en-
tries on or above the diagonal are independent; that each diagonal entry is (real)
Gaussian of mean 0 and variance 2/β ; and that each above-diagonal entry is stan-
dard normal overF. (We say that a random variableG with values inF is stan-
dard normalif, with {Gi}4

i=1 independent real-valued Gaussian random variables
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of zero mean and unit variance, we have thatG is distributed like

G1 if F = R ,

(G1 + iG2)/
√

2 if F = C ,

(G1 + iG2 + jG3+kG4)/2 if F = H .) (4.1.2)

Then forF = R (resp.,F = C) the matrixX is a random element of the GOE
(resp., GUE), and in the caseF = H is by definition a random element of the
Gaussian Symplectic Ensemble(GSE). Consider now the substitutionϕ(X) =

e−β tr X2/4 f (X) in (4.1.1), in conjunction with Proposition 4.1.14 below which
computes volumes of unitary groups. Forβ = 1,2, we recover Theorem 2.5.2
in the formulation given in (2.5.22). In the remaining caseβ = 4 the substitution
yields the joint distribution of the (unordered) eigenvalues in the GSE.

Remark 4.1.2As in formula (4.1.1), all the integration formulas in this section
involve normalization constants given in terms of volumes of certain manifolds.
Frequently, when working with probability distributions,one bypasses the need
to evaluate these volumes by instead using the Selberg integral formula, Theorem
2.5.8, and its limiting forms, as in our previous discussionof the GOE and GUE
in Section 2.5.

We saw in Chapter 3 that the Hermite polynomials play a crucial role in the
analysis of GUE/GOE/GSE matrices. For that reason we will sometimes speak of
Gaussian/Hermite ensembles. In similar fashion we will tageach of the next two
ensembles by the name of the associated family of orthogonalpolynomials.

Laguerre ensembles and Wishart matrices

We next turn our attention to random matrices generalizing the Wishart matrices
discussed in Exercise 2.1.18, in the case of Gaussian entries. Fix integers 0<
p≤ q and putn = p+q. Let ρMatp×q(F) be the volume measure on the Euclidean
space Matp×q(F). The analog of integration formula (4.1.1) for singular values of
rectangular matrices is the following. The notion of singular value used here is
defined for generalF in a uniform way by Corollary E.13 and is the standard one
for F = R,C.



190 4. SOME GENERALITIES

Proposition 4.1.3 For every nonnegative Borel-measurable functionϕ on
Matp×q(F) such thatϕ(X) depends only on the singular values of X, we have

∫
ϕdρMatp×q(F) =

ρ [Up(F)]ρ [Uq(F)]2β p/2

ρ [U1(F)]pρ [Uq−p(F)]2β pq/2p!
(4.1.3)

×
∫

R
p
+

ϕ (x) |∆(x2)|β
p

∏
i=1

xβ (q−p+1)−1
i dxi ,

where for every x= (x1, . . . ,xp)∈R
p
+ we write x2 = (x2

1, . . . ,x
2
p), andϕ(x) = ϕ(X)

for any X∈ Matp×q(F) with singular values x1, . . . ,xp.

Here and in later formulas, by convention,ρ [U0(F)] = 1. According to Corol-
lary E.13, the hypothesis thatϕ(X) depends only on the singular values ofX
could be restated as the condition thatϕ(UXV) = ϕ(X) for all U ∈ Up(F), X ∈
Matp×q(F) andV ∈ Uq(F).

Suppose now that the entries ofX ∈ Matp×q(F) are i.i.d. standard normal. In
the caseF = R the random matrixXX∗ is an example of a Wishart matrix, the
latter as studied in Exercise 2.1.18. In the case of generalF we callXX∗ a Gaus-
sian Wishart matrixoverF. Proposition 4.1.3 implies that the distribution of the
(unordered) eigenvalues ofXX∗ (which are the squares of the singular values of
X) possesses a density on(0,∞)p with respect to Lebesgue measure proportional
to

|∆(x)|β ·
p

∏
i=1

e−β xi/4 ·
p

∏
i=1

xβ (q−p+1)/2−1
i .

Now the orthogonal polynomials corresponding to weights ofthe formxαe−γx on
(0,∞) are the Laguerre polynomials. In the analysis of random matrices of the
form XX∗, the Laguerre polynomials and their asymptotics play a roleanalogous
to that played by the Hermite polynomials and their asymptotics in the analysis of
GUE/GOE/GSE matrices. For this reason we also callXX∗ a random element of
a Laguerre ensembleoverF.

Jacobi ensembles and random projectors

We first make a general definition. Put

Flagn(λ ,F) = {UλU∗ : U ∈ Un(F)} ⊂ Hn(F), (4.1.4)

whereλ ∈ Matn is any real diagonal matrix. The compact set Flagn(λ ,F) is al-
ways a manifold, see Lemma 4.1.18 and Exercise 4.1.19.

Now fix integers 0< p ≤ q and putn = p+ q. Also fix 0 ≤ r ≤ q− p and
write q = p+ r + s. Consider the diagonal matrixD = diag(Ip+r ,0p+s), and the
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corresponding space Flagn(D,F) as defined in (4.1.4) above. (As in Appendix
E.1, we will use the notation diag to form block-diagonal matrices as well as
matrices diagonal in the usual sense.) LetρFlagn(D,F) denote the volume measure

on Flagn(D,F). GivenW ∈ Flagn(D,F), let W(p) ∈ Hp(F) denote the upper left
p× p block. Note that all eigenvalues ofW(p) are in the unit interval[0,1].

Proposition 4.1.4With notation as above, for all Borel-measurable nonnegative
functionsϕ on Hp(F) such thatϕ(X) depends only on the eigenvalues of X, we
have
∫

ϕ(W(p))dρFlagn(D,F)(W) =
ρ [Up(F)]ρ [Uq(F)]2β p/2

ρ [U1(F)]pρ [Ur(F)]ρ [Us(F)]2pp!

×
∫

[0,1]p
ϕ (x) |∆(x)|β ·

p

∏
i=1

(x(r+1)β/2−1
i (1−xi)

(s+1)β/2−1dxi) , (4.1.5)

where for every x= (x1, . . . ,xp) ∈ Rp we writeϕ(x) = ϕ(X) for any matrix X∈
Hp(F) with eigenvalues x1, . . . ,xp.

The symmetry here crucial for the proof is thatϕ(W(p)) = ϕ((UWU∗)(p)) for all
U ∈ Un(F) commuting with diag(Ip,0q) and allW ∈ Flagn(D,F).

Now up to a normalization constant,ρFlagn(D,F) is the law of a random matrix
of the formUnDU∗

n , whereUn ∈ Un(F) is Haar-distributed. (See Exercise 4.1.19
for evaluation of the constantρ [Flagn(D,F)].) We call such a random matrix
UnDU∗

n a random projector. The joint distribution of eigenvalues of the submatrix
(UnDU∗

n )(p) is then specified by formula (4.1.5). Now the orthogonal polynomials
corresponding to weights of the formxα(1− x)γ on [0,1] are the Jacobi polyno-
mials. In the analysis of random matrices of the form(UnDUn)

(p), the Jacobi
polynomials play a role analogous to that played by the Hermite polynomials in
the analysis of GUE/GOE/GSE matrices. For this reason we call (UnDU∗

n )(p) a
random element of aJacobi ensembleoverF.

The classical compact Lie groups

The last several integration formulas we present pertain tothe classical compact
Lie groups Un(F) for F = R,C,H, that is, to the ensembles of orthogonal, unitary
and symplectic matrices, respectively, equipped with normalized Haar measure.

We setR(θ ) =

[
cosθ sinθ

−sinθ cosθ

]
∈ U2(R) for θ ∈ R. More generally, forθ =

(θ1, . . . ,θn)∈Rn, we setRn(θ ) = diag(R(θ1), . . . ,R(θn))∈U2n(R). We also write
diag(θ ) = diag(θ1, . . . ,θn) ∈ Matn.
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We define nonnegative functionsAn,Bn,Cn,Dn onRn as follows:

An(θ ) = ∏
1≤i< j≤n

|eiθi −eiθ j |2, Dn(θ ) = An(θ ) ∏
1≤i< j≤n

∣∣∣eiθi −e−iθ j

∣∣∣
2
,

Bn(θ ) = Dn(θ )
n

∏
i=1

|eiθi −1|2, Cn(θ ) = Dn(θ )
n

∏
i=1

|eiθi −e−iθi |2 .

(Recall thati equals the imaginary unit viewed as an element ofC or H.)

Remark 4.1.5The choice of lettersA, B, C, andD made here is consistent with
the standard labeling of the corresponding root systems.

We say that a functionϕ on a groupG is central if ϕ(g) depends only on the
conjugacy class ofg, that is, ifϕ(g1g2g−1

1 ) = ϕ(g2) for all g1,g2 ∈ G.

Proposition 4.1.6 (Weyl)(Unitary case) For every nonnegative Borel-measurable
central functionϕ onUn(C), we have

∫
ϕ

dρUn(C)

ρ [Un(C)]
=

1
n!

∫

[0,2π ]n
ϕ(eidiag(θ))An(θ )

n

∏
i=1

(
dθi

2π

)
. (4.1.6)

(Odd orthogonal case) For odd n= 2ℓ+1and every nonnegative Borel-measurable
central functionϕ onUn(R), we have

∫
ϕ

dρUn(R)

ρ [Un(R)]
=

1
2ℓ+1ℓ!

∫

[0,2π ]ℓ

1

∑
k=0

ϕ(diag(Rℓ(θ ),(−1)k))Bℓ(θ )
ℓ

∏
i=1

(
dθi

2π

)
.

(4.1.7)
(Symplectic case) For every nonnegative Borel-measurablecentral functionϕ on
Un(H), we have

∫
ϕ

dρUn(H)

ρ [Un(H)]
=

1
2nn!

∫

[0,2π ]n
ϕ(eidiag(θ))Cn(θ )

n

∏
i=1

(
dθi

2π

)
. (4.1.8)

(Even orthogonal case) For even n= 2ℓ and every nonnegative Borel-measurable
central functionϕ onUn(R) we have

∫
ϕ

dρUn(R)

ρ [Un(R)]

=
1

2ℓℓ!

∫

[0,2π ]ℓ
ϕ(Rℓ(θ ))Dℓ(θ )

ℓ

∏
i=1

(
dθi

2π

)
(4.1.9)

+
1

2ℓ(ℓ−1)!

∫

[0,2π ]ℓ−1
ϕ(diag(Rℓ−1(θ ),1,−1))Cℓ−1(θ )

ℓ−1

∏
i=1

(
dθi

2π

)
.
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We will recover these classical results of Weyl in our setup in order to make it
clear that all the results on joint distribution discussed in Section 4.1 fall within
Weyl’s circle of ideas.

Remark 4.1.7Because we have

Dn(θ ) = ∏
1≤i< j≤n

(2cosθi −2cosθ j)
2,

the process of eigenvalues of Un(F) is determinantal (see Section 4.2.9 and in
particular Lemma 4.2.50) not only forF = C but also forF = R,H. This is in sharp
contrast to the situation with Gaussian/Hermite, Laguerreand Jacobi ensembles
where, in the casesF = R,H, the eigenvalue (singular value) processes arenot
determinantal. One still has tools for studying the latter processes, but they are
Pfaffian- rather than determinant-based, of the same type considered in Section
3.9 to obtain limiting results for GOE/GSE.

4.1.2 Manifolds, volume measures and the coarea formula

Section 4.1.2 introduces thecoarea formula, Theorem 4.1.8. In the specialized
form of Corollary 4.1.10, the coarea formula will be our maintool for proving the
formulas of Section 4.1.1. To allow for quick reading by the expert, we merely
state the coarea formula here, using standard terminology;precise definitions,
preliminary material and a proof of Theorem 4.1.8 are all presented in Appendix
F. After presenting the coarea formula, we illustrate it by working out an explicit
formula forρ [Un(F)].

Fix a smooth mapf : M → N from ann-manifold to ak-manifold, with deriva-
tive at a pointp ∈ M denotedTp( f ) : Tp(M) → T f (p)(N). Let Mcrit, Mreg, Ncrit

andNreg be the sets of critical (regular) points (values) off , see Definition F.3
and Proposition F.10 for the terminology. Forq ∈ N such thatMreg∩ f−1(q) is
nonempty (and hence by Proposition F.16 a manifold) we equipthe latter with the
volume measureρMreg∩ f−1(q) (see Proposition F.8). Putρ /0 = 0 for convenience.
Finally, letJ(Tp( f )) denote the generalized determinant ofTp( f ), see Definition
F.17.

Theorem 4.1.8 (The coarea formula)With notation and setting as above, letϕ
be any nonnegative Borel-measurable function on M. Then:
(i) the function p7→ J(Tp( f )) on M is Borel-measurable;
(ii) the function q7→

∫
ϕ(p)dρMreg∩ f−1(q)(p) on N is Borel-measurable;
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(iii) the integral formula
∫

ϕ(p)J(Tp( f ))dρM(p) =
∫ (∫

ϕ(p)dρMreg∩ f−1(q)(p)

)
dρN(q) (4.1.10)

holds.

Theorem 4.1.8 is in essence a version of Fubini’s Theorem. Itis also a particu-
lar case of the general coarea formula due to Federer. The latter formula at “full
strength” (that is, in the language of Hausdorff measures) requires far less differ-
entiability of f and is much harder to prove.

Remark 4.1.9Since f in Theorem 4.1.8 is smooth, we have by Sard’s Theorem
(Theorem F.11) that forρN almost everyq, Mreg∩ f−1(q) = f−1(q). Thus, with
slight abuse of notation, one could write the right side of (4.1.10) with f−1(q)

replacingMreg∩ f−1(q).

Corollary 4.1.10 We continue in the setup of Theorem 4.1.8. For every Borel-
measurable nonnegative functionψ on N one has the integral formula

∫
ψ( f (p))J(Tp( f ))dρM(p) =

∫

Nreg

ρ [ f−1(q)]ψ(q)dρN(q) . (4.1.11)

Proof of Corollary 4.1.10By (4.1.10) withϕ = ψ ◦ f , we have
∫

ψ( f (p))J(Tp( f ))dρM(p) =

∫
ρ [Mreg∩ f−1(q)]ψ(q)dρN(q) ,

whence the result by Sard’s Theorem (Theorem F.11), Proposition F.16, and the
definitions. ⊓⊔

Let Sn−1 be the unit sphere centered at the origin inRn. We will calculate
ρ [Un(F)] by relating it toρ [Sn−1]. We prepare by proving two well-known lem-
mas concerningSn−1 and its volume. Their proofs provide templates for the more
complicated proofs of Lemma 4.1.15 and Proposition 4.1.14 below.

Lemma 4.1.11Sn−1 is a manifold and for every x∈ Sn−1 we haveTx(Sn−1) =

{X ∈ Rn : x ·X = 0}.

Proof Consider the smooth mapf = (x 7→ x ·x) : Rn → R. Let γ be a curve with
γ(0) = x∈ Rn andγ ′(0) = X ∈ Tx(R

n) = Rn. We have(Tx( f ))(X) = (γ ·γ)′(0) =

2x ·X. Thus 1 is a regular value off , whence the result by Proposition F.16.⊓⊔
Recall thatΓ(s) =

∫ ∞
0 xs−1e−xdx is Euler’s Gamma function.
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Proposition 4.1.12With notation as above, we have

ρ [Sn−1] =
2πn/2

Γ(n/2)
. (4.1.12)

Proof Consider the smooth map

f = (x 7→ x/‖x‖) : Rn\ {0}→ Sn−1 .

Let γ be a curve withγ(0) = x ∈ Rn \ {0} andγ ′(0) = X ∈ Tx(R
n \ {0}) = Rn.

We have

(Tx( f ))(X) = (γ/‖γ‖)′(0) =
X
‖x‖ − x

‖x‖

(
X
‖x‖ · x

‖x‖

)
,

and henceJ(Tx( f )) = ‖x‖1−n. Lettingϕ(x) = ‖x‖n−1exp(−‖x‖2), we have
∫

· · ·
∫

e−x·xdx1 · · ·dxn = ρ [Sn−1]

∫ ∞

0
rn−1e−r2

dr ,

by Theorem 4.1.8 applied tof andϕ . Formula (4.1.12) now follows. ⊓⊔
As further preparation for the evaluation ofρ [Un(F)], we state without proof

the following elementary lemma which allows us to consider transformations of
manifolds by left (or right) matrix multiplication.

Lemma 4.1.13Let M⊂ Matn×k(F) be a manifold. Fix g∈ GLn(F). Let f = (p 7→
gp) : M → gM = {gp∈ Matn×k(F) : p∈ M}. Then:
(i) gM is a manifold and f is a diffeomorphism;
(ii) for every p∈ M and X∈ Tp(M) we haveTp( f )(X) = gX;
(iii) if g ∈ Un(F), then f is an isometry (and hence measure-preserving).

The analogous statement concerning right-multiplicationby an invertible matrix
also holds. The lemma, especially part (iii) of it, will be frequently exploited
throughout the remainder of Section 4.1.

Now we can state our main result concerning Un(F) and its volume. Recall in
what follows thatβ = 1,2,4 according asF = R,C,H.

Proposition 4.1.14Un(F) is a manifold whose volume is

ρ [Un(F)] = 2 β n(n−1)/4
n

∏
k=1

ρ [Sβ k−1] =
n

∏
k=1

2(2π)β k/2

2β/2Γ(βk/2)
. (4.1.13)

The proof of Proposition 4.1.14 will be obtained by applyingthe coarea formula
to the smooth map

f = (g 7→ (last column ofg)) : Un(F) → Sβ n−1 (4.1.14)
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where, abusing notation slightly, we make the isometric identification

Sβ n−1 = {x∈ Matn×1(F) : x∗x = 1}

on the extreme right in (4.1.14).

Turning to the actual proof, we begin with the identificationof Un(F) as a man-
ifold and the calculation of its tangent space atIn.

Lemma 4.1.15Un(F) is a manifold andTIn(Un(F)) is the space of anti-self-
adjoint matrices inMatn(F).

Proof Consider the smooth map

h = (X 7→ X∗X) : Matn(F) → Hn(F) .

Let γ be a curve in Matn(F) with γ(0) = In and γ ′(0) = X ∈ TIn(Matn(F)) =

Matn(F). Then, for allg∈ Un(F) andX ∈ Matn(F),

(Tg(h))(gX) = ((gγ)∗(gγ))′(0) = X +X∗ . (4.1.15)

ThusIn is a regular value ofh, and hence Un(F) is a manifold by Proposition F.16.

To find the tangent spaceTIn(Un(F)), consider a curveγ(t) ∈ Un(F) with
γ(0) = In. Then, becauseXX∗ = In on Un(F) and thus the derivative ofh(γ(t))
vanishes fort = 0, we deduce from (4.1.15) thatX+X∗ = 0, and henceTIn(Un(F))

is contained in the space of anti-self-adjoint matrices in Matn(F). Because the lat-
ter two spaces have the same dimension, the inclusion must bean equality. ⊓⊔

Recall the functionf introduced in (4.1.14).

Lemma 4.1.16f is onto, and furthermore (provided that n> 1), for any s∈Sβ n−1,
the fiber f−1(s) is isometric toUn−1(F).

Proof The first claim (which should be obvious in the casesF = R,C) is proved
by applying Corollary E.8 withk = 1. To see the second claim, note first that for
anyW ∈ Un−1(F), we have

[
W 0
0 1

]
∈ Un(F) , (4.1.16)

and that everyg∈ Un(F) whose last column is the unit vectoren = (0, . . . ,0,1)T

is necessarily of the form (4.1.16). Therefore the fiberf−1(en) is isometric to
Un−1(F). To see the claim for other fibers, note that ifg,h∈ Un(F), then f (gh) =

g f(h), and then apply part (iii) of Lemma 4.1.13. ⊓⊔
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Lemma 4.1.17Let f be as in (4.1.14). Then:
(i) J(Tg( f )) is constant as a function of g∈ Un(F);

(ii) J(TIn( f )) =
√

2
β (1−n)

;
(iii) every value of f is regular.

Proof (i) Fix h∈ Un(F) arbitrarily. Leten = (0, . . . ,0,1)T ∈ Matn×1. The diagram

TIn(Un(F))
TIn( f )−−−→ Ten(S

β n−1)

TIn(g7→hg) ↓ ↓ Ten(x7→hx)

Th(Un(F))
Th( f )−−−→ T f (h)(S

β n−1)

commutes. Furthermore, its vertical arrows are, by part (ii) of Lemma 4.1.13,
induced by left-multiplication byh, and hence are isometries of Euclidean spaces.
Therefore we haveJ(Th( f )) = J(TIn( f )).

(ii) Recall the notationi, j ,k in Definition E.1. Recall the elementary matrices
ei j ∈ Matn(F) with 1 in position(i, j) and 0s elsewhere, see Appendix E.1. By
Lemma 4.1.15 the collection

{(uei j −u∗eji )/
√

2 : 1≤ i < j ≤ n, u∈ {1, i, j ,k}∩F}
∪ {ueii : 1≤ i ≤ n, u∈ {i, j ,k}∩F}

is an orthonormal basis forTIn(Un(F)). Let γ be a curve in Un(F) with γ(0) = In
andγ ′(0) = X ∈ TIn(Un(F)). We have

(TIn( f ))(X) = (γen)
′(0) = Xen,

hence the collection

{(uein−u∗eni)/
√

2 : 1≤ i < n, u∈ {1, i, j ,k}∩F}
∪ {uenn : u∈ {i, j ,k}∩F}

is an orthonormal basis forTIn(Un(F))∩(ker(TIn( f )))⊥. An application of Lemma
F.19 yields the desired formula.

(iii) This follows from the preceding two statements, sincef is onto. ⊓⊔
Proof of Proposition 4.1.14Assume at first thatn> 1. We apply Corollary 4.1.10
to f with ψ ≡ 1. After simplifying with the help of the preceding two lemmas, we
find the relation

√
2

β (1−n)
ρ [Un(F)] = ρ [Un−1(F)] ρ [Sβ n−1] .

By induction onn we conclude that formula (4.1.13) holds for all positive integers
n; the induction basen = 1 holds becauseSβ−1 = U1(F). ⊓⊔

With an eye toward the proof of Proposition 4.1.4 about Jacobi ensembles, we
prove the following concerning the spaces Flagn(λ ,F) defined in (4.1.4).
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Lemma 4.1.18With p,q,n positive integers so that p+q= n, and D= diag(Ip,0q),
the collectionFlagn(D,F) is a manifold of dimensionβ pq.

Proof In view of Corollary E.12 (the spectral theorem for self-adjoint matrices
overF), Flagn(D,F) is the set of projectors in Matn(F) of tracep. Now consider
the open setO⊂ Hn(F) consisting of matrices whosep-by-p block in upper left
is invertible, noting thatD ∈ O. Using Corollary E.9, one can construct a smooth
map from Matp×q(F) to O∩ Flagn(D,F) with a smooth inverse. Now letP ∈
Flagn(D,F) be any point. By definitionP = U∗DU for someU ∈ Un(D,F). By
Lemma 4.1.13 the set{UMU∗ | M ∈ O∩ Flagn(D,F)} is a neighborhood ofP
diffeomorphic toO∩Flagn(D,F) and hence to Matp×q(F). Thus Flagn(D,F) is
indeed a manifold of dimensionβ pq. ⊓⊔

Motivated by Lemma 4.1.18, we refer to Flagn(D,F) as theflag manifolddeter-
mined byD. In fact the claim in Lemma 4.1.18 holds for all real diagonalmatrices
D, see Exercise 4.1.19 below.

Exercise 4.1.19Fix λ1, . . . ,λn ∈ R and putλ = diag(λ1, . . . ,λn). In this exercise
we study Flagn(λ ,F). Write {µ1 < · · · < µℓ} = {λ1, . . . ,λn} and letni be the
number of indicesj such thatµi = λ j . (Thus,n = n1+ · · ·+nℓ.)
(a) Prove that Flagn(λ ,F) is a manifold of dimension equal to

dimUn(F)−
ℓ

∑
i=1

dimUni (F).

(b) Applying the coarea formula to the smooth mapf = (g 7→ gλg−1) : Un(F) →
Flagn(D,F), show that

ρ [Flagn(λ ,F)] =
ρ [Un(F)]

∏ℓ
i=1 ρ [Uni (F)]

∏
1≤i< j≤n

λi 6=λ j

|λi −λ j |β . (4.1.17)

Exercise 4.1.20We look at joint distribution of eigenvalues in the Gaussianen-
sembles (GUE/GOE/GSE) in yet another way. We continue with the notation of
the previous exercise.
(a) Consider the smooth mapf = (A 7→ (tr(A), tr(A2)/2, . . . , tr(An)/n)) : Hn(F)→
Rn. Show thatJ(TA( f )) depends only on the eigenvalues ofA ∈ Hn(F), that
J(Tλ ( f )) = |∆(λ )|, and that a point ofRn is a regular value off if and only if it
is of the form f (X) for someX ∈ Hn(F) with distinct eigenvalues.
(b) Applying the coarea formula tof , prove that for any nonnegative Borel-
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measurable functionϕ onHn(F),
∫

ϕdρHn(F) =

∫
· · ·
∫

︸ ︷︷ ︸
−∞<λ1<···<λn<∞
λ=diag(λ1,...,λn)

(∫
ϕdρFlagn(λ ,F)

)
dλ1 · · ·dλn . (4.1.18)

(c) Derive the joint distribution of eigenvalues in the GUE,GOE and GSE from
(4.1.17) and (4.1.18).

Exercise 4.1.21Fix λ1, . . . ,λn ∈ C and putλ = diag(λ1, . . . ,λn). Let Flagn(λ ,C)

be the set of normal matrices with the same eigenvalues asλ . (Whenλ has real
entries, then Flagn(λ ,C) is just as we defined it before.) Show that in this extended
setting Flagn(λ ,C) is again a manifold and that formula (4.1.17), withF = C and
β = 2, still holds.

4.1.3 An integration formula of Weyl type

For the rest of Section 4.1 we will be working in the setup of Lie groups, see
Appendix F for definitions and basic properties. We aim to derive an integration
formula of Weyl type, Theorem 4.1.28, in some generality, which encompasses
all the results enunciated in Section 4.1.1.

Our immediate goal is to introduce a framework within which auniform ap-
proach to derivation of joint eigenvalue distributions is possible. For motivation,
suppose thatG andM are submanifolds of Matn(F) and thatG is a closed sub-
group of Un(F) such that{gmg−1 : m∈ M,g ∈ G} = M. We want to “integrate
out” the action ofG. More precisely, given a submanifoldΛ ⊂ M which satisfies
M = {gλg−1 : g∈ G, λ ∈ Λ}, and a functionϕ onM such thatϕ(gmg−1) = ϕ(m)

for all m∈ M andg ∈ G, we want to represent
∫

ϕdρM in a natural way as an
integral onΛ. This is possible if we can control the set of solutions(g,λ )∈ G×Λ
of the equationgλg−1 = m for all but a negligible set ofm∈ M. Such a procedure
was followed in Section 2.5 when deriving the law of the eigenvalues of the GOE.
However, as was already noted in the derivation of the law of the eigenvalues of
the GUE, decompositions of the formm= gλg−1 are not unique, and worse, the
set{(g,λ ) ∈ G×Λ : gλg−1 = m} is in general not discrete. Fortunately, however,
it typically has the structure of compact manifold. These considerations (and hind-
sight based on familiarity with classical matrix ensembles) motivate the following
definition.

Definition 4.1.22A Weyl quadruple(G,H,M,Λ) consists of four manifoldsG,
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H, M andΛ with common ambient space Matn(F) satisfying the following condi-
tions:

(I) (a) G is a closed subgroup of Un(F),

(b) H is a closed subgroup ofG, and

(c) dimG−dimH = dimM−dimΛ.

(II) (a) M = {gλg−1 : g∈ G, λ ∈ Λ},

(b) Λ = {hλh−1 : h∈ H, λ ∈ Λ},

(c) for everyλ ∈ Λ the set{hλh−1 : h∈ H} is finite, and

(d) for all λ ,µ ∈ Λ we haveλ ∗µ = µλ ∗.

(III) There existsΛ′ ⊂ Λ such that

(a) Λ′ is open inΛ,

(b) ρΛ(Λ\Λ′) = 0, and

(c) for everyλ ∈ Λ′ we haveH = {g∈ G : gλg−1 ∈ Λ}.

We say that a subsetΛ′ ⊂ Λ for which (IIIa,b,c) hold isgeneric.

We emphasize that by conditions (Ia,b), the groupsG andH are compact, and
that by Lemma 4.1.13(iii), the measuresρG andρH are Haar measures. We also
remark that we make no connectedness assumptions concerning G, H, M and
Λ. (In general, we do not require manifolds to be connected, although we do
assume that all tangent spaces of a manifold are of the same dimension.) In fact,
in practice,H is usually not connected.

In the next proposition we present the simplest example of a Weyl quadruple.
We recall, as in Definition E.4, that a matrixh∈ Matn(F) is monomialif it factors
as the product of a diagonal matrix and a permutation matrix.

Proposition 4.1.23Let G= Un(F) and let H⊂ G be the subset consisting of
monomial elements. Let M= Hn(F), let Λ ⊂ M be the subset consisting of (real)
diagonal elements, and letΛ′ ⊂ Λ be the subset consisting of matrices with dis-
tinct diagonal entries. Then(G,H,M,Λ) is a Weyl quadruple with ambient space
Matn(F) for which the setΛ′ is generic, and furthermore

ρ [G]

ρ [H]
=

ρ [Un(F)]

n!ρ [U1(F)]n
. (4.1.19)

This Weyl quadruple and the value of the associated constantρ [G]/ρ [H] will be
used to prove Proposition 4.1.1.

Proof Of all the conditions imposed by Definition 4.1.22, only conditions (Ic),
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(IIa) and (IIIc) require special attention, because the others are clear. To verify
condition (Ic), we note that

dimM = n+ βn(n−1)/2, dimΛ = n,

dimG = (β −1)n+ βn(n−1)/2, dimH = (β −1)n.

The first two equalities are clear sinceM andΛ are real vector spaces. By Lemma
4.1.15 the tangent spaceTIn(G) consists of the collection of anti-self-adjoint ma-
trices in Matn(F), and thus the third equality holds. So does the fourth because
TIn(H) consists of the diagonal elements ofTIn(G). Thus condition (Ic) holds.
To verify condition (IIa), we have only to apply Corollary E.12(i) which asserts
the possibility of diagonalizing a self-adjoint matrix. Toverify condition (IIIc),
arbitrarily fix λ ∈ Λ′, µ ∈ Λ andg∈G such thatgλg−1 = µ , with the goal to show
thatg∈H. In any case, by Corollary E.12(ii), the diagonal entries ofµ are merely
a rearrangement of those ofλ . After left-multiplying g by a permutation matrix
(the latter belongs by definition toH), we may assume thatλ = µ , in which caseg
commutes withλ . Then, because the diagonal entries ofλ are distinct, it follows
thatg is diagonal and thus belongs toH. Thus (IIIc) is proved. Thus(G,H,M,Λ)

is a Weyl quadruple for whichΛ′ is generic.

We turn to the verification of formula (4.1.19). It is clear that the numerator on
the right side of (4.1.19) is correct. To handle the denominator, we observe thatH
is the disjoint union ofn! isometric copies of the manifold U1(F)n, and then apply
Proposition F.8(vi). Thus (4.1.19) is proved. ⊓⊔

Note that condition (IIa) of Definition 4.1.22 implies thatgmg−1 ∈ M for all
m∈ M andg∈ G. Thus the following definition makes sense.

Definition 4.1.24Given a Weyl quadruple(G,H,M,Λ) and a functionϕ on M
(resp., a subsetA ⊂ M), we say thatϕ (resp.,A) is G-conjugation-invariantif
ϕ(gmg−1) = ϕ(m) (resp.,1A(gmg−1) = 1A(m)) for all g∈ G andm∈ M.

Given a Weyl quadruple(G,H,M,Λ) and aG-conjugation-invariant nonnega-
tive Borel-measurable functionϕ on M, we aim now to represent

∫
ϕdρM as an

integral onΛ. Our strategy for achieving this is to apply the coarea formula to the
smooth map

f = (g 7→ gλg−1) : G×Λ → M . (4.1.20)

For the calculation of the factorJ(T(g,λ )( f )) figuring in the coarea formula for the
map f we need to understand for each fixedλ ∈ Λ the structure of the derivative
at In ∈ G of the map

fλ = (g 7→ gλg−1) : G→ M (4.1.21)
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obtained by “freezing” the second variable inf . For study of the derivative
TIn( fλ ) the followingad hocversion of the Lie bracket will be useful.

Definition 4.1.25GivenX,Y ∈ Matn(F), let [X,Y] = XY−YX.

Concerning the derivativeTIn( fλ ) we then have the following key result.

Lemma 4.1.26Fix a Weyl quadruple(G,H,M,Λ) with ambient spaceMatn(F)

and a pointλ ∈ Λ. Let fλ be as in (4.1.21). Then we have

TIn( fλ )(TIn(H)) = 0, (4.1.22)

TIn( fλ )(X) = [X,λ ] , (4.1.23)

TIn( fλ )(TIn(G)) ⊂ Tλ (M)∩Tλ (Λ)⊥ . (4.1.24)

The proof will be given later.

Definition 4.1.27Let (G,H,M,Λ) be a Weyl quadruple. Givenλ ∈ Λ, let

Dλ : TIn(G)∩TIn(H)⊥ → Tλ (M)∩Tλ (Λ)⊥ (4.1.25)

be the linear map induced byTIn( fλ ). For eachλ ∈ Λ we define theWeyl operator
Θλ to equalD∗

λ ◦Dλ .

The abbreviated notationDλ andΘλ is appropriate because in applications be-
low the corresponding Weyl quadruple(G,H,M,Λ) will be fixed, and thus need
not be referenced in the notation. We emphasize that the source and target of
the linear mapDλ have the same dimension by assumption (Ic). The determi-
nant detΘλ , which is independent of the choice of basis used to compute it, is
nonnegative becauseΘλ is positive semidefinite, and hence

√
detΘλ is a well-

defined nonnegative number. We show in formula (4.1.29) below how to reduce
the calculation ofΘλ to an essentially mechanical procedure. Remarkably, in all
intended applications, we can calculate detΘλ by exhibiting an orthogonal basis
for TIn(G)∩TIn(H)⊥ simultaneously diagonalizing the whole family{Θλ}λ∈Λ.

We are now ready to state the generalized Weyl integration formula.

Theorem 4.1.28 (Weyl)Let (G,H,M,Λ) be a Weyl quadruple. Then for every
Borel-measurable nonnegative G-conjugation-invariant functionϕ on M, we have

∫
ϕdρM =

ρ [G]

ρ [H]

∫
ϕ(λ )

√
detΘλ dρΛ(λ ) .
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The proof takes up the rest of Section 4.1.3. We emphasize that a Weyl quadruple
(G,H,M,Λ) with ambient space Matn(F) is fixed now and remains so until the
end of Section 4.1.3.

We begin with the analysis of the mapsf and fλ defined in (4.1.20) and (4.1.21),
respectively.

Lemma 4.1.29The restricted function fλ |H is constant on connected components
of H, anda fortiori has identically vanishing derivative.

Proof The functionfλ |H is continuous and by assumption (IIc) takes only finitely
many values. Thusfλ |H is locally constant, whence the result. ⊓⊔

Lemma 4.1.30Let Λ′ ⊂ Λ be generic. Then for every g0 ∈ G andλ0 ∈ Λ′, the
fiber f−1(g0λ0g−1

0 ) is a manifold isometric to H.

It follows from Lemma 4.1.30 and Proposition F.8(v) thatρ [ f−1(g0λ0g−1
0 )] =

ρ [H].

Proof We claim that

f−1(g0λ0g−1
0 ) = {(g0h,h−1λ0h) ∈ G×M : h∈ H} .

The inclusion⊃ follows from assumption (IIb). To prove the opposite inclu-
sion⊂, suppose now thatgλg−1 = g0λ0g−1

0 for someg ∈ G andλ ∈ Λ. Then
we haveg−1g0 ∈ H by assumption (IIIc), henceg−1

0 g = h for someh ∈ H, and
hence(g,λ ) = (g0h,h−1λ0h). The claim is proved. By assumptions (Ia,b) and
Lemma 4.1.13(iii), the map

(h 7→ g0h) : H → g0H = {g0h : h∈ H}

is an isometry of manifolds, and indeed is the restriction toH of an isometry of
Euclidean spaces. In view of Lemma 4.1.29, the map

(h 7→ (g0h,h−1λ0h)) : H → f−1(g0λ0g−1
0 ) (4.1.26)

is also an isometry, which finishes the proof of Lemma 4.1.30. ⊓⊔
Note that we havenot asserted that the map (4.1.26) preserves distances as

measured in ambient Euclidean spaces, but rather merely that it preserves geodesic
distances within the manifolds in question. For manifolds with several connected
components (as is typically the case forH), distinct connected components are
considered to be at infinite distance one from the other.

Proof of Lemma 4.1.26The identity (4.1.22) follows immediately from Lemma
4.1.29.
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We prove (4.1.23). Letγ be a curve inG with γ(0) = In andγ ′(0) = X ∈TIn(G).
Since(γ−1)′ = −γ−1γ ′γ−1, we haveTIn( fλ )(X) = (γλ γ−1)′(0) = [X,λ ]. Thus
(4.1.23) holds.

It remains to prove (4.1.24). As a first step, we note that

[λ ∗,X] = 0 for λ ∈ Λ andX ∈ Tλ (Λ) . (4.1.27)

Indeed, letγ be a curve inΛ with γ(0) = λ andγ ′(0) = X. Then[λ ∗,γ] vanishes
identically by Assumption (IId) and hence[λ ∗,X] = 0.

We further note that

[X,λ ] ·Y = X · [Y,λ ∗] for X,Y ∈ Matn(F) , (4.1.28)

which follows from the definitionA ·B = ℜtrX∗Y for any A,B ∈ Matn(F) and
straightforward manipulations.

We now prove (4.1.24). GivenX ∈ TIn(G) andL ∈ Tλ (Λ), we have

TIn( fλ )(X) ·L = [X,λ ] ·L = X · [L,λ ∗] = 0,

where the first equality follows from (4.1.23), the second from (4.1.28) and the
last from (4.1.27). This completes the proof of (4.1.24) andof Lemma 4.1.26. ⊓⊔

Lemma 4.1.31Let Π : Matn(F) → TIn(G)∩TIn(H)⊥ be the orthogonal projec-
tion. Fix λ ∈ Λ. Then the following hold:

Θλ (X) = Π([λ ∗, [λ ,X]]) for X ∈ TIn(G)∩TIn(H)⊥ , (4.1.29)

J(T(g,λ )( f )) =
√

detΘλ for g∈ G. (4.1.30)

Proof We prove (4.1.29). FixX,Y ∈ TIn(G)∩TIn(H)⊥ arbitrarily. We have

Θλ (X) ·Y = D∗
λ (Dλ (X)) ·Y = Dλ (X) ·Dλ (Y)

= TIn( fλ )(X) ·TIn( fλ )(Y)

= [X,λ ] · [Y,λ ] = [[X,λ ],λ ∗] ·Y = Π([[X,λ ],λ ∗]) ·Y

at the first step by definition, at the second step by definitionof adjoint, at the third
step by definition ofDλ , at the fourth step by (4.1.23), at the fifth step by (4.1.28)
and at the last step trivially. Thus (4.1.29) holds.

Fix h ∈ G arbitrarily. We claim thatJ(T(h,λ )( f )) is independent ofh ∈ G.
Toward that end consider the commuting diagram

T(In,λ )(G×Λ)
T(In,λ)( f )
−−−−−→ Tλ (M)

T(In,λ)((g,µ) 7→(hg,µ)) ↓ ↓ Tλ (m7→hmh−1).

T(h,λ )(G×Λ)
T(h,λ)( f )
−−−−−→ Thmh−1(M)
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Since the vertical arrows are isometries of Euclidean spaces by assumption (Ia)
and Lemma 4.1.13(ii), it follows thatJ(T(h,λ )( f )) = J(T(In,λ )( f ), and in particular
is independent ofh, as claimed.

We now complete the proof of (4.1.30), assuming without lossof generality that
g = In. By definition

T(In,λ )(G×Λ) = TIn(G)⊕Tλ (Λ) ,

where we recall that the direct sum is equipped with Euclidean structure by declar-
ing the summands to be orthogonal. Clearly we have

(T(In,λ )( f ))(X ⊕L) = TIn( fλ )(X)+L for X ∈ TIn(G) andL ∈ Tλ (Λ) . (4.1.31)

By (4.1.24) and (4.1.31), the linear mapT(In,λ )( f ) decomposes as the orthogonal
direct sum ofΣ◦TIn( fλ ) and the identity map ofTλ (Λ) to itself. Consequently we
haveJ(TIn,λ ( f )) = J(Σ ◦TIn( fλ )) by Lemma F.18. Finally, by assumption (Ic),
formula (4.1.22) and Lemma F.19, we find thatJ(Σ◦TIn( fλ )) =

√
detΘλ . ⊓⊔

Proof of Theorem 4.1.28Let Mreg be the set of regular values of the mapf . We
have

∫

Mreg

ρ [ f−1(m)]ϕ(m)dρM(m) =

∫
ϕ(λ )

√
detΘλ dρG×Λ(g,λ )

= ρ [G] ·
∫

ϕ(λ )
√

detΘλ dρΛ(λ ) . (4.1.32)

The two equalities in (4.1.32) are justified as follows. The first holds by formula
(4.1.30), the “pushed down” version (4.1.11) of the coarea formula, and the fact
thatϕ( f (g,λ )) = ϕ(λ ) by the assumption thatϕ is G-conjugation-invariant. The
second holds by Fubini’s Theorem and the fact thatρG×Λ = ρG×ρΛ by Proposi-
tion F.8(vi).

By assumption (IIa) the mapf is onto, henceMreg = M \Mcrit, implying by
Sard’s Theorem (Theorem F.11) thatMreg has full measure inM. For everym∈
Mreg, the quantityρ [ f−1(m)] is positive (perhaps infinite). The quantityρ [G] is
positive and also finite sinceG is compact. It follows by (4.1.32) that the claimed
integration formula at least holds in the weak sense that aG-conjugation-invariant
Borel setA⊂ M is negligible inM if the intersectionA∩Λ is negligible inΛ.

Now put M′ = {gλg−1 : g ∈ G, λ ∈ Λ′}. ThenM′ is a Borel set. Indeed, by
assumption (IIIa) the setΛ′ is σ -compact, hence so isM′. By constructionM′ is
G-conjugation-invariant. Now we haveΛ′ ⊂ M′ ∩Λ, hence by assumption (IIIb)
the intersectionM′ ∩Λ is of full measure inΛ, and therefore by what we proved
in the paragraph above,M′ is of full measure inM. Thus, if we replaceϕ by ϕ1M′

in (4.1.32), neither the first nor the last integral in (4.1.32) changes and further,
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by Lemma 4.1.30, we can replace the factorρ f−1(m) f−1(m) in the first integral by
ρ [H]. Therefore we have

ρ [H]

∫

M′∩Mreg

ϕ(m)dρM(m) = ρ [G]

∫

M′∩Λ
ϕ(λ )

√
detΘλ dρΛ(λ ) .

Finally, sinceM′ ∩Mreg is of full measure inM andM′ ∩Λ is of full measure in
Λ, the desired formula holds. ⊓⊔

4.1.4 Applications of Weyl’s formula

We now present the proofs of the integration formulas of Section 4.1.1. We prove
each by applying Theorem 4.1.28 to a suitable Weyl quadruple.

We begin with the Gaussian/Hermite ensembles.

Proof of Proposition 4.1.1Let (G,H,M,Λ) be the Weyl quadruple defined in
Proposition 4.1.23. As in the proof of Lemma 4.1.17 above, and for a similar
purpose, we use the notationei j , i, j ,k. By Lemma 4.1.15 we know thatTIn(G) ⊂
Matn(F) is the space of anti-self-adjoint matrices, and it is clear that TIn(H) ⊂
TIn(G) is the subspace consisting of diagonal anti-self-adjoint matrices. Thus the
set

{
uei j −u∗eji

∣∣u∈ {1, i, j ,k}∩F, 1≤ i < j ≤ n
}

is an orthogonal basis forTIn(G)∩TIn(H)⊥. By formula (4.1.29), we have

Θdiag(x)(uei j −u∗eji ) = [diag(x), [diag(x),uei j −u∗eji ]] = (xi −x j)
2(uei j −u∗eji )

and hence
√

detΘdiag(x) = |∆(x)|β for x∈ Rn.

To finish the bookkeeping, note that the mapx 7→ diag(x) sendsRn isometrically to
Λ and hence pushes Lebesgue measure onRn forward toρΛ. Then the integration
formula (4.1.1) follows from Theorem 4.1.28 combined with formula (4.1.19) for
ρ [G]/ρ [H]. ⊓⊔

We remark that the orthogonal projectionΠ appearing in formula (4.1.29) is
unnecessary in the Gaussian setup. In contrast, we will see that it does play a
nontrivial role in the study of the Jacobi ensembles.

We turn next to the Laguerre ensembles. The following proposition provides
the needed Weyl quadruples.
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Proposition 4.1.32Fix integers0 < p≤ q and put n= p+q. Let

G = {diag(U,V) : U ∈ Up(F), V ∈ Uq(F)} ⊂ Un(F) ,

H = {diag(U,V ′,V ′′) : U,V ′ ∈ Up(F), V ′′ ∈ Uq−p(F) ,

U,V ′ are monomial, U(V ′)∗ is diagonal, (U(V ′)∗)2 = Ip} ⊂ G,

M =

{[
0 X

X∗ 0

]
: X ∈ Matp×q(F)

}
⊂ Hn(F) ,

Λ =








0 x 0
x 0 0
0 0 0q−p


 : x∈ Matp is (real) diagonal



⊂ M .

Let Λ′ ⊂ Λ be the subset consisting of elements for which the corresponding real
diagonal matrix x has nonzero diagonal entries with distinct absolute values. Then
(G,H,M,Λ) is a Weyl quadruple with ambient spaceMatn(F) for which the setΛ′

is generic and, furthermore,

ρ [G]

ρ [H]
=

ρ [Up(F)]ρ [Uq(F)]

2pp!(2(β−1)/2ρ [U1(F)])pρ [Uq−p(F)]
. (4.1.33)

We remark that in the casep = q we are abusing notation slightly. Forp = q one
should ignoreV ′′ in the definition ofH, and similarly modify the other definitions
and formulas.

Proof Of the conditions imposed by Definition 4.1.22, only conditions (Ic), (IIa)
and (IIIc) deserve comment. As in the proof of Proposition 4.1.23 one can verify
(Ic) by means of Lemma 4.1.15. Conditions (IIa) and (IIIc) follow from Corollary
E.13 concerning the singular value decomposition in Matp×q(F), and specifically
follow from points (i) and (iii) of that corollary, respectively. Thus(G,H,M,Λ) is
a Weyl quadruple for whichΛ′ is generic.

Turning to the proof of (4.1.33), note that the groupG is isometric to the product
Up(F)×Uq(F). Thus the numerator on the right side of (4.1.33) is justified. The
mapx 7→ diag(x,x) from U1(F) to U2(F) magnifies by a factor of

√
2. Abusing

notation, we denote its image by
√

2U1(F). The groupH is the disjoint union of
2pp! isometric copies of the manifold(

√
2U1(F))p×Uq−p(F). This justifies the

denominator on the right side of (4.1.33), and completes theproof. ⊓⊔
Proof of Proposition 4.1.3 Let (G,H,M,Λ) be the Weyl quadruple defined in
Proposition 4.1.32. By Lemma 4.1.15,TIn(G) consists of matrices of the form
diag(X,Y), whereX ∈ Matp(F) andY ∈ Matq(F) are anti-self-adjoint. By the
same lemma,TIn(H) consists of matrices of the form diag(W,W,Z), whereW ∈
Matp(F) is diagonal anti-self-adjoint andZ∈Matq−p(R) is anti-self-adjoint. Thus
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TIn(G)∩TIn(H)⊥ may be described as the set of matrices of the form






a
b
c




 :=




a+b 0 0
0 a−b c
0 −c∗ 0




wherea,b∈ Matp(F) are anti-self-adjoint witha vanishing identically on the di-
agonal, andc∈ Matp×q(F). Given (real) diagonalx∈ Matp, we also put

λ (x) :=




0 x 0
x 0 0
0 0 0q−p


 ,

thus parametrizingΛ. By a straightforward calculation using formula (4.1.29),in
which the orthogonal projectionΠ is again unnecessary, one verifies that

Θλ (x)






a
b
c




=






x2a−2xax+ax2

x2b+2xbx+bx2

x2c




 ,

and hence that

√
detΘλ (diag(x)) = |∆(x2)|β ·

p

∏
i=1

|2xi |β−1 ·
p

∏
i=1

|xi |β (q−p) for x∈ Rp.

Now for X ∈ Matp×q(F), putX′ =

[
0 X

X∗ 0

]
∈ M. With ϕ as in the statement

of formula (4.1.3), letψ be the unique function onM such thatψ(X′) = ϕ(X)

for all X ∈ Matp×q(F). By construction,ψ is G-conjugation-invariant, and in
particular,ψ(λ (diag(x)) depends only on the absolute values of the entries of
x. Note also that the mapX 7→ X′ magnifies by a factor of

√
2. We thus have

integration formulas

2β pq/2
∫

ϕdρMatp×q(F) =

∫
ψdρM, 23p/2

∫

R
p
+

ϕ(x)
p

∏
i=1

dxi =

∫
ψdρΛ.

Integration formula (4.1.3) now follows from Theorem 4.1.28 combined with for-
mula (4.1.33) forρ [G]/ρ [H]. ⊓⊔

We turn next to the Jacobi ensembles. The next proposition provides the needed
Weyl quadruples.

Proposition 4.1.33Fix integers0 < p≤ q and put n= p+ q. Fix 0≤ r ≤ q− p
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and write q= p+ r +s. Let

G = {diag(U,V) : U ∈ Up(F), V ∈ Uq(F)} ⊂ Un(F) ,

H = {diag(U,V ′,V ′′,V ′′′) : U,V′ ∈ Up(F), V ′′ ∈ Ur(F), V ′′′ ∈ Us(F) ,

U,V ′ are monomial, U(V ′)∗ is diagonal, (U(V ′)∗)2 = Ip} ⊂ G,

M = Flagn(diag(Ip+r ,0p+s),F) ,

Λ = {diag(

[
x y
y Ip−x

]
, Ir ,0s) : x,y∈ Matp are diagonal

and x2 +y2 = x} ⊂ M .

Let Λ′ ⊂ Λ be the subset consisting of elements such that the absolute values of
the diagonal entries of the corresponding diagonal matrix ybelong to the interval
(0,1/2) and are distinct. Then(G,H,M,Λ) is a Weyl quadruple with ambient
spaceMatn(F) for whichΛ′ is generic and, furthermore,

ρ [G]

ρ [H]
=

ρ [Up(F)]ρ [Uq(F)]

2pp!(2(β−1)/2ρ [U1(F)])pρ [Ur(F)]ρ [Us(F)]
. (4.1.34)

As in Proposition 4.1.32, we abuse notation slightly; one has to make appropriate
adjustments to handle extreme values of the parametersp,q, r,s.

Proof As in the proof of Proposition 4.1.32, of the conditions imposed by Defini-
tion 4.1.22, only conditions (Ic), (IIa) and (IIIc) need be treated. One can verify
(Ic) by means of Lemma 4.1.18 and Lemma 4.1.15.

We turn to the verification of condition (IIa). By Proposition E.14, for every
m∈ M, there existsg∈ G such that

gmg−1 = diag(

[
x y
y z

]
,w)

wherex,y,z∈ Matp andw ∈ Matn−2p are real diagonal and satisfy the relations
dictated by the fact thatgmg−1 squares to itself and has tracep+ r. If we have
tr w = r, then after left-multiplyingg by a permutation matrix inG we havew =

diag(Ir ,0s), and we are done. Otherwise trw 6= r. After left-multiplying g by
a permutation matrix belonging toG, we can writey = diag(y′,0) wherey′ ∈
Matp′ has nonzero diagonal entries. Correspondingly, we writex = diag(x′,x′′)
andz= diag(z′,z′′) with x′,z′ ∈ Matp′ andx′′,z′′ ∈ Matp−p′ . We then havez′ =

Ip′ − x′. Further, all diagonal entries ofx′′ andz′′ belong to{0,1}, and finally,
tr z′′ + tr w≥ r. Thus, if we left-multiplyg by a suitable permutation matrix inG
we can arrange to have trw = r and we are done.

We turn finally to the verification of condition (IIIc). Fixλ ∈ Λ′ andg ∈ G
such thatgλg−1 ∈ Λ. Let x,y∈ Matp be the real diagonal matrices corresponding
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to λ as in the definition ofΛ. By definition ofΛ′, no two of the four diagonal
matricesx, Ip − x, Ir and 0s have a diagonal entry in common, and henceg =

diag(U,V,W,T) for someU,V ∈ Up(F), W ∈ Ur(F) and T ∈ Us(F). Also by
definition of Λ′, the diagonal entries ofy have distinct nonzero absolute values,
and hence we haveg ∈ H by Corollary E.13(iii) concerning the singular value
decomposition. Thus(G,H,M,Λ) is a Weyl quadruple for whichΛ′ is generic.

A slight modification of the proof of formula (4.1.33) yieldsformula (4.1.34).
⊓⊔

Proof of Proposition 4.1.4Let (G,H,M,Λ) be the Weyl quadruple provided by
Proposition 4.1.33. We follow the pattern established in the previous analysis
of the Laguerre ensembles, but proceed more rapidly. We parametrizeΛ and
TIn(G)∩TIn(H)⊥, respectively, in the following way.

λ (x,y) := diag

([
x y
y Ip−x

]
, Ir ,0s

)
,







a
b
c
d
e







:=




a+b 0 0 0
0 a−b c d
0 −c∗ 0 e
0 −d∗ −e∗ 0


 ,

where:

• x,y∈ Matp are real diagonal and satisfyx2 +y2 = x,

• a,b∈ Matp(F) are anti-self-adjoint witha vanishing identically along the diag-
onal, and

• c∈ Matp×r(F), d ∈ Matp×s(F) ande∈ Matr×s(F).

By a straightforward if rather involved calculation using formula (4.1.29), we have

Θλ (x,y)







a
b
c
d
e







=







xa+ax−2xax−2yay
xb+bx−2xbx+2yby

xc
(Ip−x)d

e







.

(Unlike in the proofs of Propositions 4.1.1 and 4.1.3, the orthogonal projectionΠ
is used nontrivially.) We find that

√
detΘλ (diag(x),diag(y)) = |∆(x)|β ·

p

∏
i=1

(4xi(1−xi))
(β−1)/2 ·

p

∏
i=1

(xr
i (1−xi)

s)β/2
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for x,y∈ Rp such thatxi(1−xi) = y2
i (and hencexi ∈ [0,1]) for i = 1, . . . , p. The

calculation of the determinant is straightforward once it is noted that the identity

(x1 +x2−2x1x2−2y1y2)(x1 +x2−2x1x2 +2y1y2) = (x1−x2)
2

holds ifxi(1−xi) = y2
i for i = 1,2.

Now let ϕ be as it appears in formula (4.1.5). Note thatΛ is an isometric copy
of Flag2(diag(1,0),R)p and that Flag2(diag(1,0),R) is a circle of circumference√

2π . Note also that
∫ π

0
f ((1+cosθ )/2)dθ =

∫ 1

0

f (x)dx√
x(1−x)

.

We find that
∫

ϕ(λ (p))dρΛ(λ ) = 2p/2
∫

[0,1]p
ϕ(x)

p

∏
i=1

dxi√
xi(1−xi)

.

Finally, note that the unique functionψ on M satisfyingψ(W) = ϕ(W(p)) is G-
conjugation invariant. We obtain (4.1.5) now by Theorem 4.1.28 combined with
formula (4.1.34) forρ [G]/ρ [H]. ⊓⊔

The next five propositions supply the Weyl quadruples neededto prove Proposi-
tion 4.1.6. All the propositions have similar proofs, with the last two proofs being
the hardest. We therefore supply only the last two proofs.

Proposition 4.1.34Let G= M = Un(C). Let H ⊂ G be the set of monomial
elements of G. LetΛ ⊂ G be the set of diagonal elements of G, and letΛ′ ⊂ Λ be
the subset consisting of elements with distinct diagonal entries. Then(G,H,M,Λ)

is a Weyl quadruple with ambient spaceMatn(C) for which Λ′ is generic and,
furthermore,

ρ [H]/ρ [Λ] = n! . (4.1.35)

The proof of this proposition is an almost verbatim repetition of that of Proposi-
tion 4.1.23.

Put ι =

[
0 1
1 0

]
∈ Mat2 and recall the notationRn(θ ) used in Proposition

4.1.6.

Proposition 4.1.35Let n= 2ℓ + 1 be odd. Let G= M = Un(R). Let Wn be the
group consisting of permutation matrices inMatn commuting withdiag(ι, . . . , ι,1).
Let

Λ = {±diag(Rℓ(θ ),1) : θ ∈ Rℓ} , H = {wλ : λ ∈ Λ, w∈Wn} .
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Let Λ′ ⊂ Λ be the subset consisting of elements with distinct (complex) eigen-
values. Then(G,H,M,Λ) is a Weyl quadruple with ambient spaceMatn(R) for
whichΛ′ is generic and, furthermore,

ρ [H]/ρ [Λ] = 2ℓℓ! . (4.1.36)

Proposition 4.1.36Let G= M = Un(H). Let H⊂ G be the set of monomial ele-
ments with entries inC∪Cj . Let Λ ⊂ G be the set of diagonal elements with en-
tries inC. LetΛ′ ⊂ Λ be the subset consisting of elementsλ such thatdiag(λ ,λ ∗)
has distinct diagonal entries. Then(G,H,M,Λ) is a Weyl quadruple with ambient
spaceMatn(H) for whichΛ′ is generic and, furthermore,

ρ [H]/ρ [Λ] = 2nn! . (4.1.37)

Proposition 4.1.37Let n= 2ℓ be even. Let G= Un(R) and let M⊂ G be the
subset on whichdet= 1. Let W+

n ⊂ G be the group consisting of permutation
matrices commuting withdiag(ι, . . . , ι). Put

Λ = {Rℓ(θ ) : θ ∈ Rℓ} ⊂ M, H = {wλ : λ ∈ Λ, w∈W+
n } ⊂ G.

Let Λ′ ⊂ Λ be the subset consisting of elements with distinct (complex) eigenval-
ues. Then(G,H,M,Λ) is a Weyl quadruple with ambient spaceMatn(R) such that
Λ′ is generic and, furthermore,

ρ [H]/ρ [Λ] = 2ℓℓ! . (4.1.38)

Proposition 4.1.38Let n= 2ℓ be even. Let G= Un(R) and let M⊂ G be the
subset on whichdet= −1. Put

W−
n = {diag(w,±1,±1) : w∈W+

n−2} ⊂ G,

Λ = {diag(Rℓ−1(θ ),1,−1) : θ ∈ Rℓ−1} ⊂ M ,

H = {wλ : w∈W−
n , λ ∈ Λ} ⊂ G.

Let Λ′ ⊂ Λ be the subset consisting of elements with distinct (complex) eigen-
values. Then(G,H,M,Λ) is a Weyl quadruple with ambient spaceMatn(R) for
whichΛ′ is generic and, furthermore,

ρ [H]/ρ [Λ] = 2ℓ+1(ℓ−1)! . (4.1.39)

Proof of Proposition 4.1.37Only conditions (IIa) and (IIIc) require proof. The
other parts of the proposition, including formula (4.1.38), are easy to check.

To verify condition (IIa), fixm∈ M arbitrarily. After conjugatingm by some
element ofG, we may assume by Theorem E.11 thatm is block-diagonal withR-
standard blocks on the diagonal. Now the only orthogonalR-standard blocks are
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±1∈ Mat1 andR(θ ) ∈ Mat2 for 0 < θ < π . Since we assume detm= 1, there are
even numbers of 1s and−1s along the diagonal ofm, and hence after conjugating
m by a suitable permutation matrix, we havem∈ Λ as required. Thus condition
(IIa) is proved.

To verify condition (IIIc), we fixλ ∈ Λ′, g∈G andµ ∈ Λ such thatgλg−1 = µ ,
with the goal to show thatg∈H. After conjugatingλ by a suitably chosen element
of W+

n , we may assume that the anglesθ1, . . . ,θℓ describingλ , as in the definition
of Λ, satisfy 0< θ1 < · · · < θℓ < π . By another application of Theorem E.11,
after replacingg by wg for suitably chosenw∈W+

n , we may assume thatλ = µ .
Theng commutes withλ , which is possible only ifg∈ Λ. Thus condition (IIIc)
is proved, and the proposition is proved. ⊓⊔
Proof of Proposition 4.1.38As in the proof of Proposition 4.1.37, only conditions
(IIa) and (IIIc) require proof. To verify condition (IIa) weargue exactly as in the
proof of Proposition 4.1.37, but this time, because detm = −1, we have to pair
off a 1 with a−1, and we arrive at the desired conclusion. To prove condition
(IIIc), we again fix λ ∈ Λ′, g ∈ G and µ ∈ Λ such thatgλg−1 = µ , with the
goal to show thatg∈ H; and arguing as before, we may assume thatg commutes
with λ . The hypothesis thatλ has distinct complex eigenvalues then insures then
g = diag(In−2,±1,±1)ν for someν ∈ Λ, and henceg∈ H. Thus condition (IIIc)
is verified, and the proposition is proved. ⊓⊔
Proof of Proposition 4.1.6It remains only to calculate

√
detΘλ for each of the

five types of Weyl quadruples defined above in order to complete the proofs of
(4.1.6), (4.1.7), (4.1.8) and (4.1.9), for then we obtain each formula by invoking
Theorem 4.1.28, combined with the formulas (4.1.35), (4.1.36), (4.1.37), (4.1.38)
and (4.1.39), respectively, for the ratioρ [H]/ρ [Λ]. Note that the last two Weyl
quadruples are needed to handle the two terms on the right side of (4.1.9), respec-
tively.

All the calculations are similar. Those connected with the proof of (4.1.9) are
the hardest, and may serve to explain all the other calculations. In the follow-
ing, we denote the Weyl quadruples defined in Propositions 4.1.37 and 4.1.38 by
(G,H+,M+,Λ+) and(G,H−,M−,Λ−), respectively. We treat each quadruple in
a separate paragraph below.

To prepare for the calculation it is convenient to introducetwo special functions.
Given real numbersα andβ , let D(α,β ) be the square-root of the absolute value
of the determinant of theR-linear operator

Z 7→ R(−α)(R(α)Z−ZR(β ))− (R(α)Z−ZR(β ))R(−β )

on Mat2(R), and letC(α) be the square-root of the absolute value of the determi-
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nant of theR-linear operator

Z 7→ R(−α)(R(α)Z−Zκ)− (R(α)Z−Zκ)κ

on Mat2(R), whereκ = diag(1,−1). Actually both operators in question are non-
negative definite and hence have nonnegative determinants.One finds that

D(α,β ) = |(eiα −eiβ )(eiα −e−iβ )|, C(α) = |eiα −e−iα |
by straightforward calculations.

Consider the Weyl quadruple(G,H+,M+,Λ+) and forθ ∈ Rℓ put λ +(θ ) =

Rℓ(θ ). The spaceTIn(G) ∩TIn(H
+)⊥ consists of real antisymmetric matrices

X ∈ Matn such thatX2i,2i−1 = 0 for i = 1, . . . , ℓ. Using formula (4.1.29), one finds
that √

detΘλ +(θ) = ∏
1≤i< j≤ℓ

D(θi ,θ j) = Dℓ(θ )

which proves (4.1.9) for all functionsϕ supported onM+.

Consider next the Weyl quadruple(G,H−,M−,Λ−) and forθ ∈Rℓ−1 putλ−(θ )

= diag(Rℓ(θ ),1,−1). The spaceTIn(G)∩TIn(H
−)⊥ consists of real antisymmet-

ric matricesX ∈ Matn such thatX2i,2i−1 = 0 for i = 1, . . . , ℓ− 1. Using formula
(4.1.29) one finds that

√
detΘλ−(θ) = ∏

1≤i< j≤ℓ−1

D(θi ,θ j ) · ∏
1≤i≤ℓ−1

C(θi) ·2,

which proves (4.1.9) for all functionsϕ supported onM−. (The last factor of 2 is
accounted for by the fact that forZ ∈ Mat2 real antisymmetric,[κ , [κ ,Z]] = 4Z.)
This completes the proof of (4.1.9).

All the remaining details needed to complete the proof of Proposition 4.1.6,
being similar, we omit. ⊓⊔

Exercise 4.1.39
Let G = Un(C) and letH ⊂ G be the subgroup consisting of monomial ele-

ments. LetM ⊂ Matn(C) be the set consisting of normal matrices with distinct
eigenvalues, and letΛ ⊂ M be the subset consisting of diagonal elements. Show
that(G,H,M,Λ) is a Weyl quadruple. Show that

√
detΘλ = ∏1≤i< j≤n |λi −λ j |2

for all λ = diag(λ1, . . . ,λn) ∈ Λ.

4.2 Determinantal point processes

The collection of eigenvalues of a random matrix naturally can be viewed as a
configuration of points (onR or on C), that is, as apoint process. This section
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is devoted to the study of a class of point processes known as determinantal pro-
cesses; such processes possess useful probabilistic properties, such as CLTs for
occupation numbers, and, in the presence of approximate translation invariance,
convergence to stationary limits. The point process determined by the eigenvalues
of the GUE is, as we show below, a determinantal process. Further, determinantal
processes occur as limits of the rescaled configuration of eigenvalues of the GUE,
in the bulk and in the edge of the spectrum, see Section 4.2.5.

4.2.1 Point processes: basic definitions

Let Λ be a locally compact Polish space, equipped with a (necessarily σ -finite)
positive Radon measureµ on its Borelσ -algebra (recall that a positive measure
is Radonif µ(K) < ∞ for each compact setK). We letM (Λ) denote the space
of σ -finite Radon measures onΛ, and letM+(Λ) denote the subset ofM (Λ)

consisting of positive measures.

Definition 4.2.1(a) A point processis a random, integer-valuedχ ∈ M+(Λ). (By
random we mean that for any BorelB ⊂ Λ, χ(B) is an integer-valued random
variable.)
(b) A point processχ is simpleif

P(∃x∈ Λ : χ({x}) > 1) = 0. (4.2.1)

Note that the event in (4.2.1) is measurable due to the fact that Λ is Polish. One
may think aboutχ also in terms of configurations. LetX denote the space of
locally finite configurations inΛ, and letX 6= denote the space of locally finite
configurations with no repetitions. More precisely, forxi ∈ Λ, i ∈ I an interval
of positive integers (beginning at 1 if nonempty), withI finite or countable, let
[xi ] denote the equivalence class of all sequences{xπ(i)}i∈I , whereπ runs over all
permutations (finite or countable) ofI . Then, set

X = X (Λ) = {x = [xi ]
κ
i=1 , wherexi ∈ Λ , κ ≤ ∞ , and

|xK | := ♯{i : xi ∈ K} < ∞ for all compactK ⊂ Λ}

and

X 6= = {x ∈ X : xi 6= x j for i 6= j} .

We endowX andX 6= with the σ -algebraCX generated by the cylinder sets
CB

n = {x ∈X : |xB|= n}, with B Borel with compact closure andn a nonnegative
integer. Sinceχ = ∑κ

i=1 δγi for some (possibly random)κ ≤∞ and randomγi , each
point processχ can be associated with a point inX (in X 6= if χ is simple). The
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converse is also true, as is summarized in the following elementary lemma, where
we letν be a probability measure on the measure space(X ,CX ).

Lemma 4.2.2A ν-distributed random elementx of X can be associated with a
point processχ via the formulaχ(B) = |xB| for all Borel B⊂ Λ. If ν(X 6=) = 1,
thenχ is a simple point process.

With a slight abuse, we will therefore not distinguish between the point process
χ and the induced configurationx. In the sequel, we associate the lawν with the
point processχ , and writeEν for expectation with respect to this law.

We next note that ifx is not simple, then one may construct a simple point pro-
cessx∗ = {(x∗j ,Nj )}κ∗

j=1 ∈ X (Λ∗) onΛ∗ = Λ×N+ by lettingκ∗ denote the num-
ber of distinct entries inx, introducing a many-to-one mappingj(i) : {1, . . . ,κ} 7→
{1, . . . ,κ∗} with Nj = |{i : j(i) = j}| such that ifj(i) = j(i′) thenxi = xi′ , and then
settingx∗j = xi if j(i) = j. In view of this observation, we only consider in the se-
quel simple point processes.

Definition 4.2.3Let χ be a simple point process. Assume locally integrable func-
tions ρk : Λk→[0,∞), k ≥ 1, exist such that for any mutually disjoint family of
subsetsD1, · · · ,Dk of Λ,

Eν [
k

∏
i=1

χ(Di)] =

∫

∏k
i=1Di

ρk(x1, · · · ,xk)dµ(x1) · · ·dµ(xk) .

Then the functionsρk are called thejoint intensities(or correlation functions) of
the point processχ with respect toµ .

The term “correlation functions” is standard in the physicsliterature, while “joint
intensities” is more commonly used in the mathematical literature.

Remark 4.2.4By Lebesgue’s Theorem, forµk almost every(x1, . . . ,xk),

lim
ε→0

P(χ(B(xi ,ε)) = 1, i = 1, . . . ,k)

∏k
i=1 µ(B(xi ,ε))

= ρk(x1, . . . ,xk) .

Further, note thatρk(·) is in general only definedµk-almost everywhere, and that
ρk(x1, . . . ,xk) is not determined by Definition 4.2.3 if there arei 6= j with xi = x j .
For consistency with Lemma 4.2.5 below and the fact that we consider simple
processes only, we setρk(x1, . . . ,xk) = 0 for such points.

The joint intensities, if they exist, allow one to consider overlapping sets, as well.
In what follows, for a configurationx ∈ X 6=, andk integer, we letx∧k denote
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the set of ordered samples ofk distinct elements fromx. (Thus, if Λ = R and
x = {1,2,3}, thenx∧2 = {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}.)

Lemma 4.2.5Let χ be a simple point process with intensitiesρk.
(a)For any Borel set B⊂ Λk with compact closure,

Eν

(
|x∧k∩B|

)
=

∫

B
ρk(x1, · · · ,xk)dµ(x1) · · ·dµ(xk) . (4.2.2)

(b) If D i , i = 1, . . . , r, are mutually disjoint subsets ofΛ contained in a compact
set K, and if{ki}r

i=1 is a collection of positive integers such that∑r
i=1ki = k, then

Eν

[
r

∏
i=1

(
χ(Di)

ki

)
ki !

]
=

∫

∏D
×ki
i

ρk(x1, . . . ,xk)µ(dx1) · · ·µ(dxk) . (4.2.3)

Proof of Lemma 4.2.5Note first that, for any compactQ ⊂ Λ, there exists an
increasing sequence of partitions{Qn

i }n
i=1 of Q such that, for anyx∈ Q,

⋂

n

⋂

i:x∈Qn
i

Qn
i = {x} .

We denote byQk
n the collection of (ordered)k-tuples of distinct elements of{Qn

i }.
(a) It is enough to consider sets of the formB = B1×B2×·· ·×Bk, with the sets
Bi Borel of compact closure. Then

Mn
k := ∑

(Q1,...,Qk)∈Qk
n

|(Q1×·· ·×Qk)∩B∩x∧k| = ∑
(Q1,...,Qk)∈Qk

n

k

∏
i=1

χ(Qi ∩Bi) .

Thus

Eν(Mn
k) = ∑

(Q1,...,Qk)∈Qk
n

∫

(Q1×···×Qk)∩B
ρk(x1, . . . ,xk)dµ(x1) . . .dµ(xk) . (4.2.4)

Note thatMn
k increases monotonically inn to |x∧k∩B|. On the other hand, sincex

is simple, and by our convention concerning the intensitiesρk, see Remark 4.2.4,

limsup
n→∞

∑
(Q1,...,Qk)∈(Q1

n)k\Qk
n

∫

(Q1×···×Qk)∩B
ρk(x1, . . . ,xk)dµ(x1) . . .dµ(xk) = 0.

The conclusion follows from these facts, the fact thatX is a Radon measure and
(4.2.4).
(b) Equation (4.2.3) follows from (4.2.2) through the choiceB = ∏D×ki

i . ⊓⊔

Remark 4.2.6Note that a system of nonnegative, measurable and symmetricfunc-
tions{ρr : Λr → [0,∞]}∞

r=1 is a system of joint intensities for a simple point process
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that consists of exactlyn points almost surely, if and only ifρr = 0 for r > n, ρ1/n
is a probability density function, and the family is consistent, that is, for 1< r ≤ n,

∫

Λ
ρr(x1, . . . ,xr)dµ(xr) = (n− r +1)ρr−1(x1, . . . ,xr−1) .

As we have seen, for a simple point process, the joint intensities give information
concerning the number of points in disjoint sets. Let nowDi be given disjoint
compact sets, withD =

⋃L
i=1Di be such thatE(zχ(D)) < ∞ for z in a neighborhood

of 1. Consider the Taylor expansion, valid forzℓ in a neighborhood of 1,

L

∏
ℓ=1

zχ(Dℓ)
ℓ = 1+

∞

∑
n=1

∑
ni≤χ(Di )
ni⊢Ln

L

∏
i=1

χ(Di)!
(χ(Di)−ni)!ni!

L

∏
i=1

(zi −1)ni (4.2.5)

= 1+
∞

∑
n=1

∑
ni⊢Ln

L

∏
i=1

(χ(Di)(χ(Di)−1) · · ·(χ(Di)−ni +1))

ni !

L

∏
i=1

(zi −1)ni ,

where

{ni ⊢L n} = {(n1, . . . ,nL) ∈ NL
+ :

L

∑
i=1

ni = n} .

Then one sees that, under these conditions, the factorial moments in (4.2.3) deter-
mine the characteristic function of the collection{χ(Di)}L

i=1. A more direct way
to capture the distribution of the point processχ is via its Jánossy densities, that
we define next.

Definition 4.2.7Let D ⊂ Λ be compact. Assume there exist symmetric functions
jD,k : Dk → R+ such that, for any finite collection of mutually disjoint measurable
setsDi ⊂ D, i = 1, . . . ,k,

P(χ(D) = k,χ(Di) = 1, i = 1, . . . ,k) =
∫

∏i Di

jD,k(x1, . . . ,xk)∏
i

µ(dxi) . (4.2.6)

Then we refer to the collection{ jD,k}∞
k=1 as theJánossy densitiesof χ in D.

The following easy consequences of the definition are provedin the same way that
Lemma 4.2.5 was proved.

Lemma 4.2.8For any compact D⊂ Λ, if the J́anossy densities jD,k, k≥ 1 exist
then

P(χ(D) = k) =
1
k!

∫

Dk
jD,k(x1, . . . ,xk)∏

i
µ(dxi) , (4.2.7)
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and, for any mutually disjoint measurable sets Di ⊂D, i = 1, . . . ,k and any integer
r ≥ 0,

P(χ(D) = k+ r,χ(Di) = 1, i = 1, . . . ,k)

=
1
r!

∫

∏k
i=1 Di×Dr

jD,k+r (x1, . . . ,xk+r)∏
i

µ(dxi) . (4.2.8)

In view of (4.2.8) (withr = 0), one can naturally view the collection of Jánossy
densities as a distribution on the space⊗∞

k=0Dk.

Jánossy densities and joint intensities are (at least locally, i.e. restricted to a
compact setD) equivalent descriptions of the point processχ , as the following
proposition states.

Proposition 4.2.9Let χ be a simple point process onΛ and assume D⊂ Λ is
compact.
(a) Assume the J́anossy densities jD,k, k≥ 1, exist, and that

∑
k

∫

Dk

kr jD,k(x1, . . . ,xk)

k! ∏
i

µ(dxi) < ∞ , for all r integer. (4.2.9)

Thenχ restricted to D possesses the intensities

ρk(x1, . . . ,xk) =
∞

∑
r=0

jD,k+r (x1, . . . ,xk,D, . . . ,D)

r!
, xi ∈ D, (4.2.10)

where

jD,k+r(x1, . . . ,xk,D, . . . ,D) =

∫

Dr
jD,k+r (x1, . . . ,xk,y1, . . . ,yr)

r

∏
i=1

µ(dyi) .

(b) Assume the intensitiesρk(x1, . . . ,xk) exist and satisfy

∑
k

∫

Dk

kr ρk(x1, . . . ,xk)

k! ∏
i

µ(dxi) < ∞ , for all r integer. (4.2.11)

Then the J́anossy densities jD,k exist for all k and satisfy

jD,k(x1, . . . ,xk) =
∞

∑
r=0

(−1)rρk+r(x1, . . . ,xk,D, . . . ,D)

r!
, (4.2.12)

where

ρk+r(x1, . . . ,xk,D, . . . ,D) =

∫

Dr
ρk+r(x1, . . . ,xk,y1, . . . ,yr)

r

∏
i=1

µ(dyi) .
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The proof follows the same procedure as in Lemma 4.2.5: partition Λ and use
dominated convergence together with the integrability conditions and the fact that
χ is assumed simple. We omit further details. We note in passing that under a
slightly stronger assumption of the existence of exponential moments, part (b) of
the proposition follows from (4.2.5) and part (b) of Lemma 4.2.5.

Exercise 4.2.10Show that, for the standard Poisson process of rateλ > 0 on
Λ = R with µ taken as the Lebesgue measure, one has, for any compactD ⊂ R

with Lebesgue measure|D|,

ρk(x1, . . . ,xk) = eλ |D| jD,k(x1, . . . ,xk) = λ k .

4.2.2 Determinantal processes

We begin by introducing the general notion of a determinantal process.

Definition 4.2.11A simple point processχ is said to be adeterminantal point
processwith kernelK (in short: determinantal process) if its joint intensitiesρk

exist and are given by

ρk(x1, · · · ,xk) =
k

det
i, j=1

(K(xi ,x j)) . (4.2.13)

In what follows, we will be mainly interested in certain locally trace-class op-
erators onL2(µ) (viewed as either a real or complex Hilbert space, with inner
product denoted〈 f ,g〉L2(µ)), motivating the following definition.

Definition 4.2.12An integral operatorK : L2(µ) → L2(µ) with kernelK given
by

K ( f )(x) =

∫
K(x,y) f (y)dµ(y) , f ∈ L2(µ)

is admissible(with admissible kernelK) if K is self-adjoint, nonnegative and lo-
cally trace-class, that is, with the operatorKD = 1DK 1D having kernelKD(x,y)=

1D(x)K(x,y)1D(y), the operatorsK andKD satisfy:

〈g,K ( f )〉L2(µ) = 〈K (g), f 〉L2(µ) , f ,g∈ L2(µ) , (4.2.14)

〈 f ,K ( f )〉L2(µ) ≥ 0, f ∈ L2(µ) , (4.2.15)

For all compact setsD ⊂ Λ, the eigenvalues(λ D
i )i≥0(∈ R+)

of KD satisfy∑λ D
i < ∞.

(4.2.16)
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We say thatK is locally admissible(with locally admissible kernelK) if (4.2.14)
and (4.2.15) hold withKD replacingK .

The following standard result, which we quote from [Sim05b,Theorem 2.12]
without proof, gives sufficient conditions for a (positive definite) kernel to be ad-
missible.

Lemma 4.2.13Suppose K: Λ ×Λ → C is a continuous, Hermitian and posi-
tive definite function, that is,∑n

i=1z∗i zj K(xi ,x j) ≥ 0 for any n, x1, . . . ,xn ∈ Λ and
z1, . . . ,zn ∈ C. ThenK is locally admissible.

By standard results, see e.g. [Sim05b, Theorem 1.4], an integral compact operator
K with admissible kernelK possesses the decomposition

K f (x) =
n

∑
k=1

λkφk(x)〈φk, f 〉L2(µ) , (4.2.17)

where the functionsφk are orthonormal inL2(µ), n is either finite or infinite, and
λk > 0 for all k, leading to

K(x,y) =
n

∑
k=1

λkφk(x)φk(y)
∗ . (4.2.18)

(The last equality is to be understood inL2(µ × µ).) If K is only locally admis-
sible,KD is admissible and compact for any compactD, and the relation (4.2.18)
holds withKD replacingK and theλk andφk depending onD.

Definition 4.2.14 An admissible (respectively, locally admissible) integral op-
eratorK with kernelK is good if the λk (respectively,λ D

k ) in (4.2.17) satisfy
λk ∈ (0,1].

We will later see (see Corollary 4.2.21) that if the kernelK in definition 4.2.11 of
a determinantal process is (locally) admissible, then it must in fact be good.

The following example is our main motivation for discussingdeterminantal
point processes.

Example 4.2.15Let (λ N
1 , · · · ,λ N

N ) be the eigenvalues of the GUE of dimension N,
and denote byχN the point processχN(D) = ∑N

i=11λ N
i ∈D. By Lemma 3.2.2,χN is

a determinantal process with (admissible, good) kernel

K(N)(x,y) =
N−1

∑
k=0

ψk(x)ψk(y) ,

where the functionsψk are the oscillator wave-functions.
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We state next the following extension of Lemma 4.2.5. (Recall, see Definition
3.4.3, that∆(G) denotes the Fredholm determinant of a kernelG.)

Lemma 4.2.16Supposeχ is aν-distributed determinantal point processes. Then,
for mutually disjoint Borel sets Dℓ, ℓ = 1, . . . ,L, whose closure is compact,

Eν(
L

∏
ℓ=1

zχ(Dℓ)
ℓ ) = ∆

(
1D

L

∑
ℓ=1

(1−zℓ)K1Dℓ

)
, (4.2.19)

where D=
⋃L

ℓ=1Dℓ and the equality is valid for all(zℓ)
L
ℓ=1 ∈ CL. In particu-

lar, the law of the restriction of simple determinantal processes to compact sets
is completely determined by the intensity functions, and the restriction of a de-
terminantal process to a compact set D is determinantal withadmissible kernel
1D(x)K(x,y)1D(y).

Proof of Lemma 4.2.16By our assumptions, the right side of (4.2.19) is well
defined for any choice of(zℓ)

L
ℓ=1 ∈ CL as a Fredholm determinant (see Definition

3.4.3), and

∆

(
1D

L

∑
ℓ=1

(1−zℓ)K1Dℓ

)
−1

=
∞

∑
n=1

1
n!

∫

D
· · ·
∫

D
det

{
L

∑
ℓ=1

(zℓ −1)K(xi,x j)1Dℓ
(x j)

}n

i, j=1

µ(dx1) · · ·µ(dxL)

=
∞

∑
n=1

1
n!

L

∑
ℓ1,...,ℓn=1

n

∏
k=1

(zℓk −1) (4.2.20)

×
∫

· · ·
∫

det
{

1D(xi)K(xi ,x j)1Dℓ j
(x j)

}n

i, j=1
µ(dx1) · · ·µ(dxL) .

On the other hand, recall the Taylor expansion (4.2.5). Using (4.2.3) we see that
the ν-expectation of each term in the last power series equals thecorresponding
term in the power series in (4.2.20), which represents an entire function. Hence,
by monotone convergence, (4.2.19) follows. ⊓⊔

Note that an immediate consequence of Definition 4.2.3 and Lemma 4.2.16 is
that the restriction of a determinantal process with kernelK(x,y) to a compact
subsetD is determinantal, with kernel1x∈DK(x,y)1y∈D.

4.2.3 Determinantal projections

A natural question is now whether, given a good kernelK, one may construct
an associated determinantal point process. We will answer this question in the
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affirmative by providing an explicit construction of determinantal point processes.
We begin, however, with a particular class of determinantalprocesses defined by
projection kernels.

Definition 4.2.17A good kernelK is called atrace-class projection kernelif all
eigenvaluesλk in (4.2.18) satisfyλk = 1, and∑n

k=1 λk < ∞. For a trace-class
projection kernelK, setHK = span{φk}.

Lemma 4.2.18Supposeχ is a determinantal point process with trace-class pro-
jection kernel K. Thenχ(Λ) = n, almost surely.

Proof By assumption,n < ∞ in (4.2.18). The matrix{K(xi ,x j)}k
i, j=1 has rank at

mostn for all k. Hence, by (4.2.3),χ(Λ) ≤ n, almost surely. On the other hand,

Eν(χ(Λ)) =

∫
ρ1(x)dµ(x) =

∫
K(x,x)dµ(x) =

n

∑
i=1

∫
|φi(x)|2dµ(x) = n.

This completes the proof. ⊓⊔

Proposition 4.2.19Let K be a trace-class projection kernel. Then a simple deter-
minantal point process with kernel K exists.

A simple proof of Proposition 4.2.19 can be obtained by noting that the function
detni, j=1 K(xi ,x j)/n! is nonnegative, integrates to 1, and by a computation similar

to Lemma 3.2.2, see in particular (3.2.10), itskth marginal is(n− k)!detki, j=1

K(xi ,x j)/n!. We present an alternative proof that has the advantage of providing
an explicit construction of the resulting determinantal point process.

Proof For a finite-dimensional subspaceH of L2(µ) of dimensiond, let KH

denote the projection operator intoH and letKH denote an associated kernel. That
is, KH(x,y) = ∑d

k=1 ψk(x)ψ∗
k (y) for some orthonormal family{ψk}d

k=1 in H. For
x∈ Λ, setkH

x (·) = KH(x, ·). (Formally,kH
x = KHδx, in the sense of distributions.)

The functionkH
x (·) ∈ L2(µ) does not depend on the choice of basis{ψk}, for

almost everyx: indeed, if{φk} is another orthonormal basis inH, then there exist
complex coefficients{ai, j}k

i, j=1 such that

φk =
d

∑
j=1

ak, jψ j ,
d

∑
j=1

ak, ja
∗
k, j ′ = δ j , j ′ .

Hence, forµ-almost everyx,y,

d

∑
k=1

φk(x)φ∗
k (y) =

d

∑
k, j , j ′=1

ak, ja
∗
k, j ′ψ j(x)ψ∗

j ′(y) =
d

∑
j=1

ψ j(x)ψ∗
j (y) .
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We have thatKH(x,x) = ‖kH
x ‖2 belongs toL1(µ) and that different choices of

basis{ψk} lead to the same equivalent class of functions inL1(µ). Let µH be the
measure onΛ defined bydµH/dµ(x) = KH(x,x).

By assumption,n < ∞ in (4.2.18). Thus the associated subspaceHK is finite-
dimensional. We construct a sequence of random variablesZ1, . . . ,Zn in Λ as
follows. SetHn = HK and j = n.

• If j = 0, stop.

• Pick a pointZ j distributed according toµH j / j.

• Let H j−1 be the orthocomplement to the functionk
H j
Z j

in H j .

• Decreasej by one and iterate.

We now claim that the point processx = (Z1, . . . ,Zn), of law ν, is determinantal
with kernelK. To see that, note that

k
H j
Z j

= KH j k
H
Z j

, in L2(µ), ν-a.s.

Hence the density of the random vector(Z1, . . . ,Zn) with respect toµ⊗n equals

p(x1, . . . ,xn) =
n

∏
j=1

‖k
H j
xj ‖2

j
=

n

∏
j=1

‖KH j k
H
xj
‖2

j
.

SinceH j = H ∩ (kH
xj+1

, . . . ,kH
xn

)⊥, it holds that

V =
n

∏
j=1

‖KH j k
H
xj
‖

equals the volume of the parallelepiped determined by the vectorskH
x1

, . . . ,kH
xn

in
the finite-dimensional subspaceH ⊂ L2(µ). Since

∫
kH

xi
(x)kH

xj
(x)µ(dx)= K(xi ,x j),

it follows thatV2 = det(K(xi ,x j))
n
i, j=1. Hence

p(x1, . . . ,xn) =
1
n!

det(K(xi ,x j))
n
i, j=1.

Thus, the random variablesZ1, . . . ,Zn are exchangeable, almost surely distinct,
and then-point intensity of the point processx equalsn!p(x1, . . . ,xn). In partic-
ular, integrating and applying the same argument as in (3.2.10), allk-point inten-
sities have the determinantal form fork ≤ n. Together with Lemma 4.2.18, this
completes the proof. ⊓⊔

Projection kernels can serve as building blocks for trace-class determinantal
processes.
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Proposition 4.2.20Supposeχ is a determinantal process with good kernel K of
the form (4.2.18), with∑k λk < ∞. Let{Ik}n

k=1 be independent Bernoulli variables
with P(Ik = 1) = λk. Set

KI (x,y) =
n

∑
k=1

Ikφk(x)φ∗
k (y) ,

and letχI denote the determinantal process with (random) kernel KI . Thenχ and
χI have the same distribution.

The statement in the proposition can be interpreted as stating that the mixture of
determinental processesχI has the same distribution asχ .

Proof Assume firstn is finite. We need to show that for allm≤ n, them-point
joint intensities ofχ andχI are the same, that is

m
det

i, j=1
(K(xi ,x j)) = E[

m
det

i, j=1
(KI (xi ,x j))] .

But, with Ai,k = Ikφk(xi) andBk,i = φ∗
k (xi) for 1≤ i ≤ m,1≤ k≤ n, then

(KI (xi ,x j))
m
i, j=1 = AB, (4.2.21)

and by the Cauchy–Binet Theorem A.2,
m

det
i, j=1

(KI (xi ,x j)) = ∑
1≤ν1<···<νm≤n

det(A{1,..,m}×{ν1,··· ,νm})det(B{ν1,··· ,νm}×{1,..,m}) .

SinceE(Ik) = λk, we have

E[det(A{1,..,m}×{ν1,··· ,νm})] = det(C{1,..,m}×{ν1,··· ,νm})

with Ci,k = λkφk(xi). Therefore,

E[
m

det
i, j=1

(KI (xi ,x j))] = ∑
1≤ν1<···<νm≤n

det(C{1,..,m}×{ν1,··· ,νm})det(B{ν1,··· ,νm}×{1,..,m})

= det(CB) =
m

det
i=1

(K(xi ,x j)) , (4.2.22)

where the Cauchy–Binet Theorem A.2 was used again in the lastline.

Suppose next thatn = ∞. Since∑λk < ∞, we have thatI := ∑ Ik < ∞ almost
surely. Thus,χI is a well defined point process. LetχN

I denote the determinantal
process with kernelKN

I = ∑N
k=1 Ikφk(x)φ∗

k (y). ThenχN
I is a well defined point

process, and arguing as in (4.2.21), we get, for every integer m,
m

det
i, j=1

(KN
I (xi ,x j)) = ∑

1≤ν1<···<νm≤N

det(A{1,..,m}×{ν1,··· ,νm})det(B{ν1,··· ,νm}×{1,..,m})

= ∑
1≤ν1<···<νm≤N

1{Iν j =1, j=1,...,m}|det(B{ν1,··· ,νm}×{1,..,m})|2 . (4.2.23)
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In particular, the left side of (4.2.23) increases inN. Taking expectations and
using the Cauchy–Binet Theorem A.2 and monotone convergence, we get, with
the same notation as in (4.2.22), that

E
m

det
i, j=1

(KI (xi ,x j)) = lim
N→∞

E
m

det
i, j=1

(KN
I (xi ,x j))

= lim
N→∞ ∑

1≤ν1<···<νm≤N

det(C{1,..,m}×{ν1,··· ,νm})det(B{ν1,··· ,νm}×{1,..,m})

= lim
N→∞

m
det

i, j=1
(KN(xi ,x j)) =

m
det

i, j=1
(K(xi ,x j)) , (4.2.24)

where we writeKN(x,y) = ∑N
k=1 λkφk(x)φ∗

k (y). ⊓⊔
We have the following.

Corollary 4.2.21LetK be admissible on L2(µ), with trace-class kernel K. Then
there exists a determinantal processχ with kernel K if and only if the eigenvalues
of K belong to[0,1].

Proof From the definition, determinantal processes are determined by restriction
to compact subsets, and the resulting process is determinantal too, see Lemma
4.2.16. Since the restriction of an admissibleK to a compact subset is trace-
class, it thus suffices to consider only the case whereK is trace-class. Thus, the
sufficiency is immediate from the construction in Proposition 4.2.20.

To see the necessity, supposeχ is a determinantal process with nonnegative
kernelK(x,y) = ∑λkφk(x)φk(y), with maxλi = λ1 > 1. Let χ1 denote the point
process with each pointxi deleted with probability 1−1/λ1, independently.χ1 is
clearly a simple point process and, moreover, for disjoint subsetsD1, . . . ,Dk of Λ,

Eν [
k

∏
i=1

χ1(Di)] =

∫

∏k
i=1 Di

(1/λ1)
kρk(x1, · · · ,xk)dµ(x1) · · ·dµ(xk) .

Thus,χ1 is determinantal with kernelK1 = (1/λ1)K. Sinceχ had finitely many
points almost surely (recall thatK was assumed trace-class), it follows that
P(χ1(Λ) = 0) > 0. But, the processχ1 can be constructed by the procedure
of Proposition 4.2.20, and since the top eigenvalue ofK1 equals 1, we obtain
P(χ1(Λ) ≥ 1) = 1, a contradiction. ⊓⊔

We also have the following corollaries.

Corollary 4.2.22 Let K be a locally admissible kernel onΛ, such that for any
compact D⊂ Λ, the nonzero eigenvalues of KD belong to(0,1]. Then K uniquely
determines a determinantal point process onΛ.
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Proof By Corollary 4.2.21, a determinantal process is uniquely determined byKD

for any compactD. By the definition of the intensity functions, this sequenceof
laws of the processes is consistent, and hence they determine uniquely a determi-
nantal process onΛ. ⊓⊔

Corollary 4.2.23Let χ be a determinantal process corresponding to an admissi-
ble trace class kernel K. Define the processχp by erasing, independently, each
point with probability(1− p). Thenχp is a determinantal process with kernel pK.

Proof Repeat the argument in the proof of the necessity part of Corollary 4.2.21.
⊓⊔

4.2.4 The CLT for determinantal processes

We begin with the following immediate corollary of Proposition 4.2.20 and Lemma
4.2.18. Throughout, for a good kernelK and a setD ⊂ Λ, we writeKD(x,y) =

1D(x)K(x,y)1D(y) for the restriction ofK to D.

Corollary 4.2.24 Let K be a good kernel, and let D be such that KD is trace-
class, with eigenvaluesλk,k ≥ 1. Thenχ(D) has the same distribution as∑k ξk

whereξk are independent Bernoulli random variables with P(ξk = 1) = λk and
P(ξk = 0) = 1−λk.

The above representation immediately leads to a central limit theorem for oc-
cupation measures.

Theorem 4.2.25Let χn be a sequence of determinantal processes onΛ with good
kernels Kn. Let Dn be a sequence of measurable subsets ofΛ such that(Kn)Dn is
trace class andVar(χn(Dn)) →n→∞ ∞. Then

Zn =
χn(Dn)−Eν [χn(Dn)]√

Var(χn(Dn))

converges in distribution towards a standard normal variable.

Proof We write Kn for the kernel(Kn)Dn and setSn =
√

Var(χn(Dn)). By
Corollary 4.2.24,χn(Dn) has the same distribution as the sum of independent
Bernoulli variablesξ n

k , whose parametersλ n
k are the eigenvalues ofKn. In partic-
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ular,S2
n = ∑k λ n

k (1−λ n
k ). SinceKn is trace-class, we can write, for anyθ real,

logE[eθZn] = ∑
k

logE[eθ(ξ n
k−λ n

k )/Sn]

= −θ ∑k λk

Sn
+∑

k

log(1+ λ n
k (eθ/Sn −1))

=
θ 2 ∑k λ n

k (1−λ n
k )

2S2
n

+o(
∑k λ n

k (1−λ n
k )

S3
n

) ,

uniformly for θ in compacts. Since∑k λ n
k /S3

n →n→∞ 0, the conclusion follows.
⊓⊔

We note in passing that, under the assumptions of Theorem 4.2.25,

Var(χn(Dn)) = ∑
k

λ n
k (1−λ n

k ) ≤ ∑
k

λ n
k =

∫
Kn(x,x)dµn(x) .

Thus, for Var(χn(Dn)) to go to infinity, it is necessary that

lim
n→∞

∫

Dn

Kn(x,x)dµn(x) = +∞ . (4.2.25)

We also note that from (4.2.3) (withr = 1 andk = 2, andρ (n)
k denoting the inten-

sity functions corresponding to the kernelKn from Theorem 4.2.25), we get

Var(χn(Dn)) =

∫

Dn

Kn(x,x)dµn(x)−
∫

Dn×Dn

K2
n(x,y)dµn(x)dµn(y) . (4.2.26)

Exercise 4.2.26Using (4.2.26), provide an alternative proof that a necessary con-
dition for Var(χn(Dn)) → ∞ is that (4.2.25) holds.

4.2.5 Determinantal processes associated with eigenvalues

We provide in this section several examples of point processes related to configu-
rations of eigenvalues of random matrices that possess a determinantal structure.
We begin with the eigenvalues of the GUE, and move on to define the sine and
Airy processes, associated with the sine and Airy kernels.

The GUE

[Continuation of Example 4.2.15] Let(λ N
1 , · · · ,λ N

N ) be the eigenvalues of the GUE
of dimensionN, and denote byχN the point processχN(D) = ∑N

i=11λ N
i ∈D. Recall

that, with the GUE scaling, the empirical measure of the eigenvalues is, with high
probability, roughly supported on the interval[−2

√
N,2

√
N].
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Corollary 4.2.27 Let D= [−a,b] with a,b > 0, α ∈ (−1/2,1/2), and set DN =

NαD. Then

ZN =
χN(DN)−E[χN(DN)]√

Var(χN(DN))

converges in distribution towards a standard normal variable.

Proof In view of Example 4.2.15 and Theorem 4.2.25, the only thing we need to
check is that Var(χN(DN)) → ∞ asN → ∞. Recalling that

∫

R

(
K(N)(x,y)

)2
dy= K(N)(x,x) ,

it follows from (4.2.26) that for anyR> 0, and allN large,

Var(χN(DN)) =
∫

DN

∫

(DN)c

(
K(N)(x,y)

)2
dxdy

=

∫
√

NDN

∫
√

N(DN)c

(
1√
N

K(N)(
x√
N

,
y√
N

)

)2

dxdy

≥
∫ 0

−R

∫ R

0
S(N)

bNα (x,y)dxdy, (4.2.27)

where

S(N)
z (x,y) =

1√
N

K(N)

(
z+

x√
N

,z+
y√
N

)

is as in Exercise 3.7.5, andS(N)
bNα (x,y) converges uniformly on compacts, asN →

∞, to the sine-kernel sin(x−y)/(π(x−y)). Therefore, there exists a constantc> 0
such that the right side of (4.2.27) is bounded below, for largeN, byclogR. Since
R is arbitrary, the conclusion follows. ⊓⊔

Exercise 4.2.28Using Exercise 3.7.5 again, prove that ifDN = [−a
√

N,b
√

N]

with a,b∈ (0,2), then Corollary 4.2.27 still holds.

Exercise 4.2.29Prove that the conclusions of Corollary 4.2.27 and Exercise4.2.28
hold when the GUE is replaced by the GOE.
Hint: Write χ (N)(DN) for the variable corresponding toχN(DN) in Corollary
4.2.27, with the GOE replacing the GUE. Letχ (N)(DN) andχ (N+1)(DN) be inde-
pendent.
(a) Use Theorem 2.5.17 to show thatχN(DN) can be constructed on the same prob-
ability space asχ (N)(DN),χ (N+1)(DN) in such a way that, for anyε > 0, there is
aCε so that

limsup
N→∞

P(|χN(DN)− (χ (N)(DN)+ χ (N+1)(DN))/2| > Cε) < ε .
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(b) By writing a GOE(N+1) matrix as a rank 2 perturbation of a GOE(N) matrix,
show that the laws ofχ (N)(DN) andχ (N+1)(DN) are close in the sense that a copy
of χ (N)(DN) could be constructed on the same probability space asχ (N+1)(DN)

in such a way that their difference is bounded by 4.

The sine process

Recall the sine-kernel

Ksine(x,y) =
1
π

sin(x−y)
x−y

.

TakeΛ = R andµ to be the Lebesgue measure, and forf ∈ L2(R), define

Ksinef (x) =

∫
Ksine(x−y) f (y)dy.

Writing ksine(z) = Ksine(x,y)|z=x−y, we see thatksine(z) is the Fourier transform of
the function1[−1/2π ,1/2π ](ξ ). In particular, for anyf ∈ L2(R),

〈 f ,Ksinef 〉 =

∫ ∫
f (x) f (y)ksine(x−y)dxdy=

∫ 1/2π

−1/2π
| f̂ (ξ )|2dξ ≤ ‖ f‖2

2 .

(4.2.28)
Thus,Ksine(x,y) is positive definite, and by Lemma 4.2.13,Ksine is locally admis-
sible. Further, (4.2.28) implies that all eigenvalues of restrictions ofKsine to any
compact interval belong to the interval[0,1]. Hence, by Corollary 4.2.22,Ksine

determines a determinantal point process onR (which is translation invariant in
the terminology of Section 4.2.6 below).

The Airy process

Recall from Definition 3.1.3 the Airy function Ai(x) = 1
2π i

∫
C eζ 3/3−xζ dζ , whereC

is the contour in theζ -plane consisting of the ray joininge−π i/3∞ to the origin plus
the ray joining the origin toeπ i/3∞, and the Airy kernelKAiry (x,y) = A(x,y) :=
(Ai(x)Ai ′(y)−Ai ′(x)Ai (y))/(x−y) . TakeΛ = R andµ the Lebesgue measure.
Fix L > −∞ and letK L

Airy denote the operator onL2([L,∞)) determined by

K L
Airy f (x) =

∫ ∞

L
KAiry (x,y) f (y)dy.

We now have the following.

Proposition 4.2.30For any L> −∞, the kernel KLAiry (x,y) is locally admissible.
Further, all the eigenvalues of its restriction to compact sets belong to the interval
(0,1]. In particular, KL

Airy determines a determinantal point process.
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Proof We first recall, see (3.9.58), that

KAiry (x,y) =
∫ ∞

0
Ai(x+ t)Ai(y+ t)dt . (4.2.29)

In particular, for anyL > −∞ and functionsf ,g∈ L2([L,∞)),

〈 f ,K L
Airy g〉 = 〈g,K L

Airy f 〉 =
∫ ∞

L

∫ ∞

L

∫ ∞

0
Ai(x+ t)Ai(y+ t) f (x)g(y)dtdxdy.

It follows thatK L
Airy is self-adjoint onL2([L,∞)). Further, from this representa-

tion, by an application of Fubini’s Theorem,

〈 f ,K L
Airy f 〉 =

∫ ∞

0

∣∣∣
∫ ∞

L
f (x)Ai (x+ t)dx

∣∣∣
2
dt ≥ 0.

Together with Lemma 4.2.13, this proves thatK L
Airy is locally admissible.

To complete the proof, as in the case of the sine process, we need an upper
bound on the eigenvalues of restrictions ofKAiry to compact subsets ofR. Toward
this end, deforming the contour of integration in the definition of Ai(x) to the
imaginary line, using integration by parts to control the contribution of the integral
outside a large disc in the complex plane, and applying Cauchy’s Theorem, we
obtain the representation, forx∈ R,

Ai(x) = lim
R→∞

1
2π

∫ R

−R
ei(s3/3+xs)ds,

with the convergence uniform forx in compacts (from this, one can conclude
that Ai(x) is the Fourier transform, in the sense of distributions, ofeis3/3/

√
2π, al-

though we will not use that). We now obtain, for continuous functionsf supported
on [−M,M] ⊂ [L,∞),

〈 f ,KAiry f 〉 =

∫ ∞

0

∣∣∣
∫ ∞

L
f (x)Ai (x+ t)dx

∣∣∣
2
dt ≤

∫ ∞

−∞

∣∣∣
∫ M

−M
f (x)Ai (x+ t)dx

∣∣∣
2
dt .

(4.2.30)
But, for any fixedK > 0,

∫ K

−K

∣∣∣
∫ M

−M
f (x)Ai (x+ t)dx

∣∣∣
2
dt

=
∫ K

−K

∣∣∣
∫ M

−M
lim
R→∞

1
2π

∫ R

−R
ei(s3/3+ts)eixsds f(x)dx

∣∣∣
2
dt

= lim
R→∞

1
2π

∫ K

−K

∣∣∣
∫ R

−R
ei(s3/3+ts) f̂ (−s)ds

∣∣∣
2
dt ,
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where f̂ denotes the Fourier transform off and we have used dominated conver-
gence (to pull the limit out) and Fubini’s Theorem in the lastequality. Therefore,

∫ K

−K

∣∣∣
∫ M

−M
f (x)Ai (x+ t)dx

∣∣∣
2
dt = lim

R→∞

∫ K

−K

∣∣∣ 1√
2π

∫ R

−R
e−itse−is3/3 f̂ (s)ds

∣∣∣
2
dt

≤ limsup
R→∞

∫ ∞

−∞

∣∣∣ 1√
2π

∫ ∞

−∞
e−itse−is3/31[−R,R](s) f̂ (s)ds

∣∣∣
2
dt

= limsup
R→∞

∫ ∞

−∞

∣∣∣e−it3/31[−R,R](t) f̂ (t)dt
∣∣∣
2
dt ≤

∫ ∞

−∞

∣∣∣ f̂ (t)
∣∣∣
2
dt = ‖ f‖2

2 ,

where we used Parseval’s Theorem in the two last equalities.Using (4.2.30), we
thus obtain

〈 f ,KAiry f 〉 ≤ ‖ f‖2
2 ,

first for all compactly supported continuous functionsf and then for all f ∈
L2([−L,∞)) by approximation. An application of Corollary 4.2.22 completes the
proof. ⊓⊔

4.2.6 Translation invariant determinantal processes

In this section we specialize the discussion to determinantal processes on Eu-
clidean space equipped with Lebesgue’s measure. Thus, letΛ = Rd and letµ be
the Lebesgue measure.

Definition 4.2.31A determinantal process with(Λ,µ) = (Rd,dx) is translation
invariant if the associated kernelK is admissible and can be written asK(x,y) =

K(x−y) for some continuous functionK : Rd → R.

As we will see below after introducing appropriate notation, a determinantal pro-
cessχ is translation invariant if its law is invariant under (spatial) shifts.

For translation invariant determinantal processes, the conditions of Theorem
4.2.25 can sometimes be simplified.

Lemma 4.2.32Assume that K is associated with a translation invariant determi-
nantal process onRd. Then

lim
L→∞

1
(2L)d Var(χ([−L,L]d)) = K(0)−

∫

Rd
K(x)2dx. (4.2.31)

Proof. By (4.2.26) withD = [−L,L]d and Vol(D) = (2L)d,

Var(χ(D)) = Vol(D)K(0)−
∫

D×D
K2(x−y)dxdy.
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In particular,

Vol(D)K(0) ≥
∫∫

D×D
K2(x−y)dxdy.

By monotone convergence, it then follows by takingL → ∞ that
∫

K2(x)dx≤
K(0) < ∞. Further, again from (4.2.26),

Var(χ(D)) = Vol(D)(K(0)−
∫

Rd
K(x)2dx)+

∫

D
dx
∫

y:y6∈D
K2(x−y)dy.

Since
∫
Rd K(x)2dx< ∞, (4.2.31) follows from the last equality. ⊓⊔

We emphasize that the RHS in (4.2.31) can vanish. In such a situation, a more
careful analysis of the limiting variance is needed. We refer to Exercise 4.2.40 for
an example of such a situation in the (important) case of the sine-kernel.

We turn next to the ergodic properties of determinantal processes. It is natural
to discuss these in the framework of the configuration spaceX . Fort ∈ Rd, letTt

denote the shift operator, that is for any Borel setA⊂ Rd, TtA = {x+ t : x∈ A}.
We also writeTt f (x) = f (x+ t) for Borel functions. We can extend the shift to
act onX via the formulaTtx = (xi + t)κ

i=1 for x = (xi)
κ
i=1. Tt then extends to a

shift onCX in the obvious way. Note that one can alternatively also define Tt χ
by the formulaTt χ(A) = χ(TtA).

Definition 4.2.33Letx be a point process in(X ,CX ,ν). We say thatx is ergodic
if for any A∈ CX satisfyingTtA = A for all realt, it holds thatν(A) ∈ {0,1}. It
is mixing if for any A,B∈ CX , ν(A∩TtB) →|t|→∞ ν(A)ν(B).

By standard ergodic theory, ifx is mixing then it is ergodic.

Theorem 4.2.34Let x be a translation invariant determinantal point process in
Rd, with good kernel K satisfying K(|x|) →|x|→∞ 0. Thenx is mixing, and hence
ergodic.

Proof Recall from Theorem 4.2.25 that
∫

K2(x)dx < ∞. It is enough to check
that for arbitrary collections of compact Borel sets{Fi}L1

i=1 and{G j}L2
j=1 such that

Fi ∩Fi′ = /0 andG j ∩G j ′ = /0 for i 6= i′, j 6= j ′, and with the notationGt
j = TtG j , it

holds that for anyz = {zi}L1
i=1 ∈ CL1, w = {wj}L2

j=1 ∈ CL2,

Eν

(
L1

∏
i=1

zχ(Fi)
i

L2

∏
j=1

w
χ(Gt

j )

j

)
→|t|→∞ Eν

(
L1

∏
i=1

zχ(Fi)
i

)
Eν

(
L2

∏
j=1

w
χ(Gj )
j

)
. (4.2.32)
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DefineF =
⋃L1

i=1Fi , Gt =
⋃L2

j=1Gt
j . Let

K1 = 1F

L1

∑
i=1

(1−zi)K1Fi , Kt
2 = 1Gt

L2

∑
j=1

(1−wj)K1Gt
j
,

Kt
12 = 1F

L2

∑
j=1

(1−wj)K1Gt
j
, Kt

21 = 1Gt

L1

∑
i=1

(1−zi)K1Fi .

By Lemma 4.2.16, the left side of (4.2.32) equals, for|t| large enough so that
F ∩Gt = /0,

∆(K1 +Kt
2+Kt

12+Kt
21) . (4.2.33)

Note that, by assumption, supx,y Kt
12 →|t|→∞ 0, supx,y Kt

21 →|t|→∞ 0. Therefore, by
Lemma 3.4.5, it follows that

lim
|t|→∞

|∆(K1 +Kt
2 +Kt

12+Kt
21)−∆(K1+Kt

2)| = 0. (4.2.34)

Next, note that for|t| large enough such thatF ∩Gt = 0, K1 ⋆ Kt
2 = 0 and hence,

by the definition of the Fredholm determinant,

∆(K1 +Kt
2) = ∆(K1)∆(Kt

2) = ∆(K1)∆(K2) ,

whereK2 := K0
2 and the last equality follows from the translation invariance ofK.

Therefore, substituting in (4.2.33) and using (4.2.34), weget that the left side of
(4.2.32) equals∆(K1)∆(K2). Using Lemma 4.2.16 again, we get (4.2.32). ⊓⊔

Let χ be a nonzero translation invariant determinantal point process with good
kernelK satisfyingK(|x|) →|x|→∞ 0. As a consequence of Theorem 4.2.34 and
the ergodic theorem, the limit

c := lim
n→∞

χ([−n,n]d)/(2n)d (4.2.35)

exists and is strictly positive, and is called theintensityof the point process.

For stationary point processes, an alternative description can be obtained by
considering configurations “conditioned to have a point at the origin”. When spe-
cialized to one-dimensional stationary point processes, this point of view will be
used in Subsection 4.2.7 when relating statistical properties of the gap around zero
for determinantal processes to ergodic averages of spacings.

Definition 4.2.35Let χ be a translation invariant point process, and letB denote a
Borel subset ofRd of positive and finite Lebesgue measure. ThePalm distribution
Q associated withχ is the measure onM+(Rd) determined by the equation, valid
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for any measurableA,

Q(A) = E

(∫

B
1A(Tsχ)χ(ds)

)
/E(χ(B)) .

We then have:

Lemma 4.2.36The Palm distribution Q does not depend on the choice of the Borel
set B.

Proof We first note that, due to the stationarity,E(χ(B)) = cµ(B) with µ the
Lebesgue measure, for some constantc. (It is referred to as theintensityof χ , and
for determinantal translation invariant point processes,it coincides with the pre-
viously defined notion of intensity, see (4.2.35)). It is obvious from the definition
that the random measure

χA(B) :=
∫

B
1A(Tsχ)χ(ds)

is stationary, namelyχA(TtB) has the same distribution asχA(B). It follows that
EχA(TtB) = EχA(B) for all t ∈ Rd, implying thatEχA(B) = cAµ(B) for some
constantcA, since the Lebesgue measure is (up to multiplication by scalar) the
unique translation invariant measure onRd. The conclusion follows. ⊓⊔

Due to Lemma 4.2.36, we can speak of the point processχ0 attached to the
Palm measureQ, which we refer to as thePalm process. Note thatχ0 is such
thatQ(χ0({0}) = 1) = 1, i.e. χ0 is such that the associated configurations have
a point at zero. It turns out that this analogy goes deeper, and in fact the lawQ
corresponds to “conditioning on an atom at the origin”. LetVχ0 denote theVoronoi

cell associated withχ0, i.e., with B(a, r) denoting the Euclidean ball of radiusr
arounda,

Vχ0 = {t ∈ Rd : χ0(B(t, |t|)) = 0} .

Proposition 4.2.37Let χ be a nonzero translation invariant point process with
good kernel K satisfying K(|x|) →|x|→∞ 0, with intensity c. Letχ0 denote the
associated Palm process. Then the law P ofχ can be determined from the law Q
of χ0 via the formula, valid for any bounded measurable function f,

E f(χ) = cE
∫

Vχ0

f (Tt χ0)dt , (4.2.36)

where c is the intensity ofχ .
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Proof From the definition ofχ0 it follows that for any bounded measurable func-
tion g,

E
∫

B
g(Tsχ)χ(ds) = cµ(B)Eg(χ0) . (4.2.37)

This extends by monotone class to jointly measurable nonnegative functionsh :
M+(Rd)×Rd → R as

E
∫

Rd
h(Tt χ , t)χ(dt) = cE

∫

Rd
h(χ0,t)dt .

Applying the last equality toh(χ , t) = g(T−t χ ,t), we get

E
∫

Rd
g(χ ,t)χ(dt) = cE

∫

Rd
g(T−t χ0, t)dt = cE

∫

Rd
g(Tt χ0,−t)dt . (4.2.38)

Before proceeding, we note a particularly useful consequence of (4.2.38). Namely,
let

D := {χ : there existt 6= t ′ ∈ Rd with ‖t‖ = ‖t ′‖ andχ({t}) · χ({t ′}) = 1} .

The measurability ofD is immediate from the measurability of the set

D ′ = {(t, t ′) ∈ (Rd)2 : ‖t‖ = ‖t ′‖,t 6= t ′} .

Now, with Et = {χ : χ(y) = 1 for somey 6= t with ‖y‖ = ‖t‖},

1D ≤
∫

1Et χ(dt) .

Therefore, using (4.2.38),

P(D) ≤ cE
∫

Rd
1T−t χ0∈Et dt .

Since all configurations are countable, the set ofts in the indicator in the inner
integral on the right side of the last expression is contained in a countable collec-
tion of (d−1)-dimensional surfaces. In particular, its Lebesgue measure vanishes.
One thus concludes that

P(D) = 0. (4.2.39)

Returning to the proof of the proposition, apply (4.2.38) with
g(χ ,t) = f (χ)1χ({t})=1,χ(B(0,|t|))=0, and use the fact thatTt χ0(B(0, |t|)) = 0 iff
t ∈Vχ0 to conclude that

E

(
f (χ)

∫
1χ(B(0,|t|))=0χ(dt)

)
= cE

(∫

Vχ0

f (T t χ0)dt

)
.
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SinceP(D) = 0, it follows that
∫

1χ(B(0,|t|))=0χ(dt) = 1, for almost everyχ . This
yields (4.2.36).

⊓⊔

Exercise 4.2.38Let χ be a nonzero translation invariant determinantal point pro-
cess with good kernelK. Show that the intensityc defined in (4.2.35) satisfies
c = K(0).

Exercise 4.2.39Assume thatK satisfies the assumptions of Lemma 4.2.32, and
define the Fourier transform

K̂(λ ) =
∫

x∈Rd
K(x)exp(2π ix ·λ )dx∈ L2(Rd) .

Give a direct proof that the right side of (4.2.31) is nonnegative.
Hint: use the fact that, sinceK is a good kernel, it follows that‖K̂‖∞ ≤ 1.

Exercise 4.2.40[CoL95] Taked = 1 and check that the sine-kernelKsine(x) =

sin(x)/πx is a good translation invariant kernel for which the right side of (4.2.31)
vanishes. Check that then, ifa < b are fixed,

E[χ(L[a,b])] = L(b−a)/π ,

whereas

Var(χ(L[a,b])) =
1

π2 logL+O(1).

Hint: (a) Apply Parseval’s Theorem and the fact that the Fourier transform of the
function sin(x)/πx is the indicator over the interval[−1/2π ,1/2π ] to conclude
that

∫ ∞
−∞ K2(x)dx= 1/π = K(0).

(b) Note that, withD = L[a,b] andDx = [La−x,Lb−x],
∫

D
dx
∫

Dc
K2(x−y)dy=

∫

D
dx
∫

Dc
x

K2(u)du=
1

π2

∫

D
dx
∫

Dc
x

1−cos(2u)

2u2 du,

from which the conclusion follows.

Exercise 4.2.41Let |Vχ0| denote the Lebesgue measure of the Voronoi cell for a

Palm processχ0 corresponding to a stationary determinantal process onRd with
intensityc. Prove thatE(|Vχ0|) = 1/c.

4.2.7 One-dimensional translation invariant determinantal processes

We restrict attention in the sequel to the case of most interest to us, namely to
dimensiond = 1, in which case the results are particularly explicit. Indeed, when
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d = 1, each configurationx of a determinantal process can be ordered, and we
write x = (. . . ,x−1,x0,x1, . . .) with the convention thatxi < xi+1 for all i and
x0 < 0 < x1 (by stationarity and local finiteness,P(χ({0}) = 1) = 0, and thus
the above is well defined). We also usex0 = (. . . ,x0

−1,0 = x0
0,x

0
1, . . .) to denote the

configuration corresponding to the Palm processχ0. The translation invariance of
the point processχ translates then to stationarity for the Palm process increments,
as follows.

Lemma 4.2.42Let x0 denote the Palm process associated with a determinantal
translation invariant point processx on R with good kernel K satisfying
K(|x|) →|x|→∞ 0, and with intensity c> 0. Then the sequencey0 := {x0

i+1−x0
i }i∈Z

is stationary and ergodic.

Proof Let Ty0 = {y0
i+1}i∈Z denote the shift ofy0. Considerg a Borel function

on R2r for somer ≥ 1, and set ¯g(y0) = g(y0
−r , . . . ,y

0
r−1). For any configurationx

with xi < xi+1 andx−1 < 0≤ x0, sety := {xi+1− xi}i∈Z. Set f (x) = g(x−r+1−
x−r , . . . ,xr − xr−1), and letAu = {χ : f (x) ≤ u}. Au is clearly measurable, and
by Definition 4.2.35 and Lemma 4.2.36, for any BorelB with positive and finite
Lebesgue measure,

P(ḡ(y0) ≤ u) = Q(Au) = E

(∫

B
1Au(T

sχ)χ(ds)

)
/cµ(B)

= E

(

∑
i:xi∈B

1ḡ(T iy)≤u

)
/cµ(B) . (4.2.40)

(Note the different roles of the shiftsTs, which is a spatial shift, andT i , which is
a shift on the index set, i.e. onZ.) Hence,

|P(ḡ(y0) ≤ u)−P(ḡ(Ty0) ≤ u)| ≤ 2/cµ(B) .

TakingB = Bn = [−n,n] and thenn → ∞, we obtain that the left side of the last
expression vanishes. This proves the stationarity. The ergodicity (and in fact,
mixing property) of the sequencey0 is proved similarly, starting from Theorem
4.2.34. ⊓⊔

We also have the following analog of Proposition 4.2.37.

Proposition 4.2.43Assumex is a nonzero stationary determinantal process onR

with intensity c. Then for any bounded measurable function f,

E( f (x)) = cE
∫ x0

1

0
f (Ttx0)dt . (4.2.41)
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Proof Apply (4.2.38) withg(χ , t) = f (x)1x0(χ)=−t . ⊓⊔
Proposition 4.2.43 gives an natural way to construct the point processχ starting

from χ0 (whose increments form a stationary sequence): indeed, it implies thatχ
is nothing but thesize biasedversion ofχ0, where the size biasing is obtained by
the value ofx0

1. More explicitly, letx denote a translation invariant determinantal
process with intensityc, and letx0 denote the associated Palm process onR.
Consider the sequencey0 introduced in Lemma 4.2.42, and denote its law byQy.
Let ȳ denote a sequence with law̄Qy satisfyingdQ̄y/dQy(y) = cy0, let x̄0 denote
the associated configuration, that is ¯x0

i = ∑i−1
j=1 ȳ j , noting that ¯x0 = 0, and letU

denote a random variable distributed uniformly on[0,1], independent of̄x0. Set
x̄ = TUx̄0

1 x̄0. We then have

Corollary 4.2.44The point process̄x has the same law asx.

Proof By construction, for any bounded measurablef ,

E f(x̄) = E
∫ 1

0
f (Tux̄0

1x̄0)du= E
∫ x̄0

1

0
f (T t x̄0)

dt

x̄0
1

= cE
∫ x0

1

0
f (Ttx0)dt = E f(x) ,

where Proposition 4.2.43 was used in the last step. ⊓⊔
Corollary 4.2.44 has an important implication to averages.Let Bn = [0,n]. For

a bounded measurable functionf and a point processx onR, let

fn(x) =
∑xi∈Bn f (Txi x)

|{i : xi ∈ Bn}|
.

Corollary 4.2.45 Let x be a translation invariant determinantal process with in-
tensity c, and good kernel K satisfying K(x)→|x|→∞ 0, and Palm measure Q. Then

lim
n→∞

fn(x) = EQ f ,almost surely.

Proof The statement is immediate from the ergodic theorem and Lemma 4.2.42
for the functionsfn(x0). Since, by Corollary 4.2.44, the law ofTx1x is absolutely
continuous with respect to that ofx0, the conclusion follows by an approximation
argument. ⊓⊔

Corollary 4.2.44 allows us to relate several quantities of interest in the study of
determinantal processes. For a translation invariant determinantal point processx,
let Gx = x1−x0 denote thegaparound 0. WithQ1 denoting the marginal onx0

1 of
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the Palm measure, and with̄Q1 defined bydQ̄1/dQ1(u) = cu, note that

P(Gx ≥ t) = P(x̄0
1 ≥ t) =

∫ ∞

t
Q̄1(du) = c

∫ ∞

t
uQ1(du) .

Let Ḡ(t) = P({x}∩(−t, t) = /0) be the probability that the interval(−t,t) does not
contain any point of the configurationx. Letting Dt = 1(−t,t) Kt = 1Dt K1Dt , and
χt = χ(Dt), we have, using Lemma 4.2.16, that

Ḡ(t) = P(χt = 0) = lim
|z|→0

E(zχt ) = ∆(Kt) , (4.2.42)

that is,Ḡ(t) can be read off easily from the kernelK. Other quantities can be read
off Ḡ, as well. In particular, the following holds.

Proposition 4.2.46Let x be a translation invariant determinantal point process
of intensity c. Then the function̄G is differentiable and

∂ Ḡ(t)
∂ t

= −2c
∫ ∞

2t
Q1(dw) . (4.2.43)

Proof By Corollary 4.2.44,

Ḡ(t) = 2
∫ 1/2

0
P(ux̄0

1 ≥ t)du= 2
∫ 1/2

0

∫ ∞

t/u
Q̄1(ds)du

= 2t
∫ ∞

2t
dww−2

∫ ∞

w
Q̄1(ds) ,

where the change of variablesw = t/u was used in the last equality. Integrating
by parts, usingV (w) = −1/w andU (w) = Q̄1([w,∞)), we get

Ḡ(t) = U (2t)−2t
∫ ∞

2t
w−1Q̄1(dw)

= U (2t)−2ct
∫ ∞

2t
Q1(dw) = U (2t)−2ctQ1([2t,∞))

= c
∫ ∞

2t
[w−2t]Q1(dw) .

Differentiating int, we then get (4.2.43). ⊓⊔
Finally, we describe an immediate consequence of Proposition 4.2.46, which

is useful when relating different statistics related to thespacing of eigenvalues
of random matrices. Recall the “spacing process”y associated with a stationary
point processx, i.e. yi = xi+1−xi.
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Corollary 4.2.47Let g be a bounded measurable function onR+ and define gn =
1
n ∑n

i=1g(yi) . Then

gn →n→∞ EQ1g =

∫ ∞

0
g(w)Q1(dw) , almost surely.

In particular, with gt(w) = 1w>2t , we get

−∂ Ḡ(t)
∂ t

= 2c lim
n→∞

(gt)n , almost surely. (4.2.44)

4.2.8 Convergence issues

We continue to assumeK is a good translation invariant kernel onR satisfying
K(|x|) →|x|→∞ 0. In many situations, the kernelK arises as a suitable limit of
kernelsKN(x,y) that are not translation invariant, and it is natural to relate prop-
erties of determinantal processesxN (or χN) associated withKN to those of the
determinantal processx (or χ) associated withK.

We begin with a simple lemma that is valid for (not necessarily translation
invariant) determinantal processes. LetKN denote a sequence of good kernels
corresponding to a determinantal process ¯xN, and letK be a good kernel cor-
responding to a determinantal process ¯x. Set Ḡ(t) = P({x}∩ (−t, t) = /0) and
ḠN(t) = P({xN}∩ (−t, t) = /0).

Lemma 4.2.48Let Dℓ denote disjoint compact subsets ofR. Suppose a se-
quence of good kernels KN satisfy KN(x,y) → K(x,y) uniformly on compact sub-
sets ofR, where K is a good kernel. Then for any L finite, the random vector
(χN(D1), . . . ,χN(DL)) converges to the random vector(χ(D1), . . . ,χ(DL)) in dis-
tribution. In particular,ḠN(t) →N→∞ Ḡ(t).

Proof It is clearly enough to check that

E

(
L

∏
ℓ=1

zχN(Dℓ)
ℓ

)
→N→∞ E

(
L

∏
ℓ=1

zχ(Dℓ)
ℓ

)
.

By Lemma 4.2.16, withD =
⋃L

ℓ=1, the last limit would follow from the conver-
gence

∆

(
1D

L

∑
ℓ=1

(1−zℓ)KN1Dℓ

)
→N→∞ ∆

(
1D

L

∑
ℓ=1

(1−zℓ)K1Dℓ

)
,

which is an immediate consequence of Lemma 3.4.5. ⊓⊔
In what follows, we assume thatK is a good translation invariant kernel onR
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satisfyingK(|x|) →|x|→∞ 0. In many situations, the kernelK arises as a suitable
limit of kernelsKN(x,y) that are not translation invariant, and it is natural to relate
properties of determinantal processesxN (or χN) associated withKN to those of
the determinantal processx (or χ) associated withK.

We next discuss a modification of Corollary 4.2.47 that is applicable to the
processxN and its associated spacing processyN.

Theorem 4.2.49Let gt(x) = 1x>t , and define gNn,t = 1
n ∑n

i=1gt(yN
i ) . Suppose further

that n= o(N) →N→∞ ∞ is such that for any constant a> 0,

limsup
N→∞

sup
|x|+|y|≤2an

|KN(x,y)−K(x−y)|= 0. (4.2.45)

Then

gN
n,t →N→∞ EQ1gt =

∫ ∞

t
Q1(dw) , in probability. (4.2.46)

Proof In view of Corollary 4.2.47, it is enough to prove that|gN
n,t −gn,t | →N→∞ 0,

in probability. Letc denote the intensity of the processx. For a > 0, let Dn,a =

[0,an]. By Corollary 4.2.45,χ(Dn,a)/n converges almost surely toa/c. We now
claim that

χN(Dn,a)

n
→N→∞

a
c

, in probability. (4.2.47)

Indeed, recall that by Lemma 4.2.5 and the estimate (4.2.45),

1
n

EχN(Dn,a) =
1
n

∫ an

0
[KN(x,x)−K(0)]dx+

anK(0)

n
→N→∞

a
c

,

while, c.f. (4.2.26),

Var

(
1
n

χN(Dn,a)

)
≤ 1

n2

∫ an

0
KN(x,x)dx→N→∞ 0,

proving (4.2.47).

In the sequel, fixa > 0 and let

CN(s,n) =
1
n

∞

∑
i=1

1an>xN
i ,xN

i+1−xN
i >s, C(s,n) =

1
n

∞

∑
i=1

1an>xi ,xi+1−xi>s.

In view of (4.2.47), in order to prove (4.2.46) it is enough toshow that, for any
a,s> 0,

|ECN(s,n)−EC(s,n)| →N→∞ 0, |E (CN(s,n))2−E(C(s,n))2 | →N→∞ 0.

(4.2.48)
Fix δ > 0, and divide the interval[0,an) into ⌈n/δ⌉ disjoint intervalsDi =
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[(i − 1)δ , iδ )∩ [0,n), each of length≤ δ . Let χN
i = χN(Di) and χi = χ(Di).

Set

SN(s,δ ,n) =
1
n

⌈an/δ⌉
∑
i=1

1χN
i ≥1,χN

j =0, j=i+1,...,i+⌊s/δ⌋ ,

and

S(s,δ ,n) =
1
n

⌈an/δ⌉
∑
i=1

1χi≥1,χN
j =0, j=i+1,...,i+⌊s/δ⌋ .

We prove below that, for any fixeds,δ ,

|ESN(s,δ ,n)−ES(s,δ ,n)| →N→∞ 0, (4.2.49)

|E(SN(s,δ ,n)2)−E(S(s,δ ,n)2)| →N→∞ 0, (4.2.50)

from which (4.2.48) follows by approximation.

To see (4.2.49), note first that

ESN(s,δ ,n) =
1
n

⌈an/δ⌉
∑
i=1

E

(
1χN

i ≥1

i+⌊s/δ⌋
∏

j=i+1

χN
j

)

=
1
n

⌈an/δ⌉
∑
i=1

E

(
(1−1χN

i =0)
i+⌊s/δ⌋
∏

j=i+1
χN

j

)

=
1
n

⌈an/δ⌉
∑
i=1

lim
maxj |zj |→0

[
E

(
i+⌊s/δ⌋
∏

j=i+1
z

χN
j

j

)
−E

(
i+⌊s/δ⌋
∏
j=i

z
χN

j
j

)]

=
1
n

⌈an/δ⌉
∑
i=1

[
∆(1Bi KN1Bi )−∆(1B+

i
KN1B+

i
)
]

,

whereBi =
⋃i+⌊s/δ⌋

j=i+1 D j andB+
i =

⋃i+⌊s/δ⌋
j=i D j , and we used Lemma 4.2.16 in the

last equality. Similarly,

ES(s,δ ,n) =
1
n

⌈an/δ⌉
∑
i=1

[
∆(1Bi K1Bi )−∆(1B+

i
K1B+

i
)
]

,

Applying Corollary 4.2.45, (4.2.49) follows.

The proof of (4.2.50) is similar and omitted. ⊓⊔

4.2.9 Examples

We consider in this subsection several examples of determinantal processes.
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The biorthogonal ensembles

In the setup of Subsection 4.2.1, let(ψi ,φi)i≥0 be functions inL2(Λ,µ). Let

gi j =

∫
ψi(x)φ j(x)dµ(x),1≤ i, j ≤ N .

Define the measureµN on ΛN by

µN(dx1, · · · ,dxN) =
N

det
i, j=1

(φi(x j))
N

det
i, j=1

(ψi(x j))
N

∏
i=1

dµ(xi) . (4.2.51)

Lemma 4.2.50Assume that all principal minors of G= (gi j ) are not zero. Then
the measureµN of (4.2.51) defines a determinantal simple point process with N
points.

Proof The hypothesis implies thatG admits a Gauss decomposition, that is, it
can be decomposed into the product of a lower triangular and an upper triangular
matrix, with nonzero diagonal entries. Thus there exist matricesL = (l i j )N

i, j=1 and

U = (ui j )
N
i, j=1 so thatLGU = I . Setting

φ̃ = Uφ ψ̃ = Lψ ,

it follows that, with respect to the scalar product inL2(µ),

〈φ̃i , ψ̃ j〉 = δi, j , (4.2.52)

and, further,

µN(dx1, · · · ,dxN) = CN

N
det

i, j=1
(φ̃i(x j))

N
det

i, j=1
(ψ̃i(x j))

N

∏
i=1

dµ(xi)

for some constantCN. Proceeding as in the proof of Lemma 3.2.2, we conclude
that

µN(dx1, · · · ,dxN) = CN

N
det

i, j=1

N

∑
k=1

φ̃k(xi)ψ̃k(x j)
N

∏
i=1

dµ(xi) .

The proof of Lemma 4.2.50 is concluded by using (4.2.52) and computations sim-
ilar to Lemma 3.2.2 in order to verify the property in Remark 4.2.6. ⊓⊔

Exercise 4.2.51By using Remark 4.1.7, show that all joint distributions appear-
ing in Weyl’s formula for the unitary groups (Proposition 4.1.6) correspond to
determinantal processes.
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Birth-death processes conditioned not to intersect

TakeΛ to beZ, µ the counting measure andKn a homogeneous (discrete time)
Markov semigroup, that is,Kn : Λ×Λ→R+ so that, for any integersn,m,

Kn+m(x,y) = Kn ⋆Km(x,y) =

∫
Kn(x,z)Km(z,y)dµ(z) ,

and, further,
∫

Kn(x,y)dµ(y) = 1. We assumeK1(x,y) = 0 if |x− y| 6= 1. We let
{Xn}n≥0 denote the Markov process with kernelK1, that is for alln < m integers,

P(Xm ∈ A|Xj , j ≤ n) = P(Xm ∈ A|Xn) =
∫

y∈A
Km−n(Xs,y)dµ(y) .

Fix x = (x1 < · · · < xN) with xi ∈ 2Z. Let {Xx
n}n≥0 = {(X1

n , . . . ,XN
n )}n≥0 denote

N independent copies of{Xn}n≥0, with initial positions(X1
0 , . . . ,XN

0 ) = x. For
integerT, define the eventAT =

⋂
0≤k≤T{X1

k < X2
k < · · · < XN

k }.

Lemma 4.2.52 (Gessel–Viennot)With the previous notation, sety = (y1 < · · · <
yN) with yi ∈ 2Z. Then

KN
2T(x,y)

△
= P(Xx

2T = y|A2T)

=
detNi, j=1(K2T(xi ,y j))

∫
z1<···<zN detNi, j=1(K2T(xi ,zj ))∏dµ(zj)

.

Proof The proof is an illustration of thereflection principle. Let P2T(x,y),
x,y ∈ 2Z, denote the collection ofZ-valued, nearest neighbor paths{π(ℓ)}2T

ℓ=0
with π(0) = x, π(2T) = y and|π(ℓ+1)−π(ℓ)|= 1. Let

Π2T(x,y) =
{
{π i}N

i=1 : π i ∈ P2T(xi ,yi)
}

denote the collection ofN nearest neighbor paths, with theith path connectingxi

andyi . For any permutationσ ∈ SN, setyσ = {yσ(i)}N
i=1. Then

N
det

i, j=1
(K2T(xi ,y j)) = ∑

σ∈SN

ε(σ) ∑
{π i}N

i=1∈Π2T (x,yσ )

N

∏
i=1

K2T(π i) , (4.2.53)

where

K2T(π i) = K1(x
i ,π i(2))

(
2T−2

∏
k=2

K1(π i(k),π i(k+1))

)
K1(π i(2T −1),yσ(i)) .

On the other hand, let

N Cx,y
2T = {{π i}N

i=1 ∈ Π2T(x,y) : {π i}∩{π j} = /0 if i 6= j}
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denote the collection of disjoint nearest neighbor paths connectingx andy. Then

P(Xx
2T = y,A2T) = ∑

{π i}N
i=1∈N Cx,y

2T

N

∏
i=1

K2T(π i) . (4.2.54)

Thus, to prove the lemma, it suffices to check that the total contribution in (4.2.53)
of the collection of paths not belonging toN Cx,y

2T vanishes. Toward this end,
the important observation is that because we assumedx,y ∈ 2Z, for anyn ≤ 2t
and i, j ≤ N, any pathπ ∈ Π2T(xi ,y j) satisfiesπ(n) ∈ 2Z + n. In particular, if
{π i}N

i=1 ∈
⋃

σ∈SN
Π2T(x,yσ ) and there is a timen ≤ 2T and integersi < j such

thatπ i(n) ≥ π j(n), then there actually is a timem≤ n with π i(m) = π j(m).

Now, suppose that in a family{π i}N
i=1 ∈ Π2T(x,yσ ), there are integersi < j so

thatπ i(n) = π j(n). Consider the path̃π so that

π̃k(ℓ) =





π j(ℓ), k = i, ℓ > n
π i(ℓ), k = j, ℓ > n
πk(ℓ), otherwise.

Then, obviously,∏N
i=1K2T(π i) = ∏N

i=1K2T(π̃ i). Further, for someσ ′ ∈ SN,
{π̃ i}N

i=1 ∈ Π2T(x,yσ ′), with σ andσ ′ differing only by the transposition ofi and
j. In particular,ε(σ)+ ε(σ ′) = 0.

We can now conclude: by the previous argument, the contribution in (4.2.53)
of the collection of paths whereπ1 intersects with any other path vanishes. On the
other hand, for the collection of paths whereπ1 does not intersect any other path
(and thusπ1(2T) = y1), one freezes a pathπ1 and repeats the same argument to
conclude that the sum over all other paths, restricted not tointersect the frozen path
π1 but to haveπ2 intersect another path, vanishes. Proceeding inductively, one
concludes that the sum in (4.2.53) over all collections{π i}N

i=1 6∈ N Cx,y
2T vanishes.

This completes the proof. ⊓⊔
Combining Lemma 4.2.52 with Lemma 4.2.50, we get the following.

Corollary 4.2.53 In the setup of Lemma 4.2.52, let

B2T,y = A2T

N⋂

i=1

{Xi(2T) = yi} .

Conditioned on the eventB2T,y, the process(X1(n), . . . ,XN(n))n∈[0,2T] is a (time
inhomogeneous) Markov process satisfying, withz = (z1 < z2 < · · · < zN) and
n < 2T,

P(Xx
n = z|A2T) = CN(n,T,x,y)

N
det

i, j=1
(Kn(x

i ,zj))
N

det
i, j=1

(K2T−n(z
i ,y j))
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with

CN(n,T,x,y) =
∫ N

det
i, j=1

(Kn(x
i ,zj ))

N
det

i, j=1
(K2T−n(z

i ,y j))
N

∏
i=1

dµ(zi) .

At any time n< 2T, the configuration(X1(n), . . . ,XN(n)), conditioned on the
eventB2T,y, is a determinantal simple point process.

We note that, in the proof of Lemma 4.2.52, it was enough to consider only
the first time in which paths cross; the proof can therefore be adaptedto cover
diffusion processes, as follows. TakeΛ = R, µ the Lebesgue measure, and con-
sider a time homogeneous, real valued diffusion process(Xt)t≥0 with transition
kernel Kt(x,y) which is jointly continuous in(x,y). Fix x = (x1 < · · · < xN)

with xi ∈ R. Let {Xx
t }t≥0 = {(X1

t , . . . ,XN
t )}t≥0 denoteN independent copies of

{Xt}t≥0, with initial positions(X1
0 , . . . ,XN

0 ) = x. For realT, define the event
AT =

⋂
0≤t≤T{X1

t < X2
t < · · · < XN

t }.

Lemma 4.2.54 (Karlin–McGregor) With the previous notation, the probability
measure P(Xx

T ∈ ·|AT) is absolutely continuous with respect to Lebesgue measure
restricted to the set{y = (y1 < y2 < · · · < yN)} ⊂ RN, with density pxT (y|AT)

satisfying

px
T (y|AT) =

detNi, j=1(KT(xi ,y j))
∫

z1<···<zN detNi, j=1(KT(xi ,zj ))∏dzj
.

Exercise 4.2.55Prove the analog of Corollary 4.2.53 in the setup of Lemma
4.2.54. Use the following steps.
(a) Fort < T, construct the densityqN,T,x,y

t of Xx
t “conditioned onAT ∩{Xx

T = y}”
so as to satisfy, for any Borel setsA,B⊂ RN andt < T,

P(Xx
t ∈ A,Xx

T ∈ B|AT) =
∫

A

N

∏
i=1

dzi
∫

B

N

∏
i=1

dyiqN,T,x,y
t (z)px (y|AT) .

(b) Show that the collection of densitiesqN,T,x,y
t determine a Markov semigroup

corresponding to a diffusion process, and

qN,T,x,y
t (z) = CN,T(t,x,y)

N
det

i, j=1
(Kt(x

i ,zj))
N

det
i, j=1

(KT−t(z
i ,y j))

with

CN,T(t,x,y) =

∫ N
det

i, j=1
(Kt (x

i ,zj ))
N

det
i, j=1

(KT−t(z
i ,y j))

N

∏
i=1

dµ(zi) ,

whose marginal at any timet < T corresponds to a determinantal simple point
process withN points.
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Exercise 4.2.56(a) Use Exercise 4.2.55 and the heat kernel

K1(x,y) = (2π)−1/2e−(x−y)2/2

to conclude that the law of the (ordered) eigenvalues of the GOE coincides with
the law ofN Brownian motions run for a unit of time and conditioned not tointer-
sect at positive times smaller than 1.
Hint: start the Brownian motion at locations 0= x1 < x2 < · · · < xN and then take
xN → 0, keeping only the leading term inx and noting that it is a polynomial iny
that vanishes when∆(y) = 0.
(b) Using part (a) and Exercise 4.2.55, show that the law of the (ordered) eigen-
values of the GUE coincides with the law ofN Brownian motions at time 1, run
for two units of time, and conditioned not to intersect at positive times less than 2,
while returning to 0 at time 2.

4.3 Stochastic analysis for random matrices

In this section we introduce yet another effective tool for the study of Gaussian
random matrices. The approach is based on the fact that a standard Gaussian
variable of mean 0 and variance 1 can be seen as the value, at time 1, of a standard
Brownian motion. (Recall that a Brownian motionWt is a zero mean Gaussian
process of covarianceE(WtWs) = t ∧s.) Thus, replacing the entries by Brownian
motions, one gets a matrix-valued random process, to which stochastic analysis
and the theory of martingales can be applied, leading to alternative derivations and
extensions of laws of large numbers, central limit theorems, and large deviations
for classes of Gaussian random matrices that generalize theWigner ensemble of
Gaussian matrices. As discussed in the bibliographical notes, Section 4.6, some of
the later results, when specialized to fixed matrices, are currently only accessible
through stochastic calculus.

Our starting point is the introduction of the symmetric and Hermitian Brownian
motions; we leave the introduction of the symplectic Brownian motions to the
exercises.

Definition 4.3.1Let (Bi, j , B̃i, j ,1≤ i ≤ j ≤ N) be a collection of i.i.d. real valued
standard Brownian motions. Thesymmetric(resp.Hermitian) Brownian motion,
denotedHN,β ∈ H

β
N , β = 1,2, is the random process with entries

{
HN,β

i, j (t),t ≥
0, i ≤ j

}
equal to

HN,β
k,l =





1√
β N

(Bk,l + i(β −1)B̃k,l), if k < l ,
√

2√
β N

Bl ,l , if k = l .
(4.3.1)
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We will be studying the stochastic process of the (ordered) eigenvalues ofHN,β . In
Subsection 4.3.1, we derive equations for the system of eigenvalues, and show that
at all positive times, eigenvalues do not “collide”. These stochastic equations are
then used in Subsections 4.3.2, 4.3.3 and 4.3.4 to derive laws of large numbers,
central limit theorems, and large deviation upper bounds, respectively, for the
process of empirical measure of the eigenvalues.

4.3.1 Dyson’s Brownian motion

We begin in this subsection our study of the process of eigenvalues of time-
dependent matrices. Throughout, we let(W1, . . . ,WN) be aN-dimensional Brow-
nian motion in a probability space(Ω,P) equipped with a filtrationF = {Ft ,t ≥
0}. Let ∆N denote the open simplex

∆N = {(xi)1≤i≤N ∈ RN : x1 < x2 < · · · < xN−1 < xN} ,

with closure∆N. With β ∈ {1,2}, let XN,β (0) ∈ H β
N be a matrix with (real)

eigenvalues(λ N
1 (0), . . . ,λ N

N (0))∈ ∆N. Fort ≥ 0, letλ N(t) = (λ N
1 (t), . . . ,λ N

N (t))∈
∆N denote the ordered collection of (real) eigenvalues of

XN,β (t) = XN,β (0)+HN,β (t) , (4.3.2)

with HN,β as in Definition 4.3.1. A fundamental observation (due to Dyson in the
caseXN,β (0) = 0) is that the process(λ N(t))t≥0 is a vector of semi-martingales,
whose evolution is described by a stochastic differential system.

Theorem 4.3.2 (Dyson)Let
(
XN,β (t)

)
t≥0 be as in (4.3.2), with eigenvalues

(λ N(t))t≥0 and λ N(t) ∈ ∆N for all t ≥ 0. Then, the processes(λ N(t))t≥0 are
semi-martingales. Their joint law is the unique distribution on C(R+,RN) so that

P
(
∀t > 0, (λ N

1 (t), · · · ,λ N
N (t)) ∈ ∆N

)
= 1,

which is a weak solution to the system

dλ N
i (t) =

√
2√

βN
dWi(t)+

1
N ∑

j : j 6=i

1

λ N
i (t)−λ N

j (t)
dt , i = 1, . . . ,N , (4.3.3)

with initial conditionλ N(0).

We refer the reader to Appendix H, Definitions H.4 and H.3, forthe notions of
strong and weak solutions.
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Note that, in Theorem 4.3.2, we do not assume thatλ N(0) ∈ ∆N. The fact that
λ N(t) ∈ ∆N for all t > 0 is due to the natural repulsion of the eigenvalues. This
repulsion will be fundamental in the proof of the theorem.

It is not hard to guess the form of the stochastic differential equation for the
eigenvalues ofXN,β (t), simply by writing XN,β (t) = (ON)∗(t)Λ(t)ON(t), with
Λ(t) diagonal and(ON)∗(t)ON(t) = IN. Differentiating formally (using Itô’s for-
mula) then allows one to write the equations (4.3.3) and appropriate stochastic dif-
ferential equations forON(t). However, the resulting equations are singular, and
proceeding this way presents several technical difficulties. Instead, our derivation
of the evolution of the eigenvaluesλ N(t) will be somewhat roundabout. We first
show, in Lemma 4.3.3, that the solution of (4.3.3), when started at∆N, exists, is
unique, and stays in∆N. Once this is accomplished, the proof that(λ N(t))t≥0

solves this system will involve routine stochastic analysis.

Lemma 4.3.3Let λ N(0) = (λ N
1 (0), . . . ,λ N

N (0)) ∈ ∆N. For anyβ ≥ 1, there exists
a unique strong solution(λ N(t))t≥0 ∈ C(R+,∆N) to the stochastic differential
system (4.3.3) with initial conditionλ N(0). Further, the weak solution to (4.3.3)
is unique.

This result is extended to initial conditionsλ N(0) ∈ ∆N in Proposition 4.3.5.

Proof The proof is routine stochastic analysis, and proceeds in three steps. To
overcome the singularity in the drift, one first introduces acut-off, parametrized
by a parameterM, thus obtaining a stochastic differential equation with Lipschitz
coefficients. In a second step, a Lyapunov function is introduce that allows one
to control the timeTM until the diffusion sees the cut-off; before that time, the
solution to the system with cut-off is also a solution to the original system. Finally,
takingMM →∞ one shows thatTM →∞ almost surely, and thus obtains a solution
for all times.

Turning to the proof, set, forR> 0,

φR(x) =

{
x−1 if |x| ≥ R−1 ,

R2x otherwise.

Introduce the auxiliary system

dλ N,R
i (t) =

√
2

βN
dWi(t)+

1
N ∑

j : j 6=i

φR(λ N,R
i (t)−λ N,R

j (t))dt, i = 1, . . . ,N ,

(4.3.4)
with λ N,R

i (0) = λ N
i (0) for i = 1, . . . ,N. SinceφR is uniformly Lipschitz, it follows

from Theorem H.6 that (4.3.4) admits a unique strong solution, adapted to the
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filtration F , as well as a unique weak solutionPN,R
T,λ N(0)

∈ M1(C([0,T],RN)). Let

τR := inf{t : min
i 6= j

|λ N,R
i (t)−λ N,R

j (t)| < R−1} ,

noting thatτR is monotone increasing inR and

λ N,R(t) = λ N,R′
(t) for all t ≤ τR andR< R′. (4.3.5)

We now construct a solution to (4.3.3) by takingλ N(t)= λ N,R(t) on the eventτR >

t, and then showing thatτR→R→∞ ∞, almost surely. Toward this end, consider the
Lyapunov function, defined forx = (x1, . . . ,xN) ∈ ∆N,

f (x) = f (x1, . . . ,xN) =
1
N

N

∑
i=1

x2
i −

1
N2 ∑

i 6= j

log|xi −x j | .

Using the fact that

log|x−y| ≤ log(|x|+1)+ log(|y|+1) and x2−2log(|x|+1)≥−4,

we find that for alli 6= j,

f (x1, . . . ,xN) ≥ 4, − 1
N2 log|xi −x j | ≤ f (x1, . . . ,xN)+4. (4.3.6)

For anyM > 0 andx = (x1, . . . ,xN) ∈ ∆N, set

R= R(N,M) = eN2(4+M) andTM = inf{t ≥ 0 : f (λ N,R(t)) ≥ M} . (4.3.7)

Since f is C∞(∆N,R) on sets where it is uniformly bounded (note here thatf is
bounded below uniformly), we have that{TM > T} ∈FT for all T ≥ 0, and hence
TM is a stopping time. Moreover, due to (4.3.6), on the event{TM > T}, we get
that, for allt ≤ T,

|λ N,R
i (t)−λ N,R

j (t)| ≥ R−1 ,

and thus on the event{T ≤ TM}, (λ N,R(t), t ≤ T) provides an adapted strong
solution to (4.3.3). Fori = 1, . . . ,N and j = 1,2, define the functionsui, j : ∆N →R

by

ui,1(x) = ∑
k:k6=i

1
xi −xk

, ui,2(x) = ∑
k:k6=i

1
(xi −xk)2 .

Itô’s Lemma (see Theorem H.9) gives

d f(λ N,R(t)) =
2

N2

N

∑
i=1

(
λ N,R

i (t)− 1
N

ui,1(λ N,R(t))

)
ui,1(λ N,R(t))dt

+
2

βN

N

∑
i=1

(
1+

1
N2 ui,2(λ N,R(t))

)
dt+dMN(t) , (4.3.8)
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with MN(t) the local martingale

dMN(t) =
2

3
2

β
1
2 N

3
2

N

∑
i=1

(
λ N,R

i (t)− 1
N ∑

k:k6=i

1

λ N,R
i (t)−λ N,R

k (t)

)
dWi(t) .

Observing that, for allx = (x1, . . . ,xN) ∈ ∆N,

N

∑
i=1

(
ui,1(x)

2−ui,2(x)
)

= ∑
k6=i,l 6=i

k6=l

1
xi −xk

1
xi −xl

= ∑
k6=i,l 6=i

k6=l

1
xl −xk

(
1

xi −xl
− 1

xi −xk

)
= −2 ∑

k6=i,l 6=i
k6=l

1
xi −xk

1
xi −xl

,

we conclude that, forx∈ ∆N,

N

∑
i=1

(
ui,1(x)

2−ui,2(x)
)

= 0.

Similarly,
N

∑
i=1

ui,1(x)xi =
N(N−1)

2
.

Substituting the last two equalities into (4.3.8), we get

d f(λ N,R(t)) = (1+
2
β
− 1

N
)dt+

2(1−β )

βN2 ∑
i

ui,2(λ N,R(t))dt+dMN(t) .

Thus, for allβ ≥ 1, for all M < ∞, since(MN(t ∧TM),t ≥ 0) is a martingale with
zero expectation,

E[ f (λ N,R(t ∧TM))] ≤ 3E[t ∧TM]+ f (λ N,R(0)).

Therefore, recalling (4.3.6),

(M +4)P(TM ≤ t) = E[
(

f (λ N,R(t ∧TM))+4
)
1t≥TM ]

≤ E[ f (λ N,R(t ∧TM))+4]≤ 3E[t ∧TM]+4+ f (λ N,R(0))

≤ 3t +4+ f (λ N,R(0)) ,

which proves that

P(TM ≤ t) ≤ 3t +4+ f (λ N,R(0))

M +c
.

Hence, the Borel–Cantelli Lemma implies that, for allt ∈ R+,

P(∃M ∈ N : TM2 ≥ t) = 1,
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and in particular,TM2 goes to infinity almost surely. As a consequence, recalling
thatM = −4+(logR)/N2, see (4.3.7), and settingλ N(t) = λ N,R(t) for t ≤ TM2,
gives, due to (4.3.5), a strong solution to (4.3.3), which moreover satisfiesλ N(t)∈
∆N for all t. The strong (and weak) uniqueness of the solutions to (4.3.4), together
with λ N,R(t) = λ N(t) on{T ≤ TM} and the fact thatTM → ∞ almost surely, imply
the strong (and weak) uniqueness of the solutions to (4.3.3). ⊓⊔

Proof of Theorem 4.3.2As a preliminary observation, note that the law ofHN,β is
invariant under the action of the orthogonal (whenβ = 1) or unitary (whenβ = 2)
groups, that is,(OHN,β (t)O∗)t≥0 has the same distribution as(HN,β (t))t≥0 if O
belongs to the orthogonal (ifβ = 1) or unitary (ifβ = 2) groups. Therefore, the
law of (λ N(t))t≥0 does not depend on the basis of eigenvectors ofXN,β (0) and we
shall assume in the sequel, without loss of generality, thatXN,β (0) is diagonal and
real.

The proof we present goes “backward” by proposing a way to construct the ma-
trix XN,β (t) from the solution of (4.3.3) and a Brownian motion on the orthogonal
(resp. unitary) group. Its advantage with respect to a “forward” proof is that we
do not need to care about justifying that certain quantitiesdefined fromXN,β are
semi-martingales to insure that Itô’s calculus applies.

We first prove the theorem in the caseλN(0) ∈ ∆N. We begin by enlarging the
probability space by adding to the independent Brownian motions(Wi ,1≤ i ≤ N)

an independent collection of independent Brownian motions(wi j ,1 ≤ i < j ≤
N), which are complex ifβ = 2 (that is,wi j = 2−

1
2 (w1

i j +
√
−1w2

i j ) with two
independent real Brownian motionsw1

i j ,w
2
i j ) and real ifβ = 1. We continue to use

Ft to denote the enlarged sigma-algebraσ(wi j (s),1 ≤ i < j ≤ N,Wi(s),1 ≤ i ≤
N,s≤ t).

Fix M > 0 andR as in (4.3.7). We consider the strong solution of (4.3.3),
constructed with the Brownian motions(Wi ,1≤ i ≤ N), till the stopping timeTM

defined in (4.3.7). We set, fori < j,

dRN
i j (t) =

1√
N

1

λ N
i (t)−λ N

j (t)
dwi j (t) , RN

i j (0) = 0. (4.3.9)

We letRN(t) be the skew-Hermitian matrix (i.e.RN(t) = −RN(t)∗) with such en-
tries above the diagonal and null entries on the diagonal. Note that sinceλ N(t) ∈
∆N for all t, the matrix-valued processRN(t) is well defined, and its entries are
semi-martingales.
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Recalling the notation for the bracket of semi-martingales, see (H.1), forA,B
two semi-martingales with values inMN, we denote by〈A,B〉t the matrix

(〈A,B〉t)i j = 〈(AB)i j 〉t =
N

∑
k=1

〈Aik,Bk j〉t , 1≤ i, j ≤ N.

Observe that for allt ≥ 0,〈A,B〉∗t = 〈B∗,A∗〉t . We setON to be the (strong) solution
of

dON(t) = ON(t)dRN(t)− 1
2

ON(t)d〈(RN)∗,RN〉t , ON(0) = IN . (4.3.10)

This solution exists and is unique since it is a linear equation in ON andRN is a
well defined semi-martingale. In fact, as the next lemma shows, ON(t) describes
a process in the space of unitary matrices (orthogonal ifβ = 1).

Lemma 4.3.4The solution of (4.3.10) satisfies

ON(t)ON(t)∗ = ON(t)∗ON(t) = I for all t ≥ 0.

Further, let D(λ N(t)) denote a diagonal matrix with D(λ N(t))ii = λ N(t)i and set
YN(t) = ON(t)D(λ N(t))ON(t)∗. Then

P(∀t ≥ 0, YN(t) ∈ H β
N ) = 1,

and the entries of the process(YN(t))t≥0 are continuous martingales with respect
to the filtrationF , with bracket

〈YN
i j ,YN

kl 〉t = N−1(1i j=kl(2−β )+1i j=lk)t.

Proof We begin by showing thatJN(t) := ON(t)∗ON(t) equals the identityIN for
all timet. Toward this end, we write a differential equation forKN(t) := JN(t)− IN
based on the fact that the process(ON(t))t≥0 is the strong solution of (4.3.10). We
have

(
d〈(ON)∗,(ON)〉t

)
i j =

(
d〈
∫ .

0
d(RN)∗(s)(ON)∗(s),

∫ .

0
ON(s)dRN(s)〉t

)

i j

=
N

∑
k=1

d〈(
∫ .

0
(dRN)∗(s)(ON)∗(s))ik,(

∫ .

0
ON(s)dRN(s))k j〉t

= −
N

∑
m,n=1

N

∑
k=1

ŌN
km(t)ON

kn(t)d〈R̄N
mi,R

N
n j〉t

= −
N

∑
m,n=1

JN
mn(t)d〈R̄N

mi,R
N
n j〉t , (4.3.11)
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where here and in the sequel we use
∫ ·

0 to denote an indefinite integral viewed as
a process. Therefore, settingA.B = AB+BA, we obtain

dKN(t) = JN(t)[dRN(t)− 1
2

d〈(RN)∗,RN〉t ]

+[d(RN)∗(t)− 1
2

d〈(RN)∗,RN〉t ]JN(t)+d〈(ON)∗,ON〉t

= KN(t).(dRN(t)− 1
2

d〈(RN)∗,RN〉t)+drN(t) ,

with drN(t)i j = −∑N
m,n=1KN

mn(t)d〈R̄N
mi,R

N
n j〉t . For any deterministicM > 0 and

0≤ S≤ T, set, withTM given by (4.3.7),

κ(M,S,T) = max
1≤i, j≤N

sup
t≤S

|KN
i j (T ∧TM)|2 ,

and note thatEκ(M,S,T) < ∞ for all M,S,T, and that it is nondecreasing in
S. From the Burkholder–Davis–Gundy inequality (Theorem H.8), the equality
KN(0) = 0, and the fact that(RN(t∧TM))t≤T has a uniformly (inT) bounded mar-
tingale bracket, we deduce that there exists a constantC(M) < ∞ (independent of
S,T) such that for allS≤ T,

Eκ(M,S,T) ≤C(M)E
∫ S

0
κ(M,t,T)dt .

It follows thatEκ(M,T,T) vanishes for allT,M. Letting M going to infinity we
conclude thatKN(t) = 0 almost surely, that is,ON(t)∗ON(t) = IN.

We now show thatYN has martingales entries and compute their martingale
bracket. By construction,

dYN(t) = dON(t)D(λ N(t))ON(t)∗ +ON(t)D(λ N(t))dON(t)∗

+ON(t)dD(λ N(t))ON(t)∗ +d〈OND(λ N)(ON)∗〉t (4.3.12)

where for alli, j ∈ {1, · · · ,N}, we have denoted
(
d〈OND(λ N)(ON)∗〉t

)
i j

=
N

∑
k=1

(
1
2

ON
ik(t)d〈λ N

k ,ŌN
jk〉t + λ N

k (t)d〈ON
ik,Ō

N
jk〉t +

1
2

ON
jk(t)d〈λ N

k ,ŌN
ik〉t
)

=
N

∑
k=1

λ N
k (t)d〈ON

ik,Ō
N
jk〉t ,

and we used in the last equality the independence of(wi j ,1 ≤ i < j ≤ N) and
(Wi ,1≤ i ≤ N) to assert that the martingale bracket ofλ N andON vanishes. Set-
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ting

dZN(t) := ON(t)∗dYN(t)ON(t) , (4.3.13)

we obtain from the left multiplication byON(t)∗ and right multiplication byON(t)
of (4.3.12) that

dZN(t) = (ON)∗(t)dON(t)D(λ N(t))+D(λ N(t))dON(t)∗ON(t)

+dD(λ N(t))+ON(t)∗d〈OND(λ N)(ON)∗〉tON(t) . (4.3.14)

We next compute the last term in the right side of (4.3.14). For all i, j ∈{1, . . . ,N}2,
we have

(
d〈OND(λ N)(ON)∗〉t

)
i j =

N

∑
k=1

λ N
k (t)d〈ON

ik,Ō
N
jk〉t

=
N

∑
k,l ,m=1

λ N
k (t)ON

il (t)Ō
N
jm(t)d〈RN

lk,R̄
N
mk〉t .

But, by the definition (4.3.9) ofRN,

d〈RN
lk,R̄

N
mk〉t = 1m=l 1m6=k

1

N(λ N
k (t)−λ N

m(t))2
dt , (4.3.15)

and so we obtain

(
d〈OND(λ N)(ON)∗〉t

)
i j = ∑

1≤k6=l≤N

λ N
k (t)

N(λ N
k (t)−λ N

l (t))2
ON

il (t)Ō
N
jl (t)dt .

Hence, for alli, j ∈ {1, . . . ,N}2,

[ON(t)∗d〈OND(λ N)(ON)∗〉tON(t)]i j = 1i= j ∑
1≤k≤N

k6=i

λ N
k (t)

N(λ N
i (t)−λ N

k (t))2
dt .

Similarly, recall that

ON(t)∗dON(t) = dRN(t)−2−1d〈(RN)∗,RN〉t ,

so that from (4.3.15) we get, for alli, j ∈ {1, · · · ,N}2,

[ON(t)∗dON(t)]i j = dRN
i j (t)−2−11i= j ∑

1≤k≤N
k6=i

1

N(λ N
i (t)−λ N

k (t))2
dt .

Therefore, identifying the terms on the diagonal in (4.3.14) and recalling thatRN

vanishes on the diagonal, we find, substituting in (4.3.13),that

dZN
ii (t) =

√
2

βN
dWi(t).
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Away from the diagonal, fori 6= j, we get

dZN
i j (t) = [dRN(t)D(λ N(t))+D(λ N(t))dRN(t)∗]i j =

1√
N

dwi j (t) .

Hence,(ZN(t))t≥0 has the law of a symmetric (resp. Hermitian) Brownian motion.
Thus, since(ON(t))t≥0 is adapted,

YN(t) =

∫ t

0
ON(s)dZN(s)ON(s)∗

is a continuous matrix-valued martingale whose quadratic variation
d〈YN

i j ,YN
i′ j ′〉t is given by

N

∑
k,l ,k′ ,l ′=1

ON
ik(t)Ō

N
jl (t)O

N
i′k′(t)Ō

N
j ′l ′(t)d〈ZN

kl ,Z
N
k′ l ′〉t

=
1
N

N

∑
k,l ,k′,l ′=1

ON
ik(t)Ō

N
jl (t)O

N
i′k′(t)Ō

N
j ′ l ′(t)(1kl=l ′k′ +1β=11kl=k′ l ′)dt

=
1
N

(1i j= j ′ i′ +1β=11i j=i′ j ′)dt .

⊓⊔
We return to the proof of Theorem 4.3.2. Applying Lévy’s Theorem (Theo-

rem H.2) to the entries ofYN, we conclude that(YN(t)−YN(0))t≥0 is a symmet-
ric (resp. Hermitian) Brownian motion, and so(YN(t))t≥0 has the same law as
(XN,β (t))t≥0 sinceXN(0) = YN(0), which completes the proof of the theorem in
the caseYN(0) ∈ ∆N.

Consider next the case whereXN,β (0) ∈ ∆N \ ∆N. Note that the condition
λ N(t) 6∈∆N means that the discriminant of the characteristic polynomial ofXN,β (t)
vanishes. The latter discriminant is a polynomial in the entries of XN,β (t), that
does not vanish identically. By the same argument as in the proof of Lemma
2.5.5, it follows thatλ N(t) ∈ ∆N, almost surely. Hence, for anyε > 0, the law of
(XN,β (t))t≥ε coincides with the strong solution of (4.3.3) initialized at XN,β (ε).
By Lemma 2.1.19, it holds that for alls, t ∈ R,

N

∑
i=1

(λ N
i (t)−λ N

i (s))2 ≤ 1
N

N

∑
i, j=1

(HN,β
i j (t)−HN,β

i j (s))2 ,

and thus the a.s. continuity of the Brownian motions paths results in the a.s.
continuity oft → λ N(t) for any givenN. Lettingε → 0 completes the proof of the
theorem. ⊓⊔

Our next goal is to extend the statement of Lemma 4.3.3 to initial conditions
belonging to∆N. Namely, we have the following.
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Proposition 4.3.5Let λ N(0) = (λ N
1 (0), . . . ,λ N

N (0)) ∈ ∆N. For anyβ ≥ 1, there
exists a unique strong solution(λ N(t))t≥0 ∈C(R+,∆N) to the stochastic differen-
tial system (4.3.3) with initial conditionλ N(0). Further, for any t> 0, λ N(t)∈ ∆N

andλ N(t) is a continuous function ofλ N(0).

Whenβ = 1,2,4, Proposition 4.3.5 can be proved by using Theorem 4.3.2. In-
stead, we provide a proof valid for allβ ≥ 1, that does not use the random matrices
representation of the solutions. As a preliminary step, we present a comparison
between strong solutions of (4.3.3) with initial conditionin ∆N.

Lemma 4.3.6Let (λ N(t))t≥0 and (ηN(t))t≥0 be two strong solutions of(4.3.3)
starting, respectively, fromλ N(0) ∈ ∆N andηN(0) ∈ ∆N. Assume thatλ N

i (0) <

ηN
i (0) for all i. Then,

P(for all t ≥ 0 andi = 1, . . . ,N, λ N
i (t) < ηN

i (t)) = 1. (4.3.16)

Proof of Lemma 4.3.6We note first thatd(∑i λ N
i (t)−∑i ηN

i (t)) = 0. In particular,

∑
i
(λ N

i (t)−ηN
i (t)) = ∑

i
(λ N

i (0)−ηN
i (0)) < 0. (4.3.17)

Next, for all i ∈ {1, . . . ,N}, we have from (4.3.3) and the fact thatηN(t) ∈ ∆N,
λ N(t) ∈ ∆N for all t that

d(λ N
i −ηN

i )(t) =
1
N ∑

j : j 6=i

(ηN
i −λ N

i −ηN
j + λ N

j )(t)

(ηN
i (t)−ηN

j (t))(λ N
i (t)−λ N

j (t))
dt .

Thus, λ N
i −ηN

i is differentiable for alli and, by continuity, negative for small
enough times. LetT be the first time at which(λ N

i −ηN
i )(t) vanishes for somei ∈

{1, . . . ,N}, and assumeT < ∞. Since(ηN
i (t)−ηN

j (t))(λ N
i (t)−λ N

j (t)) is strictly
positive for all time, we deduce that∂t(λ N

i −ηN
i )|t=T is negative (note that it is

impossible to have(λ N
j −ηN

j )(T) = 0 for all j because of (4.3.17)). This provides
a contradiction since(λ N

i −ηN
i )(t) was strictly negative fort < T. ⊓⊔

We can now prove Proposition 4.3.5.

Proof of Proposition 4.3.5Setλ N(0) = (λ N
1 (0), . . . ,λ N

N (0)) ∈ ∆N and put forn∈
Z, λ N,n

i (0) = λ N
i (0)+ i

n. We haveλ N,n(0)∈ ∆N and, further, ifn> 0, λ N,−n
i (0) <

λ N,−n−1
i (0) < λ N,n+1

i (0) < λ N,n
i (0). Hence, by Lemma 4.3.6, the corresponding

solutions to (4.3.3) satisfy almost surely and for allt > 0

λ N,−n
i (t) < λ N,−n−1

i (t) < λ N,n+1
i (t) < λ N,n

i (t) .
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Since
N

∑
i=1

(λ N,n(t)−λ N,−n(t)) =
N

∑
i=1

(λ N,n(0)−λ N,−n(0)) (4.3.18)

goes to zero asn goes to infinity, we conclude that the sequencesλ N,−n andλ N,n

converge uniformly to a limit, which we denote byλ N. By construction,λ N ∈
C(R+,∆N). Moreover, if we take any other sequenceλ N,p(0) ∈ ∆N converging
to λ N(0), the solutionλ N,p to (4.3.3) also converges toλ N (as can be seen by
comparingλ N,p(0) with someλ N,n(0),λ N,−n(0) for p large enough).

We next show thatλ N is a solution of (4.3.3). Toward that end it is enough
to show that for allt > 0, λ N(t) ∈ ∆N, since then if we start at any positive time
s we see that the solution of (4.3.3) starting fromλ N(s) can be bounded above
and below byλ N,n andλ N,−n for all large enoughn, so that this solution must
coincide with the limit(λ N(t), t ≥ s). So let us assume that there ist > 0 so that
λ N(s) ∈ ∆N\∆N for all s≤ t and obtain a contradiction. We letI be the largest
i ∈ {2, . . . ,N} so thatλ N

k (s) < λ N
k+1(s) for k ≥ I but λ N

I−1(s) = λ N
I (s) for s≤ t.

Then, we find a constantC independent ofn andεn going to zero withn so that,
for n large enough,

|λ N,n
k (s)−λ N,n

k+1(s)| ≥C k≥ I , |λ N,n
I (s)−λ N,n

I−1(s)| ≤ εn.

Sinceλ N,n solves (4.3.3), we deduce that fors≤ t

λ N,n
I−1(s) ≥ λ N,n

I−1(0)+
2

βN
WI−1

s +
1
N

(ε−1
n −C(N− I))s.

This implies thatλ N,n
I−1(s) goes to infinity asn goes to infinity, a.s. To obtain a

contradiction, we show that withCN(n, t) := 1
N ∑N

i=1(λ
N,n
i (t))2, we have

sup
n

sup
s∈[0,t]

√
CN(n, t) < ∞ , a.s. (4.3.19)

With (4.3.19), we conclude that for allt > 0, λ N(t) ∈ ∆N, and in particular it is
the claimed strong solution.

To see (4.3.19), note that sinceλ N,n
i (s) ≥ λ N,n′

i (s) for anyn≥ n′ and alls by
Lemma 4.3.6, we have that

|CN(n,s)−CN(n′,s)| =
1
N

N

∑
i=1

(λ N,n
i (s)−λ N,n′

i (s))|(λ N,n
i (s)+ λ N,n′

i (s))|

≤
N

∑
i=1

(λ N,n
i (s)−λ N,n′

i (s)) · 1
N

N

∑
i=1

(|(λ N,n
i (s)|+ |λ N,n′

i (s)|)

≤ (
√

CN(n,s)+
√

CN(n′,s))
N

∑
i=1

(λ N,n(0)−λ N,n′(0)) ,
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where (4.3.18) and the Cauchy–Schwarz inequality were usedin the last inequal-
ity. It follows that

√
CN(n,s) ≤

√
CN(n′,s)+

N

∑
i=1

(λ N,n(0)−λ N,n′(0)) ,

and thus

sup
n≥n′

sup
s∈[0,t]

√
CN(n,s) ≤ sup

s∈[0,t]

√
CN(n′,s)+

N

∑
i=1

(λ N,n(0)−λ N,n′(0)) .

Thus, to see (4.3.19), it is enough to bound almost surely sups∈[0,t]

√
CN(n,t) for a

fixed n. From Itô’s Lemma (see Lemma 4.3.12 below for a generalization of this
particular computation),

CN(n, t) = DN(n, t)+
2
√

2

N
√

βN

N

∑
i=1

∫ t

0
λ N,n

i (s)dWi(s)

with DN(n,t) := CN(n,0)+ ( 2
β + N−1

N )t. Define the stopping timeSR = inf{s :
CN(n,s) ≥ R}. Then, by the Burkholder–Davis–Gundy inequality (TheoremH.8)
we deduce that

E[ sup
s∈[0,t]

CN(n,s∧SR)2]

≤ 2[DN(n, t)]2 +2N−2Λ
∫ t

0
E[ sup

s∈[0,u]

CN(n,s∧SR)]du

≤ 2[DN(n, t)]2 +N−2Λt +N−2Λ
∫ t

0
E[ sup

s∈[0,u]

CN(n,s∧SR)2]du,

where the constantΛ does not depend onR. Gronwall’s Lemma then implies, with
EN(n,t) := 2[DN(n, t)]2 +N−2Λt, that

E[ sup
s∈[0,t]

CN(n,s∧SR)2] ≤ EN(n, t)+
∫ t

0
e2N−2Λ1(s−t)EN(n,s)ds.

We can finally letR go to infinity and conclude thatE[sups∈[0,t]CN(n,s)] is finite

and so sups∈[0,t]

√
CN(n,s), and therefore supnsups∈[0,t]

√
CN(n,s), are finite al-

most surely, completing the proof of (4.3.19). ⊓⊔

Exercise 4.3.7LetHN,4 =
(

XN,β
i j

)
be 2N×2N complex Gaussian Wigner matrices

defined as the self-adjoint random matrices with entries

HN,β
kl =

∑4
i=1gi

kle
i
β√

4N
, 1≤ k < l ≤ N, XN,4

kk =

√
1

2N
gkke

1
β , 1≤ k≤ N ,
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where(ei
β )1≤i≤β are the Pauli matrices

e1
4 =

(
1 0
0 1

)
, e2

4 =

(
0 −1
1 0

)
, e3

4 =

(
0 −i
−i 0

)
, e4

4 =

(
i 0
0 −i

)
.

Show that withHN,4 as above, andXN,4(0) a Hermitian matrix with eigenval-
ues(λ N

1 (0), . . . ,λ N
2N(0)) ∈ ∆N, the eigenvalues(λ N

1 (t), . . . ,λ N
2N(t)) of XN,4(0)+

HN,4(t) satisfy the stochastic differential system

dλ N
i (t) =

1√
2N

dWi(t)+
1
N ∑

j 6=i

1

λ N
i (t)−λ N

j (t)
dt , i = 1, . . . ,2N . (4.3.20)

Exercise 4.3.8[Bru91] LetV(t) be anN×M matrix whose entries are independent
complex Brownian motions and letV(0) be anN×M matrix with complex entries.
Let λ N(0) = (λ N(0), . . . ,λ N

N (0)) ∈ ∆N be the eigenvalues ofV(0)V(0)∗. Show
that the law of the eigenvalues ofX(t) = V(t)∗V(t) is the weak solution to

dλ N
i (t) = 2

√
λ N

i (t)

N
dWi(t)+2(

M
N

+ ∑
k6=i

λ N
k + λ N

i

λ N
i −λ N

k

)dt ,

with initial conditionλ N(0).

Exercise 4.3.9Let XN be the matrix-valued process solution of the stochastic
differential systemdXN

t = dHN,β
t −XN

t dt, with D(XN(0)) ∈ ∆N.
(a) Show that the law of the eigenvalues ofXN

t is a weak solution of

dλ N
i (t) =

√
2√

βN
dWi(t)+

1
N ∑

j 6=i

1

λ N
i (t)−λ N

j (t)
dt−λ N

i (t)dt . (4.3.21)

(b) Show that ifXN
0 = HN,β (1), then the law ofXN

t is the same law for allt ≥ 0.

Conclude that the lawP(β )
N of the eigenvalues of Gaussian Wigner matrices is sta-

tionary for the process (4.3.21).

(c) Deduce thatP(β )
N is absolutely continuous with respect to the Lebesgue mea-

sure, with density

1x1≤···≤xN ∏
1≤i< j≤N

|xi −x j |β
N

∏
i=1

e−β x2
i /4 ,

as proved in Theorem 2.5.2.Hint: obtain a partial differential equation for the
invariant measure of (4.3.21) and solve it.
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4.3.2 A dynamical version of Wigner’s Theorem

In this subsection, we derive systems of (deterministic) differential equations sat-
isfied by the limits of expectation of〈LN(t),g〉, for nice test functionsg and

LN(t) = N−1∑δλ N
i (t) , (4.3.22)

where(λ N
i (t))t≥0 is a solution of (4.3.3) forβ ≥ 1 (see Proposition 4.3.10). Spe-

cializing toβ = 1 or β = 2, we will then deduce in Corollary 4.3.11 a dynamical
proof of Wigner’s Theorem, Theorem 2.1.1, which, while restricted to Gaussian
entries, generalizes the latter theorem in the sense that itallows one to consider
the sum of a Wigner matrix with an arbitrary,N-dependent Hermitian matrix,
provided the latter has a converging empirical distribution. The limit law is then
described as the law at time one of the solution to a complex Burgers equation, a
definition which introduces already the concept offree convolution(with respect
to the semicircle law) that we shall develop in Section 5.3.3. In Exercise 4.3.18,
Wigner’s Theorem is recovered from its dynamical version.

We recall that, forT > 0, we denote byC([0,T],M1(R)) the space of contin-
uous processes from[0,T] into M1(R) (the space of probability measures onR,
equipped with its weak topology). We now prove the convergence of the empirical
measureLN(·), viewed as an element ofC([0,T],M1(R)).

Proposition 4.3.10Let β ≥ 1 and let λ N(0) = (λ N
1 (0), . . . ,λ N

N (0)) ∈ ∆N, be a
sequence of real vectors so thatλ N(0) ∈ ∆N,

C0 := sup
N≥0

1
N

N

∑
i=1

log(λ N
i (0)2 +1) < ∞, (4.3.23)

and the empirical measure LN(0) = 1
N ∑N

i=1 δλ N
k (0) converges weakly as N goes to

infinity towards aµ ∈ M1(R).
Let λ N(t) = (λ N

1 (t), . . . ,λ N
N (t))t≥0 be the solution of(4.3.3)with initial con-

dition λ N(0), and set LN(t) as in (4.3.22). Then, for any fixed time T< ∞,
(LN(t))t∈[0,T ] converges almost surely in C([0,T],M1(R)). Its limit is the unique
measure-valued process(µt)t∈[0,T] so thatµ0 = µ and the function

Gt(z) =
∫

(z−x)−1dµt(x) (4.3.24)

satisfies the equation

Gt(z) = G0(z)−
∫ t

0
Gs(z)∂zGs(z)ds (4.3.25)

for z∈ C\R .
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An immediate consequence of Proposition 4.3.10 is the following.

Corollary 4.3.11 For β = 1,2, let (XN,β (0))N∈N be a sequence of real diago-
nal matrices, with eigenvalues(λ N

1 (0), . . . ,λ N
N (0)) satisfying the assumptions of

Proposition 4.3.10. For t≥ 0, let λ N
i (t) = (λ N

1 (T), . . . ,λ N
N (t) ∈ ∆N denote the

eigenvalues of XN,β (t) = XN,β (0)+HN,β (t), and let LN(t) be as in (4.3.22). Then
the measure-valued process(LN(t))t≥0 converges almost surely towards(µt)t≥0

in C([0,T],M1(R)).

Proof of Proposition 4.3.10We begin by showing that the sequence(LN(t))t∈[0,T ]

is almost surely pre-compact inC([0,T],M1(R)) and then show that it has a unique
limit point characterized by (4.3.25). The key step of our approach is the follow-
ing direct application of Itô’s Lemma, Theorem H.9, to the stochastic differential
system (4.3.3), whose elementary proof we omit.

Lemma 4.3.12Under the assumptions of Proposition 4.3.10, for all T> 0, all
f ∈C2([0,T]×R,R) and all t∈ [0,T],

〈 f (t, ·),LN(t)〉 = 〈 f (0, ·),LN(0)〉+
∫ t

0
〈∂s f (s, ·),LN(s)〉ds (4.3.26)

+
1
2

∫ t

0

∫ ∫ ∂x f (s,x)− ∂y f (s,y)
x−y

dLN(s)(x)dLN(s)(y)ds

+ (
2
β
−1)

1
2N

∫ t

0
〈∂ 2

x f (s, ·),LN(s)〉ds+MN
f (t) ,

where MN
f is the martingale given for t≤ T by

MN
f (t) =

√
2

√
βN

3
2

N

∑
i=1

∫ t

0
∂x f (s,λ N

i (s))dWi
s.

We note that the bracket of the martingaleMN
f appearing in Lemma 4.3.12 is

〈MN
f 〉t =

2
βN2

∫ t

0
〈(∂x f (s,x))2,LN(s)〉ds≤

2t sups∈[0,t] ‖∂x f (.,s)‖2
∞

βN2 .

We also note that the term multiplying(2/β −1) in (4.3.26) is coming from both
the quadratic variation term in Itô’s Lemma and the finite variation term where
the terms on the diagonalx = y were added. That it vanishes whenβ = 2 is a
curious coincidence, and emphasizes once more that the Hermitian case (β = 2)
is in many ways the simplest case.

We return now to the proof of Proposition 4.3.10, and begin byshowing that the



264 4. SOME GENERALITIES

sequence(LN(t))t∈[0,T ] is a pre-compact family inC([0,T],M1(R)) for all T < ∞.
Toward this end, we first describe a family of compact sets ofC([0,T],M1(R)).

Lemma 4.3.13Let K be a an arbitrary compact subset of M1(R), let ( fi)i≥0 be a
sequence of bounded continuous functions dense in C0(R), and let Ci be compact
subsets of C([0,T],R). Then the sets

K := {∀t ∈ [0,T],µt ∈ K}
⋂

i≥0

{t→µt( fi) ∈Ci} (4.3.27)

are compact subsets of C([0,T],M1(R)).

Proof of Lemma 4.3.13The spaceC([0,T],M1(R)) being Polish, it is enough to
prove that the setK is sequentially compact and closed. Toward this end, let
(µn)n≥0 be a sequence inK . Then, for all i ∈ N, the functionst→µn

t ( fi) be-
long to the compact setsCi and hence we can find a subsequenceφi(n) →n→∞ ∞
such that the sequence of bounded continuous functionst→µφi(n)

t ( fi) converges
in C[0,T]. By a diagonalization procedure, we can find ani independent subse-

quenceφ(n) →n→∞ ∞ such that for alli ∈ N, the functionst→µφ(n)
t ( fi) converge

towards some functiont→µt( fi) ∈C[0,T]. Because( fi)i≥0 is convergence deter-
mining in K ∩M1(R), it follows that one may extract a further subsequence, still
denotedφ(n), such that for a fixed dense countable subset of[0,T], the limit µt

belongs toM1. The continuity oft→µt( fi) then shows thatµt ∈ M1(R) for all t,
which completes the proof that(µn)n≥0 is sequentially compact. SinceK is an
intersection of closed sets, it is closed. Thus,K is compact, as claimed. ⊓⊔
We next prove the pre-compactness of the sequence(LN(t),t ∈ [0,T]).

Lemma 4.3.14Under the assumptions of Proposition 4.3.10, fix T∈ R+. Then
the sequence(LN(t), t ∈ [0,T]) is almost surely pre-compact in C([0,T],M1(R)).

Proof We begin with a couple of auxiliary estimates. Note that fromLemma
4.3.12, for any functionf that is twice continuously differentiable,
∫∫

f ′(x)− f ′(y)
x−y

dLN(s)(x)dLN(s)(y)

=
∫∫ ∫ 1

0
f ′′(αx+(1−α)y)dαdLN(s)(x)dLN(s)(y) . (4.3.28)

Apply Lemma 4.3.12 with the functionf (x) = log(1+x2), which is twice contin-
uously differentiable with second derivative uniformly bounded by 2, to deduce
that

sup
t≤T

|〈 f ,LN(t)〉| ≤ |〈 f ,LN(0)〉|+T(1+
1
N

)+sup
t≤T

|MN
f (t)| (4.3.29)



4.3 STOCHASTIC ANALYSIS FOR RANDOM MATRICES 265

with MN
f a martingale with bracket bounded by 2(βN2)−1 since| f ′| ≤ 1. By the

Burkholder–Davis–Gundy inequality (Theorem H.8) and Chebyshev’s inequality,
we get that, for a universal constantΛ1,

P(sup
t≤T

|MN
f (t)| ≥ ε) ≤ 2Λ1

ε2βN2 , (4.3.30)

which, together with (4.3.29), proves that there existsa = a(T) < ∞ so that, for
M > T +C0 +1,

P

(
sup

t∈[0,T]

〈log(x2 +1),LN(t)〉 ≥ M

)
≤ a

(M−T −C0−1)2N2 . (4.3.31)

We next need an estimate on the Hölder norm of the functiont→〈 f ,LN(t)〉,
for any twice boundedly differentiable functionf on R, with first and second
derivatives bounded by 1. We claim that there exists a constant a = a(T) so that,
for anyδ ∈ (0,1) andM > 2,

P


 sup

t,s∈[0,T]
|t−s|≤δ

|〈 f ,LN(t)〉− 〈 f ,LN(s)〉| ≥ Mδ
1
8


≤ aδ 1/2

M4N4 . (4.3.32)

Indeed, apply Lemma 4.3.12 withf (x, t) = f (x). Using (4.3.28), one deduces that
for all t ≥ s,

|〈 f ,LN(t)〉− 〈 f ,LN(s)〉| ≤ || f ′′||∞|s− t|+ |MN
f (t)−MN

f (s)| , (4.3.33)

whereMN
f (t) is a martingale with bracket 2β−1N−2∫ t

0〈( f ′)2,LN(u)〉du. Now,

cutting[0,T] to intervals of lengthδ we get, withJ := [Tδ−1],

P


 sup

|t−s|≤δ
t,s≤T

∣∣MN
f (t)−MN

f (s)
∣∣≥ (M−1)δ 1/8




≤
J+1

∑
k=1

P

(
sup

kδ≤t≤(k+1)δ

∣∣MN
f (t)−MN

f (kδ )
∣∣≥ (M−1)δ 1/8/3

)

≤
J+1

∑
k=1

34

δ 1/2(M−1)4
E

(
sup

kδ≤t≤(k+1)δ

∣∣MN
f (t)−MN

f (kδ )
∣∣4
)

≤ 4 ·34Λ2δ 2

β 2N4δ 1/2(M−1)4
(J+1)|| f ′||2∞ =:

aδ 1
2

N2(M−1)4‖ f ′‖2
∞ ,

where again we used in the second inequality Chebyshev’s inequality, and in the
last the Burkholder–Davis–Gundy inequality (Theorem H.8)with m = 2. Com-
bining this inequality with (4.3.33) completes the proof of(4.3.32).
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We can now conclude the proof of the lemma. Setting

KM = {µ ∈ M1(R) :
∫

log(1+x2)dµ(x) ≤ M} ,

Borel–Cantelli’s Lemma and (4.3.31) show that

P

(
⋃

N0≥0

⋂

N≥N0

{∀ t ∈ [0,T], LN(t) ∈ KM}
)

= 1. (4.3.34)

Next, recall that by the Arzela–Ascoli Theorem, sets of the form

C =
⋂

n

{g∈C([0,T],R) : sup
t,s∈[0,T]
|t−s|≤ηn

|g(t)−g(s)| ≤ εn, sup
t∈[0,T ]

|g(t)| ≤ M} ,

where{εn,n ≥ 0} and{ηn,n≥ 0} are sequences of positive real numbers going
to zero asn goes to infinity, are compact. Forf ∈C2(R) with derivatives bounded
by 1, andε > 0, consider the subset ofC([0,T],M1(R)) defined by

CT( f ,ε) :=
∞⋂

n=1

{µ ∈C([0,T],M1(R)) : sup
|t−s|≤n−4

|µt( f )− µs( f )| ≤ 1
ε
√

n
} .

Then, by (4.3.32),

P(LN ∈CT( f ,ε)c) ≤ aε4

N4 . (4.3.35)

Choose a countable familyfk of twice continuously differentiable functions
dense inC0(R), and setεk = 1/k(‖ fk‖∞ +‖ f ′k‖∞ +‖ f ′′k ‖∞)

1
2 < 2−1, with

K = KM ∩
⋂

k≥1

CT( fk,εk) ⊂C([0,T],M1(R)) . (4.3.36)

Combining (4.3.34) and (4.3.35), we get from the Borel–Cantelli Lemma that

P

(
⋃

N0≥0

⋂

N≥N0

{LN ∈ K }
)

= 1.

SinceK is compact by Lemma 4.3.13, the claim follows. ⊓⊔
We return to the proof of Proposition 4.3.10. To characterize the limit points

of LN, we again use Lemma 4.3.12 with a general twice continuouslydifferen-
tiable functionf with bounded derivatives. Exactly as in the derivation leading to
(4.3.30), the Boreli–Cantelli Lemma and the Burkholder–Davis–Gundy inequality
(Theorem H.8) yield the almost sure convergence ofMN

f towards zero, uniformly
on compact time intervals. Therefore, any limit point(µt ,t ∈ [0,T]) of LN satisfies
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the equation
∫

f (t,x)dµt (x) =

∫
f (0,x)dµ0(x)+

∫ t

0

∫
∂s f (s,x)dµs(x)ds

+
1
2

∫ t

0

∫ ∫ ∂x f (s,x)− ∂x f (s,y)
x−y

dµs(x)dµs(y)ds. (4.3.37)

Taking f (x) = (z−x)−1 for somez∈ C\R, we deduce that the functionGt(z) =∫
(z−x)−1dµt(x) satisfies (4.3.24), (4.3.25). Note also that since the limitµt is a

probability measure on the real line,Gt(z) is analytic inz for z∈ C+.

To conclude the proof of Proposition 4.3.10, we show below inLemma 4.3.15
that (4.3.24), (4.3.25) possess a unique solution analyticon z∈ C+ := {z∈ C :
ℑ(z) > 0}. Since we knowa priori that the support of any limit pointµt lives in
R for all t, this uniqueness implies the uniqueness of the Stieltjes transform ofµt

for all t and hence, by Theorem 2.4.3, the uniqueness ofµt for all t, completing
the proof of Proposition 4.3.10. ⊓⊔

Lemma 4.3.15Let Γα ,β = {z∈ C+ : ℑz≥ α|ℜz|, |z| ≥ β} and for t≥ 0, set
Λt := {z∈ C+ : z+ tG0(z) ∈ C+}. For all t ≥ 0, there exist positive constants
αt ,βt ,α ′

t ,β ′
t such thatΓαt ,βt ⊂ Λt and the function z∈ Γαt ,βt→z+ tG0(z) ∈ Γα ′

t ,β ′
t

is invertible with inverse Ht : Γα ′
t ,β ′

t
→Γαt ,βt . Any solution of(4.3.24), (4.3.25)is

the unique analytic function onC+ such that for all t and all z∈ Γα ′
t ,β ′

t
,

Gt(z) = G0 (Ht(z)) .

Proof We first note that since|G0(z)| ≤ 1/|ℑz|, ℑ(z+ tG0(z)) ≥ ℑz− t/ℑz is
positive fort < (ℑz)2 andℑz > 0. Thus,Γαt ,βt ⊂ Λt for t < (αtβt)

2/(1+ α2
t ).

Moreover,|ℜG0(z)| ≤ 1/2|ℑz| from which we see that, for allt ≥ 0, the image of
Γαt ,βt by z+ tG0(z) is contained in someΓα ′

t ,β ′
t

providedβt is large enough. Note
that we can choose theΓαt ,βt andΓα ′

t ,β ′
t

decreasing in time.

We next use the method of characteristics. FixG. a solution of (4.3.24), (4.3.25).
We associate withz∈ C+ the solution{zt , t ≥ 0} of the equation

∂tzt = Gt(zt) , z0 = z. (4.3.38)

We can construct a solutionz. to this equation up to time(ℑz)2/4 with ℑzt ≥ℑz/2
as follows. We put forε > 0,

Gε
t (z) :=

∫
z̄−x

|z−x|2+ ε
dµt(x),∂tz

ε
t = Gε

t (z
ε
t ) , zε

0 = z.

zε
. exists and is unique sinceGε

t is uniformly Lipschitz. Moreover,

∂tℑ(zε
t )

ℑ(zε
t )

= −
∫

1
|zt −x|2+ ε

dµt(x) ∈ [− 1
|ℑ(zε

t )|2
,0],
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implies that|ℑ(zε
t )|2 ∈ [|ℑ(z)|2−2t, |ℑ(z)|2] and

∂tℜ(zε
t ) =

∫ ℜ(zε
t )−x

|zt −x|2 + ε
dµt(x) ∈ [− 1√

|ℑ(zε
t )|2 + ε

,
1√

|ℑ(zε
t )|2 + ε

]

shows thatℜ(zε
t ) stays uniformly bounded, independently ofε, up to time(ℑz)2/4

as well as its time derivative. Hence,{zε
t , t ≤ (ℑz)2/4} is tight by Arzela–Ascoli’s

Theorem. Any limit point is a solution of the original equation and such that
ℑzt ≥ ℑz/2 > 0. It is unique sinceGt is uniformly Lipschitz on this domain.

Now, ∂tGt(zt ) = 0 implies that fort ≤ (ℑz)2/4,

zt = tG0(z)+z, Gt(z+ tG0(z)) = G0(z) .

By the implicit function theorem,z+ tG0(z) is invertible fromΓαt ,βt into Γα ′
t ,β ′

t

since 1+ tG′
0(z) 6= 0 (note thatℑG′

0(z) 6= 0) on Γαt ,βt . Its inverseHt is analytic
from Γα ′

t ,β ′
t

into Γαt ,βt and satisfies

Gt(z) = G0(Ht(z)).

⊓⊔
With a view toward later applications in Subsection 4.3.3 tothe proof of central

limit theorems, we extend the previous results to polynomial test functions.

Lemma 4.3.16Let β ≥ 1. Assume that

C̃ = sup
N∈N

max
1≤i≤N

|λ N
i (0)| < ∞.

With the same notation and assumptions as in Proposition 4.3.10, for any T< ∞,
for any polynomial function q, the process(〈q,LN(t)〉)t∈[0,T ] converges almost
surely and in all Lp, towards the process(µt(q))t∈[0,T ], that is,

limsup
N→∞

sup
t∈[0,T]

|〈q,LN(t)〉− 〈q,µt〉| = 0 a.s.

and for all p∈ N,

limsup
N→∞

E[ sup
t∈[0,T]

|〈q,LN(t)〉− 〈q,µt〉|p] = 0.

A key ingredient in the proof is the following control of the moments ofλ ∗
N(t) :=

max1≤i≤N |λ N
i (t)| = max(λ N

N (t),−λ N
1 (t)).

Lemma 4.3.17Let β ≥ 1 and λN(0) ∈ ∆N. Then there exist finite constants
α = α(β ) > 0,C = C(β ), and for all t ≥ 0 a random variableη∗

N(t) with law
independent of t, such that

P(η∗
N(t) ≥ x+C)≤ e−αNx
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and, further, the unique strong solution of(4.3.3)satisfies, for all t≥ 0,

λ ∗
N(t) ≤ λ ∗

N(0)+
√

tη∗
N(t) . (4.3.39)

We note that forβ = 1,2,4, this result can be deduced from the study of the
maximal eigenvalue ofXN,β (0)+ HN,β (t), since the spectral radius ofHN,β (t)
has the same law as the spectral radius of

√
tHN,β (1), that can be controlled as in

Section 2.1.6. The proof we give below is based on stochasticanalysis, and works
for all β ≥ 1. It is based on the comparison between strong solutions of (4.3.3)
presented in Lemma 4.3.6.

Proof of Lemma 4.3.17Our approach is to construct a stationary processηN(t) =

(ηN
1 (t), . . . ,ηN

N (t)) ∈ ∆N, t ≥ 0, with marginal distributionPN
(β ) := PN

β x2/4,β as in

(2.6.1), such that, withη∗
N(t) = max(ηN

N (t),−ηN
1 (t)), the bound (4.3.39) holds.

We first construct this process (roughly corresponding to the process of eigenval-
ues ofHN,β (t)/

√
t if β = 1,2,4) and then prove (4.3.39) by comparing solutions

to (4.3.3) started from different initial conditions.

Fix ε > 0. Consider, fort ≥ ε, the stochastic differential system

duN
i (t) =

√
2

βNt
dWi(t)+

1
Nt ∑

j 6=i

1

uN
i (t)−uN

j (t)
dt− 1

2t
uN

i (t)dt. (4.3.40)

Let Pβ
N denote the rescaled version ofP(β )

N from (2.5.1), that is, the law on∆N with
density proportional to

∏
i< j

|λi −λ j |β ·∏
i

e−Nβ λ 2
i /4 .

BecausePβ
N (∆N) = 1, we may takeuN(ε) distributed according toPβ

N , and the
proof of Lemma 4.3.3 carries over to yield the strong existence and uniqueness of
solutions to (4.3.40) initialized from such (random) initial conditions belonging to
∆N.

Our next goal is to prove thatPβ
N is a stationary distribution for the system

(4.3.40) with this initial distribution, independently ofε. Toward this end, note
that by Itô’s calculus (Lemma 4.3.12), one finds that for anytwice continuously
differentiable functionf : RN→R,

∂tE[ f (uN(t))] = E[
1

2Nt ∑
i 6= j

∂i f (uN(t))− ∂ j f (uN(t))

uN
i (t)−uN

j (t)
]

−E[
1
2t ∑

i
uN

i (t)∂i f (uN(t))]+E[
1

βNt ∑i
∂ 2

i f (uN(t))] ,

where we used the notation∂i f (x) = ∂xi f (x1, . . . ,xN). Hence, if at any timet,
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uN(t) has lawPβ
N , we see by integration by parts that∂tE[ f (uN(t))]| vanishes

for any twice continuously differentiablef . Therefore,(uN(t))t≥ε is a stationary

process with marginal lawPβ
N . Because the marginalPβ

N does not depend onε,
one may extend this process to a stationary process(uN(t))t≥0.

Setu∗N(t) = max(uN
N(t),−uN

1 (t)). Recall that by Theorem 2.6.6 together with
(2.5.11),

lim
N→∞

1
N

logPβ
N (λN ≥ u) = − inf

s≥u
Jβ x2/4

β (s) ,

with Jβ x2/4
β (s) > 0 for s> 2. Thus, there existC < ∞ andα > 0 so that forx≥C,

for all N ∈ N ,

P(u∗N(t) ≥ x) ≤ 2Pβ
N (λN ≥ x) ≤ e−αNx. (4.3.41)

Define nextλ N,0(t) =
√

tuN(t). Clearly, λ N,0(0) = 0 ∈ ∆N. An application
of Itô’s calculus, Lemma 4.3.12, shows thatλ N,0(t) is a continuous solution of
(4.3.3) with initial data 0, andλ N,0(t) ∈ ∆N for all t > 0. For an arbitrary constant
A, defineλ N,A(t) ∈ ∆N by λ N,A

i (t) = λ N,0
i (t)+A, noting that(λ N,A(t))t≥0 is again

a solution of (4.3.3), starting from the initial data(A, . . . ,A) ∈ ∆N, that belongs to
∆N for all t > 0.

Note next that for anyδ > 0, λ N,δ+λ ∗
N(0)

i (0) > λ N
i (0) for all i. Further, for

t small, λ N,δ+λ ∗
N(0)

i (t) > λ N
i (t) for all i by continuity. Therefore, we get from

Lemma 4.3.6 that, for allt > 0,

λ N
N (t) ≤ λ N,δ+λ ∗

N(0)
N (t) ≤ λ ∗

N(0)+ δ +
√

tu∗N(t) .

A similar argument shows that

−λ N
1 (t) ≤ λ ∗

N(0)+ δ +
√

tu∗N(t) .

SinceuN(t) is distributed according to the lawPβ
N , taking δ → 0 and recalling

(4.3.41) completes the proof of the lemma. ⊓⊔
Proof of Lemma 4.3.16We use the estimates onλ ∗

N(t) from Lemma 4.3.17 in
order to approximate〈q,LN(t)〉 for polynomial functionsq by similar expressions
involving bounded continuous functions.

We begin by noting that, due to Lemma 4.3.17 and the Borel–Cantelli Lemma,
for any fixedt,

limsup
N→∞

λ ∗
N(t) ≤ λ ∗

N(0)+
√

tC a.s. (4.3.42)
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Again from Lemma 4.3.17, we also have that, for anyp≥ 0,

E[(λ ∗
N(t))p] ≤ 2p

(
(λ ∗

N(0)+C
√

t)p + pt
p
2

∫ ∞

0
xp−1e−αNxdx

)

= 2p
(

(λ ∗
N(0)+C

√
t)p +

p!
(αN)p t

p
2

)
. (4.3.43)

As a consequence, there exists an increasing functionC(t), such that for anyT <

∞, C(T) = supt≤T C(t) < ∞, and so that for allN sufficiently large, allp∈ [0,αN],

E[(λ ∗
N(t))p] ≤ (2C(t))p . (4.3.44)

Note that (4.3.42) implies that, under the current assumptions, the support of the
limit µt , see Proposition 4.3.10, is contained in the compact set[−A(t),A(t)],
whereA(t) := C̃+C

√
t.

We next improve (4.3.42) to uniform (int ≤ T) bounds. Fix a constant
ε < min(α/6,1/T

√
Λ1), whereΛ1 is as in the Burkholder–Davis–Gundy inequal-

ity (Theorem H.8). We will show that, for allT < ∞ andp≤ εN,

E[ sup
t∈[0,T]

〈|x|p,LN(t)〉] ≤C(T)p. (4.3.45)

This will imply that

E[ sup
t∈[0,T]

λ ∗
N(t)p] ≤ NC(T)p , (4.3.46)

and therefore, by Chebyshev’s inequality, for anyδ > 0,

P( sup
t∈[0,T]

λ ∗
N(t) > C(T)+ δ ) ≤ NC(T)p

(C(T)+ δ )p .

Takingp = p(N) = (logN)2, we conclude by the Borel–Cantelli Lemma that

limsup
N→∞

sup
0≤t≤T

λ ∗
N(t) ≤C(T) a.s.

To prove (4.3.45), we use (4.3.26) withf (t,x) = xn and an integern > 0 to get

〈xn+2,LN(t)〉 = 〈xn+2,LN(0)〉+MN
n+2(t)

+
(n+1)(n+2)

2N

(
2
β
−1

)∫ t

0
〈xn,LN(s)〉ds

+
(n+2)

2

n

∑
ℓ=0

∫ t

0
〈xℓ,LN(s)〉〈xn−ℓ,LN(s)〉ds, (4.3.47)

whereMN
n+2 is a local martingale with bracket

〈MN
n+2〉t =

2(n+2)2

βN2

∫ t

0
〈x2n+2,LN(s)〉ds.
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Settingn= 2pand using the Burkholder–Davis–Gundy inequality (TheoremH.8),
one obtains

E[ sup
t∈[0,T ]

MN
2(p+1)(t)

2] ≤ 8Λ1(p+1)2

βN2 E[

∫ T

0
〈x4p+2,LN(s)〉ds]

≤ c
Λ1p2∫ T

0 C(t)(4p+2)mdt
N2 ≤ c

Λ1p2TC(T)(4p+2)

N2 ,

for some constantc = c(β ) independent ofp or T, where we used (4.3.44) (and
thus used that 4p+2≤ αN). We set

Λt(p) := E[ sup
t∈[0,T ]

〈|x|p,LN(t)〉] ,

and deduce from (4.3.47) and the last estimate that forp∈ [0,εN/2] integer,

Λt(2(p+1)) ≤ Λ0(2(p+1))+
(cΛ1)

1
2 p

√
tC(t)(2p+1)

N

+(p+1)2
∫ t

0
E[(λ ∗

N(t))2p]ds (4.3.48)

≤ C̃2(p+1) +
(cΛ1)

1
2 p

√
tC(t)(2p+1)

N
+(αN)2C(t)2p .

Taking p = εN/2, we deduce that the left side is bounded by(2C(T))αN, for all
N large. Therefore, by Jensen’s inequality, we conclude

Λt(ℓ) ≤ Λt(εN)
ℓ

εN ≤ (2C(T))ℓ for all ℓ ∈ [0,εN] . (4.3.49)

We may now complete the proof of the lemma. Forδ > 0 and continuous
functionq, set

qδ (x) = q

(
x

1+ δx2

)
.

By Proposition 4.3.10, for anyδ > 0, we have

lim
N→∞

sup
t∈[0,T ]

|〈qδ ,LN(t)〉− 〈qδ ,µt〉| = 0. (4.3.50)

Further, since the collection of measuresµt , t ∈ [0,T], is uniformly compactly
supported by the remark following (4.3.42), it follows that

lim
δ→0

sup
t∈[0,T]

|〈qδ ,µt〉− 〈q,µt〉| = 0. (4.3.51)

Now, if q is a polynomial of degreep, we find a finite constantC so that

|q(x)−qδ (x)| ≤Cδ (|x|p−1 +1)
|x|3

1+ δx2 ≤Cδ (|x|p+2 + |x|3) .
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Hence, (4.3.45) shows that, for anyA > 0,

P

(
sup

t∈[0,T ]

|〈(q−qδ),LN(t)〉| ≥ ACδ

)

≤ 1
Aℓ

E[ sup
t∈[0,T]

〈(|x|(p+2) + |x|3)ℓ,LN(t)〉] ≤ 1
Aℓ

((2C(T))(p+2) +(2C(T))3)ℓ ,

for anyℓ ≤ εN. By the Borel–Cantelli Lemma, takingℓ = (logN)2 andA larger
than 2C(T), we conclude that

limsup
N→∞

sup
t∈[0,T]

|〈(q−qδ ),LN(t)〉| ≤ [(2C(T))p+2 +(2C(T))3]Cδ , a.s.

Together with (4.3.50) and (4.3.51), this yields the almostsure uniform conver-
gence of〈q,LN(t)〉 to 〈q,µt〉. The proof of theLp convergence is similar once we
have (4.3.45). ⊓⊔

Exercise 4.3.18Take µ0 = δ0. Show that the empirical measureLN(1) of the
Gaussian (real) Wigner matrices converges almost surely. Show that

G1(z) =
1
z
−G1(z)

2

and conclude that the limit is the semicircle law, hence giving a new proof of
Theorem 2.1.1 for Gaussian entries.
Hint: by the scaling property, show thatGt(z) = t−1/2G1(t−1/2z) and use Lemma
4.3.25.

Exercise 4.3.19Using Exercise 4.3.7, extend Corollary 4.3.11 to the symplectic
setup (β = 4).

4.3.3 Dynamical central limit theorems

In this subsection, we study the fluctuations of(LN(t))t≥0 on path space. We
shall only consider the fluctuations of moments, the generalization to other test
functions such as continuously differentiable functions is possible by using con-
centration inequalities, see Exercise 2.3.7.

We continue in the notation of Subsection 4.3.2. For anyn-tuple of polynomial
functionsP1, . . . ,Pn ∈ C[X] and(µt)t∈[0,T ] as in Lemma 4.3.16 withµ0 = µ , set

GN,µ(P1, . . . ,Pn)(t) = N

(
〈P1,LN(t)− µt〉, . . . ,〈Pn,LN(t)− µt〉

)
.

The main result of this subsection is the following.
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Theorem 4.3.20Let β ≥ 1 and T< ∞. Assume that

C̃ = sup
N∈N

max
1≤i≤N

|λ N
i (0)| < ∞

and that LN(0) converges towards a probability measureµ in such a way that, for
all p ≥ 2,

sup
N∈N

E[|N(〈xn,LN(0)〉− 〈xn,µ〉)|p] < ∞.

Assume that for any n∈ N and any P1, . . . ,Pn ∈ C[X], GN,µ(P1, . . . ,Pn)(0) con-
verges in law towards a random vector(G(P1)(0), . . . ,G(Pn)(0)). Then
(a) there exists a process(G(P)(t))t∈[0,T ],P∈C[X], such that for any polynomial
functions P1, . . . ,Pn ∈ C[X], the process(GN,µ(P1, . . . ,Pn)(t))t∈[0,T ] converges in
law towards(G(P1)(t), . . . ,G(Pn)(t))t∈[0,T ];
(b) the limit process(G(P)(t))t∈[0,T],P∈C[X] is uniquely characterized by the fol-
lowing two properties.
(1) For all P,Q∈ C[X] and(λ ,α) ∈ R2,

G(λP+ αQ)(t) = λG(P)(t)+ αG(Q)(t) ∀t ∈ [0,T].

(2) For any n∈ N, (G(xn)(t))t∈[0,T ],n∈N is the unique solution of the system of
equations

G(1)(t) = 0, G(x)(t) = G(x)(0)+G1
t ,

and, for n≥ 2,

G(xn)(t) = G(xn)(0)+n
∫ t

0

n−2

∑
k=0

µs(x
n−k−2)G(xk)(s)ds

+
2−β
2β

n(n−1)

∫ t

0
µs(x

n−2)ds+Gn
t , (4.3.52)

where(Gn
t )t∈[0,T],n∈N is a centered Gaussian process, independent of

(G(xn)(0))n∈N, such that, if n1,n2 ≥ 1, then for all s,t ≥ 0,

E[Gn1
t Gn2

s ] = n1n2

∫ t∧s

0
µu(x

n1+n2−2)du.

Note that a consequence of Theorem 4.3.20 is that if(G(xn)(0))n∈N is a centered
Gaussian process, then so is(G(xn)(t))t∈[0,T ],n∈N.

Proof of Theorem 4.3.20The idea of the proof is to use (4.3.47) to show that
the process(GN(x, . . . ,xn)(t))t∈[0,T] is the solution of a stochastic differential sys-
tem whose martingale terms converge by Rebolledo’s TheoremH.14 towards a
Gaussian process.

It is enough to prove the theorem withPi = xi for i ∈N. SetGN
i (t) := GN(xi)(t)=
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N〈xi ,(LN(t)−µt)〉 to get, using (4.3.47) (which is still valid with obvious modifi-
cations ifi = 1),

GN
i (t) = GN

i (0)+ i
i−2

∑
k=0

∫ t

0
GN

k (s)µs(x
i−2−k)ds+MN

i (t)

+
2−β
2β

i(i −1)

∫ t

0
〈xi−2,LN(s)〉ds+

i
2N

i−2

∑
k=0

∫ t

0
GN

k (s)GN
i−2−k(s)ds, (4.3.53)

where(MN
i , i ∈ N) are martingales with bracket

〈MN
i ,MN

j 〉t =
2
β

i j
∫ t

0
〈xi+ j−2,LN(s)〉ds.

(Note that by Lemma 4.3.16, theLp norm of 〈MN
i 〉 is finite for all p, and so in

particularMN
i are martingales and not just local martingales.)

By Lemma 4.3.16, for allt ≥ 0, 〈MN
i ,MN

j 〉t converges inL2 and almost surely

towards 2
β i j

∫ t
0〈xi+ j−2,µs〉ds. Thus, by Theorem H.14, and with the Gaussian

process(Gi
t)t∈[0,T],i∈N as defined in the theorem, we see that, for allk∈ N,

(MN
k (t), . . . ,MN

1 (t))t∈[0,T ] converges in law towards

thek-dimensional Gaussian process(Gk
t ,G

k−1
t , . . . ,G1

t )t∈[0,T ] . (4.3.54)

Moreover,(Gk
t ,G

k−1
t , . . . ,G1

t )t∈[0,T] is independent of(G(xn)(0))n∈N since the con-
vergence in (4.3.54) holds given any initial condition suchthatLN(0) converges
to µ . We next show by induction overp that, for allq≥ 2,

Ap
q := max

i≤p
sup
N∈N

E[ sup
t∈[0,T]

|GN
i (t)|q] < ∞ . (4.3.55)

To begin the induction, note that (4.3.55) holds forp= 0 sinceGN
0 (t)= 0. Assume

(4.3.55) is verified for polynomials of degree strictly lessthanp and allq. Recall
that, by (4.3.45) of Lemma 4.3.16, for allq∈ N,

Bq = sup
N∈N

sup
t∈[0,T]

E[〈|x|q,LN(t)〉] < ∞ . (4.3.56)

SetAp
q(N,T) := E[supt∈[0,T] |GN

p (t)|q]. Using (4.3.56), Jensen’s inequality in the

form E(x1 + x2 + x3)
q ≤ 3q−1∑3

i=1E|xi |q, and the Burkholder–Davis–Gundy in-
equality (Theorem H.8), we obtain that, for allε > 0,

Ap
q(N,T) ≤ 3q[Ap

q(N,0)

+(pT)q
p−2

∑
k=0

(Ak
q(1+ε)(N,T))(1+ε)−1

B
ε

1+ε
(1+ε)ε−1(p−2−k)q

+(pN−1)qTq−1Λq/2E[

∫ T

0
〈x2q(p−1),LN(s)〉ds] .
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By the induction hypothesis (Ak
q(1+ε) is bounded sincek < p), the fact that we

control Ap
q(N,0) by hypothesis and the finiteness ofBq for all q, we conclude

also thatAp
q(N,T) is bounded uniformly inN for all q ∈ N. This completes the

induction and proves (4.3.55).

Set next, fori ∈ N,

εN(i)(s) := iN−1
i−2

∑
k=0

∫ t

0
GN

k (s)GN
i−2−k(s)ds.

Since

sup
s∈[0,T]

E[εN(i)(s)q] ≤ N−qi2q(Ap
2q)

1
2 T ,

we conclude from (4.3.55) and the Borel–Cantelli Lemma that

εN(i)(·) →N→∞ 0, in all Lq, q≥ 2, and a.s. (4.3.57)

Setting

YN
i (t) = GN

i (t)−GN
i (0)− i

i−2

∑
k=0

∫ t

0
GN

k (s)〈xi−2−k,µs〉ds,

for all t ∈ [0,T], we conclude from (4.3.53), (4.3.54) and (4.3.57) that the pro-
cesses(YN

i (t),YN
i−1(t), . . . ,Y

N
1 (t))t≥0 converge in law towards the centered Gaus-

sian process(Gi(t), . . . ,G1(t))t≥0.

To conclude, we need to deduce the convergence in law of theGNs from that
of theYNs. But this is clear again by induction;GN

1 is uniquely determined from
YN

1 and GN
1 (0), and so the convergence in law ofYN

1 implies that ofGN
1 since

GN
1 (0) converges in law. By induction, if we assume the convergencein law of

(GN
k ,k ≤ p−2), we deduce that ofGN

p−1 andGN
p from the convergence in law of

YN
p andYN

p−1. ⊓⊔

Exercise 4.3.21Recover the results of Section 2.1.7 in the case of Gaussian
Wigner matrices. by takingXN,β (0) = 0, with µ0 = 0 andG(xn)(0) = 0. Note
thatmn(t) := EG(xn)(t) = tn/2mn(1) may not vanish.

Exercise 4.3.22In each part of this exercise, check that the given initial data
XN(0) fulfills the hypotheses of Theorem 4.3.20. (a) LetXN(0) be a diagonal
matrix with entries on the diagonal(φ( i

N ),1 ≤ i ≤ N), with φ a continuously
differentiable function on[0,1]. Show that

µ0( f ) =

∫ 1

0
f (φ(x))dx, G(xp)(0) =

1
2
[φ(1)p−φ(0)p] for all p,
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and that(G(xp)(0), p≥ 0) are deterministic.
(b) Let XN,β (0) be a finite rank diagonal matrix, i.e. for somek fixed indepen-
dently of N, XN

0 = diag(η1, . . . ,ηk,0, . . . ,0), with the ηi ’s uniformly bounded.
Check that

µ0 = δ0, G(xp)(0) =
k

∑
l=1

η p
l for all p,

and thatG(xp)(0) is random if theηis are.
(c) LetXN,β (0) be a diagonal matrix with entriesXN(0)(ii) = ηi/

√
N for 1≤ i ≤

N, with some i.i.d. centered bounded random variablesηi . Check that

µ0( f ) = δ0, G(xp)(0) = 0 if p 6= 1

butG(x)(0) is a standard Gaussian variable.

4.3.4 Large deviation bounds

Fix T ∈ R+. We discuss in this subsection the derivation of large deviation esti-
mates for the measure-valued process{LN(t)}t∈[0,T]. We will only derive expo-
nential upper bounds, and refer the reader to the bibliographical notes for infor-
mation on complementary lower bounds, applications and relations to spherical
integrals.

We begin by introducing a candidate for a rate function onC([0,T],M1(R)).
For any f ,g∈C2,1

b (R×[0,T]), s≤ t ∈ [0,T] andν. ∈C([0,T],M1(R)), set

Ss,t(ν, f ) =

∫
f (x, t)dνt (x)−

∫
f (x,s)dνs(x)

−
∫ t

s

∫
∂u f (x,u)dνu(x)du

−1
2

∫ t

s

∫∫ ∂x f (x,u)− ∂x f (y,u)

x−y
dνu(x)dνu(y)du, (4.3.58)

〈 f ,g〉s,t
ν =

∫ t

s

∫
∂x f (x,u)∂xg(x,u)dνu(x)du (4.3.59)

and

S̄s,t(ν, f ) = Ss,t(ν, f )− 1
2
〈 f , f 〉ν

s,t . (4.3.60)

Set, for any probability measureµ ∈ M1(R),

Sµ(ν) :=

{
+∞ , if ν0 6= µ ,

S0,T(ν) := sup
f∈C2,1

b (R×[0,T])
sup0≤s≤t≤T S̄s,t(ν, f ) , otherwise.
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We now show thatSµ(·) is a candidate for rate function, and that a large devia-
tion upper bound holds with it.

Proposition 4.3.23 (a) For any µ ∈ M1(R), Sµ(·) is a good rate function on
C([0,T],M1(R)), that is,{ν ∈ C([0,T],M1(R));Sµ(ν) ≤ M} is compact for any
M ∈ R+.
(b) With assumptions as in Proposition 4.3.10, the sequence(LN(t))t∈[0,T] satisfies
a large deviation upper bound of speed N2 and good rate function Sµ , that is, for
all closed subsets F of C([0,T],M1(R)),

limsup
N→∞

1
N2 logP(LN(·) ∈ F) ≤− inf

F
Sµ .

We note in passing that, sinceSµ(·) is a good rate function, the process
(LN(t))t∈[0,T ] concentrates on the set{ν· : Sµ(ν) = 0}. Exercise 4.3.25 below
establishes that the latter set consists of a singleton, thesolution of (4.3.25).

The proof of Proposition 4.3.23 is based on Itô’s calculus and the introduction
of exponential martingales. We first need to improve Lemma 4.3.14 in order to
obtain exponential tightness.

Lemma 4.3.24Assume(4.3.23). Let T ∈ R+. Then, there exists a(T) > 0 and
M(T),C(T) < ∞ so that:
(a) for M ≥ M(T),

P

(
sup

t∈[0,T]

〈log(x2 +1),LN(t)〉 ≥ M

)
≤C(T)e−a(T)MN2

;

(b) for any L∈ N, there exists a compact setK (L) ⊂C([0,T],M1(R)) so that

P(LN(·) ∈ K (L)c) ≤ e−N2L.

It follows in particular from the second part of Lemma 4.3.24that the sequence
(LN(t),t ∈ [0,T]) is almost surely pre-compact inC([0,T],M1(R)); compare with
Lemma 4.3.14.

Proof The proof proceeds as in Lemma 4.3.14. Set firstf (x) = log(x2 + 1).
Recalling (4.3.29) and Corollary H.13, we then obtain that,for all L ≥ 0,

P

(
sup
s≤T

|MN
f (s)| ≥ L

)
≤ 2e−

βN2L2

16T ,

which combined with (4.3.29) yields the first part of the lemma.

For the second part of the lemma, we proceed similarly, by first noticing that
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if f ∈C2(R) is bounded, together with its first and second derivatives, by 1, then
from Corollary H.13 and (4.3.33) we have that

sup
iδ≤s≤(i+1)δ

|〈 f ,LN(s)−LN(ti)〉| ≤ 2δ + ε ,

with probability greater than 1−2e−
βN2(ε)2

16δ . Using the compact setsK = KM of
C([0,T],M1(R)) as in (4.3.36) withεk = 1/kM(‖ fk‖∞ +‖ f ′k‖∞ +‖ f ′′k ‖∞), we then
conclude that

P(LN 6∈ KM) ≤ 2e−cMN2
,

with cM →M→∞ ∞. AdjustingM = M(L) completes the proof. ⊓⊔

Proof of Proposition 4.3.23We first prove thatSµ(·) is a good rate function. Then
we obtain a weak large deviation upper bound, which gives, bythe exponential
tightness proved in the Lemma 4.3.24, the full large deviation upper bound.

(a) Observe first that, from Riesz’ Theorem (Theorem B.11),Sµ(ν) is also
given, whenν0 = µ , by

SµD(ν) =
1
2

sup
f∈C2,1

b (R×[0,T])

sup
0≤s≤t≤T

Ss,t(ν, f )2

〈 f , f 〉s,t
ν

. (4.3.61)

Consequently,Sµ is nonnegative. Moreover,Sµ is obviously lower semicontin-
uous as a supremum of continuous functions. Hence, we merelyneed to check
that its level sets are contained in relatively compact sets. By Lemma 4.3.13, it is
enough to show that, for anyM > 0:

(1) for any integerm, there is a positive real numberLM
m so that for anyν ∈

{SµD ≤ M},

sup
0≤s≤T

νs(|x| ≥ LM
m) ≤ 1

m
, (4.3.62)

proving thatνs ∈ KLM for all s∈ [0,T];

(2) for any integerm and f ∈C2
b(R), there exists a positive real numberδ M

m so
that for anyν ∈ {Sµ(·) ≤ M},

sup
|t−s|≤δ M

m

|νt( f )−νs( f )| ≤ 1
m

, (4.3.63)

showing thats→νs( f ) ∈Cδ M ,|| f ||∞ .

To prove (4.3.62), we consider, forδ > 0, fδ (x) = log
(
x2(1+ δx2)−1 +1

)
∈

C2,1
b (R×[0,T]). We observe that

C := sup
0<δ≤1

||∂x fδ ||∞ + sup
0<δ≤1

||∂ 2
x fδ ||∞
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is finite and, forδ ∈ (0,1],
∣∣∣∣
∂x fδ (x)− ∂x fδ (y)

x−y

∣∣∣∣≤C.

Hence, (4.3.61) implies, by takingf = fδ in the supremum, that, for anyδ ∈ (0,1],
anyt ∈ [0,T], anyµ. ∈ {SµD ≤ M},

µt( fδ ) ≤ µ0( fδ )+2Ct+2C
√

Mt .

Consequently, we deduce by the monotone convergence theorem and lettingδ
decrease to zero that for anyµ. ∈ {Sµ(·) ≤ M},

sup
t∈[0,T ]

µt(log(x2 +1))≤ 〈µ , log(x2 +1)〉+2C(1+
√

M) .

Chebyshev’s inequality and (4.3.23) thus imply that for anyµ. ∈ {Sµ(·)≤ M} and
anyK ∈ R+,

sup
t∈[0,T]

µt(|x| ≥ K) ≤ CD +2C(1+
√

M)

log(K2 +1)
,

which finishes the proof of (4.3.62).

The proof of (4.3.63) again relies on (4.3.61) which impliesthat for any f ∈
C2

b(R), anyµ. ∈ {Sµ(·) ≤ M} and any 0≤ s≤ t ≤ T,

|〈 f ,µt − µs〉| ≤ ‖ f ′′‖∞|t −s|+2‖ f ′‖∞
√

M
√
|t −s|. (4.3.64)

We turn next to establishing the weak large deviation upper bound. Pickν ∈
C([0,T],M1(R)) and f ∈ C2,1([0,T]×R). By Lemma 4.3.12, for anys≥ 0, the
process{Ss,t(LN, f ), t ≥ s} is a martingale for the filtration of the Brownian motion
W, which is equal to

√
2/βN−3/2∑N

i=1
∫ t

s f ′(λ N
i (u))dWi

u. Its bracket is〈 f , f 〉s,t
LN

.
As f ′ is uniformly bounded, we can apply Theorem H.10 to deduce that the pro-
cess{MN(LN, f )(t), t ≥ s} is a martingale if forµ ∈C([0,T],M1(R)) we denote

MN(µ , f )(t) := exp{N2Ss,t(µ , f )− N2

2
〈 f , f 〉s,t

µ +Nε( f )s,t
µ }

with

ε( f )s,t
µ := (

1
β
− 1

2
)

∫ t

s

∫
∂ 2

x f (s,x)dµ(x)du.

Moreover,µ ∈ C([0,T],M1(R))→S̄s,t(µ , f ) := Ss,t(µ , f )− 1
2〈 f , f 〉s,t

µ is continu-
ous asf and its two first derivatives are bounded continuous whereasthe function
µ 7→ ∫ t

s

∫
∂ 2

x f (s,x)dµ(x)du is uniformly bounded byT‖∂ 2
x f‖∞. Therefore, if we

pick δ small enough so that̄Ss,t(., f ) varies by at mostε > 0 on the ball (for
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some metricd compatible with the weak topology onC([0,T],M1(R))) of radius
δ aroundν, we obtain, for alls≤ t ≤ T,

P(d(LN,ν) < δ ) = E[
MN(LN, f )(t)
MN(LN, f )(t)

1d(LN,ν)<δ ]

≤ eN2ε+N‖ f ′′‖∞−N2S̄s,t(ν, f )E[MN(LN, f )(t)1d(LN,ν)<δ ]

≤ eN2ε+N‖ f ′′‖∞−N2S̄s,t(ν, f )E[MN(LN, f )(t)]

= eN2ε+N‖ f ′′‖∞−N2S̄s,t(ν, f ) ,

where we finally used the fact thatE[MN(LN, f )(t)] = E[MN(LN, f )(s)] = 1 since
the process{MN(LN, f )(t), t ≥ s} is a martingale. Hence,

lim
δ→0

lim
N→∞

1
N2 logP(d(LN,ν) < δ ) ≤ −S̄s,t(ν, f )

for any f ∈C2,1([0,T]×R). Optimizing overf gives

lim
δ→0

lim
N→∞

1
N2 logP(d(LN,ν) < δ ) ≤ −S0,1(ν, f ).

SinceLN(0) is deterministic and converges toµA, if ν0 6= µA,

lim
δ→0

lim
N→∞

1
N2 logP(d(LN,ν) < δ ) = −∞ ,

which allows us to conclude that

lim
δ→0

lim
N→∞

1
N2 logP(d(LN,ν) < δ ) ≤ −SµA(ν, f ) .

⊓⊔

Exercise 4.3.25In this exercise, you prove that the set{ν· : Sµ(ν) = 0} consists
of the unique solution of (4.3.25).
(a) By applying Riesz’ Theorem, show that

S0,T(ν) := sup
f∈C

2,1
b (R×[0,T])

sup
0≤s≤t≤T

Ss,t(ν, f )2

2〈 f , f 〉s,t .

(b) Show thatSµ(ν.) = 0 iff ν0 = µ andSs,t(ν, f ) = 0 for all 0≤ s≤ t ≤ T and all
f ∈C2,1

b (R×[0,T]). Take f (x) = (z−x)−1 to conclude.

4.4 Concentration of measure and random matrices

We have already seen in Section 2.3 that the phenomenon of concentration of
measure can be useful in the study of random matrices. In thissection, we further
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expand on this theme by developing both concentration techniques and their ap-
plications to random matrices. To do so we follow each of two well-established
routes. Taking the first route, we consider functionals of the empirical measure
of a matrix as functions of the underlying entries. When enough independence is
present, and for functionals that are smooth enough (typically, Lipschitz), concen-
tration inequalities for product measures can be applied. Taking the second route,
which applies to situations in which random matrix entries are no longer inde-
pendent, we view ensembles of matrices as manifolds equipped with probability
measures. When the manifold satisfies appropriate curvature constraints, and the
measure satisfies coercivity assumptions, semigroup techniques can be invoked to
prove concentration of measure results.

4.4.1 Concentration inequalities for Hermitian matrices with independent
entries

We begin by considering Hermitian matricesXN whose entries on-and-above the
diagonal are independent (but not necessarily identicallydistributed) random vari-
ables. We will mainly be concerned with concentration inequalities for the random
variable trf (XN), which is a Lipschitz function of the entries ofXN, see Lemma
2.3.1.

Remark 4.4.1Wishart matrices, as well as matrices of the formYNTNY∗
N with TN

diagonal and deterministic, andYN ∈MatM×N possessing independent entries, can
be easily treated by the techniques of this section. For example, to treat Wishart
matrices, fixN ≤ M positive integers, and define the matrixXN ∈ MatN+M,

XN =

(
0 YN

Y∗
N 0

)
.

Now (XN)2 equals
(

YNY∗
N 0
0 Y∗

NYN

)

and therefore, for any continuous functionf ,

tr( f (X2
N)) = 2tr( f (YNY∗

N))+ (M−N) f (0) .

Hence, concentration results for linear functionals of theempirical measure of the
singular values ofYN can be deduced from such results for the eigenvalues ofXN.
For an example, see Exercise 4.4.9.
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Entries satisfying Poincaré’s inequality

Our first goal is to extend the concentration inequalities, Lemma 2.3.3 and The-
orem 2.3.5, to Hermitian matrices whose independent entries satisfy a weaker
condition than the LSI, namely to matrices whose entries satisfy a Poincaré type
inequality.

Definition 4.4.2 (Poincaŕe inequality) A probability measureP on RM satisfies
thePoincaŕe inequality(PI) with constantm> 0 if, for all continuously differen-
tiable functionsf ,

VarP( f ) := EP
(
| f (x)−EP( f (x))|2

)
≤ 1

m
EP(|∇ f |2).

It is not hard to check that ifP satisfies an LSI with constantc, then it satisfies a PI
with constantm≥ c−1, see [GuZ03, Theorem 4.9]. However, there are probability
measures which satisfy the PI but not the LSI such asZ−1e−|x|adx for a∈ (1,2).
Further, like the LSI, the PI tensorizes: ifP satisfies the PI with constantm, P⊗M

also satisfies the PI with constantm for anyM ∈ N, see [GuZ03, Theorem 2.5].
Finally, if for some uniformly bounded functionV we setPV = Z−1eV(x)dP(x),
thenPV also satisfies the PI with constant bounded below bye−supV+infVm, see
[GuZ03, Property 2.6].

As we now show, probability measures onRM satisfying the PI have sub-
exponential tails.

Lemma 4.4.3Assume that P satisfies the PI onRM with constant m. Then, for
any differentiable function G onRM, for |t| ≤ √

m/
√

2‖‖∇G‖2‖∞,

EP(et(G−EP(G))) ≤ K , (4.4.1)

with K = −∑i≥02i log(1−2−14−i). Consequently, for allδ > 0,

P(|G−EP(G)| ≥ δ ) ≤ 2Ke
−

√
m√

2‖‖∇G‖2‖∞
δ
. (4.4.2)

Proof With G as in the statement, fort2 < m/‖‖∇G‖2
2‖∞, set f = etG and note

that

EP(e2tG)−
(
EP(etG)

)2 ≤ t2

m
‖‖∇G‖2

2‖∞EP(e2tG)

so that

EP(e2tG) ≤ (1− t2

m‖‖∇G‖2
2‖∞

)−1(EP(etG)
)2

.
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Iterating, we deduce that

logEP(e2tG) ≤−
n

∑
i=0

2i log(1− 4−it2

m
‖‖∇G‖2

2‖∞)+2n+1 logEP(e2−ntG).

Since

lim
n→∞

2n+1 logEP(e2−ntG) = 2tEP(G)

and

Dt := −
∞

∑
i=0

2i log(1− 4−it2

m
‖‖∇G‖2

2‖∞) < ∞

increases with|t|, we conclude that witht0 =
√

m/
√

2‖‖∇G‖2‖∞,

EP(e2t0(G−EP(G))) ≤ Dt0 = K .

The estimate (4.4.2) then follows by Chebyshev’s inequality. ⊓⊔
We can immediately apply this result in the context of large random matri-

ces. Consider Hermitian matrices such that the laws of the independent entries
{XN(i, j)}1≤i≤ j≤N all satisfy the PI (overR or R2) with constant bounded below
by Nm. Note that, as for the LSI, ifP satisfies the PI with constantm, the law of
axunderP satisfies it also with a constant bounded bya2m−1, so that our hypoth-
esis includes the case whereXN(i, j) = aN(i, j)YN(i, j) with YN(i, j) i.i.d. of law P
satisfying the PI anda(i, j) deterministic and uniformly bounded.

Corollary 4.4.4 Under the preceding assumptions, there exists a universal con-
stant C> 0 such that, for any differentiable function f , and anyδ > 0,

P(|tr( f (XN))−E[tr( f (XN))]| ≥ δN) ≤Ce
−

√
Nm

C‖‖∇ f‖2‖∞ δ
.

Exercise 4.4.5Using an approximation argument similar to that employed inthe
proof of Herbst’s Lemma 2.3.3, show that the conclusions of Lemma 4.4.3 and
Corollary 4.4.4 remain true ifG is only assumed Lipschitz continuous, with|G|L
replacing‖‖∇G‖2‖∞.

Exercise 4.4.6Let γ(dx) = (2π)−1/2e−
x2
2 dx be the standard Gaussian measure.

Show thatγ satisfies the Poincaré inequality with constant one, by following the
following approaches.

• Use Lemma 2.3.2.
• Use the interpolation

γ(( f − γ( f ))2) = −
∫ 1

0
∂α

∫ (∫
f (
√

αx+
√

1−αy)dγ(y)

)2

dγ(x)dα,
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integration by parts, the Cauchy–Schwarz inequality and the fact that, for
anyα ∈ [0,1], the law of

√
αx+

√
1−αy is γ underγ ⊗ γ.

Exercise 4.4.7[GuZ03, Theorem 2.5] Show that the PI tensorizes: ifP satisfies
the PI with constantm then P⊗M also satisfies the PI with constantm for any
M ∈ N.

Exercise 4.4.8[GuZ03, Theorem 4.9] Show that ifP satisfies an LSI with constant
c, then it satisfies a PI with constantm≥ c−1. Hint: Use the LSI withf = 1+ εg
andε → 0.

Exercise 4.4.9Show that Corollary 4.4.4 extends to the setup of singular values of
the Wishart matrices introduced in Exercise 2.1.18. That is, in the setup described
there, assume the entriesYN(i, j) satisfy the PI with constant bounded below by
Nm, and setXN = (YNYT

N )1/2. Prove that, for a universal constantC, and allδ > 0,

P(|tr( f (XN))−E[tr( f (XN))]| ≥ δ (M +N)) ≤Ce
−

√
Nm

C‖‖∇ f‖2‖∞ δ
.

Matrices with bounded entries and Talagrand’s method

Recall that themedian MY of a random variableY is defined as the largest real
number such thatP(Y ≤ x) ≤ 2−1. The following is an easy consequence of a
theorem due to Talagrand, see [Tal96, Theorem 6.6].

Theorem 4.4.10 (Talagrand)Let K be a convex compact subset ofR with diam-
eter |K| = supx,y∈K |x− y|. Consider a convex real-valued function f defined on
KM. Assume that f is Lipschitz on KM, with constant| f |L . Let P be a probability
measure on K and let X1, . . . ,XM be independent random variables with law P.
Then, if Mf is the median of f(X1, . . . ,XM), for all δ > 0,

P
(
| f (X1, . . . ,XM)−M f | ≥ δ

)
≤ 4e

− δ2

16|K|2| f |2
L .

Under the hypotheses of Theorem 4.4.10,

E[| f (X1, . . . ,XM)−M f |] =

∫ ∞

0
P
(
| f (X1, . . . ,XM)−M f | ≥ t

)
dt

≤ 4
∫ ∞

0
e
− t2

16|K|2| f |2L dt = 16|K|| f |L .

Hence we obtain as an immediate corollary of Theorem 4.4.10 the following.
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Corollary 4.4.11Under the hypotheses of Theorem 4.4.10, for all t∈ R+,

P(| f (X1, . . . ,XM)−E[ f (X1, . . . ,XM)]| ≥ (t +16)|K|| f |L ) ≤ 4e−
t2
16 .

In order to apply Corollary 4.4.11 in the context of (Hermitian) random matrices
XN, we need to identify convex functions of the entries. Since

λ1(XN) = sup
v∈CN,|v|2=1

〈v,XNv〉 ,

it is obvious that the top eigenvalue of a Hermitian matrix isa convex function of
the real and imaginary parts of the entries. Somewhat more surprisingly, so is the
trace of a convex function of the matrix.

Lemma 4.4.12 (Klein’s Lemma)Suppose that f is a real-valued convex func-
tion on R. Then the function X7→ tr f (X) on the vector spaceH (2)

N of N-by-N
Hermitian matrices is convex.

For f twice-differentiable andf ′′ bounded away from 0 we actually prove a
sharper result, see (4.4.3) below.

Proof We denote byX (resp. Y) an N×N Hermitian matrix with eigenvalues
(xi)1≤i≤N (resp.(yi)1≤i≤N) and eigenvectors(ξi)1≤i≤N (resp.(ζi)1≤i≤N). Assume
at first thatf is twice continuously differentiable, and consider the Taylor remain-
derRf (x,y) = f (x)− f (y)− (x−y) f ′(y). Since

f ′′ ≥ c≥ 0

for some constantc, we haveRf (x,y) ≥ c
2(x− y)2 = Rc

2x2(x,y). Consider also
the matrixRf (X,Y) = f (X)− f (Y)− (X−Y) f ′(Y), noting that tr(Rc

2x2(X,Y)) =

tr( c
2(X−Y)2). For i ∈ {1, . . . ,N}, with ci j = |〈ξi ,η j〉|2, and with summations on

j ∈ {1, . . . ,N}, we have

〈ξi ,Rf (X,Y)ξi〉 = f (xi)+∑
j

(−ci j f (y j )−xici j f ′(y j)+ci j y j f ′(y j ))

= ∑
j

ci j Rf (xi ,y j) ≥ ∑
j

ci j Rc
2x2(xi ,y j) ,

where at the middle step we use the fact that∑ j ci j = 1. After summing oni ∈
{1, . . . ,N} we have

tr( f (X)− f (Y)− (X−Y) f ′(Y)) ≥ c
2

tr(X−Y)2 ≥ 0. (4.4.3)
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Now take successively(X,Y) = (A,(A+ B)/2),(B,(A+ B)/2). After summing

the resulting inequalities, we have for arbitraryA,B∈ H
(2)

n that

tr

(
f (

1
2

A+
1
2

B)

)
≤ 1

2
tr( f (A))+

1
2

tr( f (B)) .

The result follows for general convex functionsf by approximations. ⊓⊔
We can now apply Corollary 4.4.11 and Lemma 4.4.12 to the function
f ({XN(i, j)}1≤i≤ j≤N) = tr( f (XN)) to obtain the following.

Theorem 4.4.13Let (Pi, j , i ≤ j) and (Qi, j , i < j) be probability measures sup-
ported on a convex compact subset K ofR. Let XN be a Hermitian matrix, such
that ℜXN(i, j), i ≤ j, is distributed according to Pi, j , andℑXN(i, j), i < j, is dis-
tributed according to Qi, j , and such that all these random variables are indepen-
dent. Fixδ1(N) = 8|K|√πa/N. Then, for anyδ ≥ 4

√
|K|δ1(N), and any convex

Lipschitz function f onR,

PN (|tr( f (XN))−EN[tr( f (XN))]| ≥ Nδ
)

≤ 32|K|
δ

exp

(
−N2 1

16|K|2a2 [
δ 2

16|K|| f |2L
− δ1(N)]

)
. (4.4.4)

4.4.2 Concentration inequalities for matrices with dependent entries

We develop next an approach to concentration inequalities based on semigroup
theory. When working onRm, this approach is related to concentration inequali-
ties for product measures, and in particular to the LSI. However, its great advan-
tage is that it also applies to manifolds, through the Bakry–Emery criterion.

Our general setup will be concerned with a manifoldM equipped with a mea-
sureµ . We will consider eitherM = Rm or M compact.

The setup with M= Rm andµ =Lebesgue measure

Let Φ be a smooth function fromRm into R, with fast enough growth at infinity
such that the measure

µΦ(dx) :=
1
Z

e−Φ(x1,...,xm)dx1 · · ·dxm

is a well defined probability measure. (Further assumptionsof Φ will be imposed
below.) We consider the operatorLΦ on twice continuously differentiable func-
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tions defined by

LΦ = ∆− (∇Φ) ·∇ =
m

∑
i=1

[∂ 2
i − (∂iΦ)∂i ] .

Then, integrating by parts, we see thatLΦ is symmetric inL2(µΦ), that is, for any
compactly supported smooth functionsf ,g,

∫
( fLΦg)dµΦ =

∫
(gLΦ f )dµΦ .

In the rest of this section, we will use the notationµΦ f =
∫

f dµΦ.

Let B denote a Banach space of real functions onM, equipped with a partial
order<, that containsCb(M), the Banach space of continuous functions onM
equipped with the uniform norm, with the latter being dense in B. We will be
concerned in the sequel withB = L2(µΦ).

Definition 4.4.14A collection of operators(Pt)t≥0 with Pt : B→B is aMarkov
semigroupwith infinitesimal generatorL if the following hold.
(i) P0 f = f for all f ∈ B.
(ii) The mapt→Pt is continuous in the sense that for allf ∈ B, t→Pt f is a con-
tinuous map fromR+ into B.
(iii) For any f ∈ B and(t,s) ∈ R2

+, Pt+s f = PtPs f .
(iv) Pt1= 1 for t ≥ 0, andPt preserves positivity: for eachf ≥ 0 andt ≥ 0,Pt f ≥ 0.
(v) For any functionf for which the limit exists,

L ( f ) = lim
t↓0

t−1(Pt f − f ) . (4.4.5)

The collection of functions for which the right side of (4.4.5) exists is thedomain
of L , and is denotedD(L ).

Property (iv) implies in particular that‖Pt f‖∞ ≤ ‖ f‖∞. Furthermore,Pt is re-
versible inL2(µΦ), i.e., µΦ( f Ptg) = µΦ(gPt f ) for any smooth functionsf ,g. In
particular,µΦ is invariant underPt : that is,µΦPt = µΦ. It also follows immediately
from the definition that, for anyf ∈ D(L ) andt ≥ 0,

f ∈ D(L ) ⇒ Pt f ∈ D(L ) , L Pt f = PtL f . (4.4.6)

In what follows we will be interested in the case whereL = LΦ, at least as
operators on a large enough class of functions. We introducea family of bilinear
formsΓn on smooth functions by settingΓ0( f ,g) = f g and, forn≥ 1,

Γn( f ,g) =
1
2

(LΦΓn−1( f ,g)−Γn−1( f ,LΦg)−Γn−1(g,LΦ f )) .
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We will only be interested in the casesn= 1,2. Thus, thecarré du champ operator
Γ1 satisfies

Γ1( f ,g) =
1
2

(LΦ f g− fLΦg−gLΦ f ) , (4.4.7)

and thecarré du champ it́eré operatorΓ2 satisfies

Γ2( f , f ) =
1
2
{LΦΓ1( f , f )−2Γ1( f ,LΦ f )} . (4.4.8)

We often writeΓi( f ) for Γi( f , f ), i = 1,2. Simple algebra shows thatΓ1( f ) =

∑m
i=1(∂i f )2, and

Γ2( f , f ) =
m

∑
i, j=1

(∂i∂ j f )2 +
m

∑
i, j=1

∂i f Hess(Φ)i j ∂ j f , (4.4.9)

with Hess(Φ)i j = Hess(Φ) ji = ∂i∂ jΦ the Hessian ofΦ.

Remark 4.4.15We introduced the formsΓn( f , f ) in a purely formal way. To
motivate, note that, assuming all differentiation and limits can be taken as written,
one has

Γn( f ,g) =
1
2

d
dt

(Pt(Γn−1( f ,g))−Γn−1(Pt f ,Ptg)) |t=0

=
1
2

(LΦΓn−1( f ,g)−Γn−1( f ,LΦg)−Γn−1(g,LΦ f )) . (4.4.10)

We will see below in Lemma 4.4.22 that indeed these manipulations are justified
when f ,g are sufficiently smooth.

Definition 4.4.16We say that theBakry–Emery condition(denoted BE) is satisfied
if there exists a positive constantc > 0 such that

Γ2( f , f ) ≥ 1
c

Γ1( f , f ) (4.4.11)

for any smooth functionf .

Note (by takingf = ∑aixi with ai arbitrary constants) that the BE condition is
equivalent to

Hess(Φ)(x) ≥ 1
c

I for all x∈ Rm, in the sense of the partial order

on positive definite matrices. (4.4.12)

Theorem 4.4.17Assume thatΦ ∈ C2(Rm) and that the BE condition(4.4.12)
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holds. Then,µΦ satisfies the logarithmic Sobolev inequality with constantc, that
is, for any f∈ L2(µΦ),

∫
f 2 log

f 2
∫

f 2dµΦ
dµΦ ≤ 2c

∫
Γ1( f , f )dµΦ . (4.4.13)

In the sequel, we letC∞
poly(R

m) denote the subset ofC∞(Rm) that consists of func-
tions all of whose derivatives have polynomial growth at infinity. The proof of
Theorem 4.4.17 is based on the following result which requires stronger assump-
tions.

Theorem 4.4.18Assume the BE condition(4.4.12). Further assume thatΦ ∈
C∞

poly(R
m). ThenµΦ satisfies the logarithmic Sobolev inequality with constantc.

From Theorem 4.4.17, (4.4.9) and Lemma 2.3.3 of Section 2.3,we immediately
get the following.

Corollary 4.4.19Under the hypotheses of Theorem 4.4.17,

µΦ

(
|G−

∫
G(x)µΦ(dx)| ≥ δ

)
≤ 2e−δ 2/2c|G|2L . (4.4.14)

Proof of Theorem 4.4.17(with Theorem 4.4.18 granted). Fixε > 0,M > 1, and
setB(0,M) = {x∈ Rm : ‖x‖2 ≤ M}. We will construct below approximations of
Φ by functionsΦM,ε ∈C∞

poly(R
m) with the following properties:

sup
x∈B(0,M)

|ΦM,ε (x)−Φ(x)| ≤ ε ,

Hess(ΦM) ≥ 1
c+ ε

I uniformly. (4.4.15)

With such a construction,µΦM,ε converges weakly (asM tends to infinity andε
tends to 0) towardµΦ, by bounded convergence. Further, by Theorem 4.4.18,
for any M,ε as above,µΦM,ε satisfies (4.4.13) with the constantc+ ε > 0. For
f 2 smooth, bounded below by a strictly positive constant, and constant outside a
compact set, we deduce thatµΦ satisfies (4.4.13) by lettingM go to infinity andε
go to zero in this family of inequalities. We then obtain the bound (4.4.13) for all
functions f ∈ L2(µΦ) with

∫
Γ1( f , f )dµΦ < ∞ by density.

So it remains to construct a familyΦM,ε satisfying (4.4.15). Forδ > 0, we let
Pδ be a polynomial approximation ofΦ onB(0,2M) such that

sup
x∈B(0,2M)

‖Hess(Pδ )(x)−Hess(Φ)(x)‖∞ <
δ
4

, Pδ (0) = Φ(0), ∇Pδ (0) = ∇Φ(0)
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with ‖·‖∞ the operator norm on Matm(R). Such an approximation exists by Weier-
strass’ Theorem. Note that

sup
x∈B(0,2M)

|Pδ (x)−Φ(x)|

≤ sup
x∈B(0,2M)

∣∣∣∣
∫ 1

0
αdα〈x,(Hess(Pδ )(αx)−Hess(Φ)(αx))x〉

∣∣∣∣ ≤
δM2

2
. (4.4.16)

With c−1
δ = c−1− δ

4 > 0 for δ small, note that Hess(Pδ )(x) ≥ c−1
δ I on B(0,2M)

and defineP̃δ as the function onRm given by

P̃δ (x) = sup
y∈B(0,2M)

{
Pδ (y)+ ∇Pδ(y) · (x−y)+

1
2cδ

‖x−y‖2
2

}
.

Note thatP̃δ = Pδ onB(0,2M) whereas Hess(P̃δ )≥ c−1
δ I almost everywhere since

the map

x→ sup
y∈B(0,2M)

{
Pδ (y)+ ∇Pδ (y) · (x−y)+

1
2cδ

‖x−y‖2
}
− 1

2cδ
‖x‖2

is convex as a supremum of convex functions (and thus its Hessian, which is al-
most everywhere well defined, is nonnegative). Finally, to define aC∞

poly(R
m)-

valued function we put, for some smallt,

Φδ ,t(x) =

∫
P̃δ (x+ tz)dµ(z)

with µ the standard centered Gaussian law. By (4.4.16) and sinceP̃δ = Pδ on
B(0,M), we obtain forx∈ B(0,M),

∆M(δ , t) := sup
x∈B(0,M)

|Φδ ,t (x)−Φ(x)|

≤ sup
x∈B(0,M)

∫
|P̃δ (x+ tz)− P̃δ(x)|dµ(z)+

δM2

2
.

Thus,∆M(δ ,t) vanishes whenδ andt go to zero and we choose these two pa-
rameters so that it is bounded byε. Moreover,Φδ ,t belongs toC∞

poly(R
m) since the

density of the Gaussian law isC∞ andP̃δ has at most a quadratic growth at infinity.
Finally, since Hess(P̃δ ) ≥ c−1

δ I almost everywhere, HessΦδ ,t ≥ c−1
δ I everywhere.

To conclude, we chooseδ small enough so thatcδ ≤ c+ ε. ⊓⊔
Our proof of Theorem 4.4.18 proceeds via the introduction ofthe semigroupPt

associated withLΦ through the solution of the stochastic differential equation

dXx
t = −∇Φ(Xx

t )dt+
√

2dwt ,X
x
0 = x, (4.4.17)
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wherewt is anm-dimensional Brownian motion. We first verify the properties of
the solutions of (4.4.17), and then deduce in Lemma 4.4.20 some analytical prop-
erties of the semigroup. The proof of Theorem 4.4.18 followsthese preliminary
steps.

Lemma 4.4.20With assumptions as in Theorem 4.4.18, for any x∈ Rm, the solu-
tion of (4.4.17)exists for all t∈ R+. Further, the formula

Pt f (x) = E( f (Xx
t )) (4.4.18)

determines a Markov semigroup onB = L2(µΦ), with infinitesimal generatorL
so thatD(L ) contains C∞

poly(R
m), andL coincides withLΦ on C∞

poly(R
m).

Proof Since the second derivatives ofΦ are locally bounded, the coefficients of
(4.4.17) are locally Lipschitz, and the solution exists andis unique up to (possi-
bly) an explosion time. We now show that no explosion occurs,in a way similar
to our analysis in Lemma 4.3.3. LetTn = inf{t : |Xx

t | > n}. Itô’s Lemma and
the inequalityx ·∇Φ(x) ≥ |x|2/c− c′ for some constantc′ > 0 (consequence of
(4.4.12)) imply that

E(|Xx
t∧Tn

|2) = x2−E

(∫ t∧Tn

0
Xs ·∇Φ(Xs)ds

)
+2E(t∧Tn)

≤ x2 +
1
c

E

(∫ t∧Tn

0
|Xs|2ds

)
+(2+c′)E(t ∧Tn) . (4.4.19)

Gronwall’s Lemma then yields that

E(|Xx
t∧Tn

|2) ≤ (x2 +(2+c′)t)et/c .

Since the right side of the last estimate does not depend onn, it follows from
Fatou’s Theorem that the probability that explosion occursin finite time vanishes.
That (4.4.18) determines a Markov semigroup is then immediate (note thatPt is a
contraction onL2(µΦ) by virtue of Jensen’s inequality).

To analyze the infinitesimal generator ofPt , we again use Itô’s Lemma. First
note that (4.4.19) implies thatEx|Xt |2 ≤ C(t)(x2 + 1) for some locally bounded
C(t) . Repeating the same computation (with the function|Xx

t∧Tn
|2p, p positive

integer) yields thatEx|Xt |2p ≤ C(t, p)(x2p + 1). For f ∈ C∞
poly(R

m), we then get
that

f (Xx
t∧Tn

)− f (x) =

∫ t∧Tn

0
LΦ f (Xx

s )ds+
∫ t∧Tn

0
g(Xx

s )dws, (4.4.20)

where the functiong has polynomial growth at infinity and thus, in particular,

E(sup
t≤1

(

∫ t

0
g(Xx

s )dws)
2) < ∞ .
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Arguing similarly with the term containingLΦ f (Xx
s ), we conclude that all terms

in (4.4.20) are uniformly integrable. Takingn→ ∞ and using the fact thatTn → ∞
together with the above uniform integrability yields that

E ( f (Xx
t ))− f (x) = E

∫ t

0
LΦ f (Xx

s )ds.

Taking the limit ast → 0 (and using again the uniform integrability together with
the continuityXx

s →s→0 x a.s.) completes the proof thatC∞
poly(R

m) ⊂ D(L ) . ⊓⊔

Remark 4.4.21In fact, D(L ) can be explicitly characterized: it is the subset
of L2(µΦ) consisting of functionsf that are locally in the Sobolev spaceW2,2

and such thatLΦ f ∈ L2(µΦ) in the sense of distributions (see [Roy07, Theorem
2.2.27]). In the interest of providing a self-contained proof, we do not use this
fact.

An important analytical consequence of Lemma 4.4.20 is the following.

Lemma 4.4.22With assumptions as in Theorem 4.4.18, we have the following.
(i) If f is a Lipschitz(1) function onRm, then Pt f is a Lipschitz(e−2t/c) function
for all t ∈ R+.
(ii) If f ∈C∞

b (Rm), then Pt f ∈C∞
poly(R

m).
(iii) If f ,g∈C∞

poly(R
m), then the equality(4.4.10)with n= 2 holds.

Proof (i) By applying Itô’s Lemma we obtain that

d
dt
|Xx

t −Xy
t |2 = −2(Xx

t −Xy
t )(∇Φ(Xx

t )−∇Φ(Xy
t )) ≤−2

c
|Xx

t −Xy
t |2 .

In particular,|Xx
t −Xy

t | ≤ |x− y|e−2t/c, and thus forf Lipschitz with Lipschitz
constant equal to 1, we have| f (Xx

t )− f (Xy
t )| ≤ |x−y|e−2t/c. Taking expectations

completes the proof.
(ii) Since f ∈C∞

poly(R
m), we have thatf ∈D(L ) andL f = LΦ f . Therefore, also

Pt f ∈ D(L ), andLΦPt f = PtLΦ f ∈ L2(µΦ) (sinceLΦ f ∈ L2(µΦ) andPt is a
contraction onL2(µΦ)). By part (i) of the lemma,|∇Pt f | is uniformly bounded
and, by assumption,|∇Φ| has at most polynomial growth. It follows that∆Pt f ,
which exists everywhere, satisfies

∆Pt f = gt ,

where the functiongt ∈ L2(µΦ) has at most polynomial growth at infinity. Stan-
dard estimates for the solutions of uniformly elliptic equations (for this version,
see [GiT98, Theorem 4.8]) then imply thatPt f ∈C∞

poly(R
m).

(iii) By assumption,f ,g∈C∞
poly(R

m). ThusΓ1( f ,g) ∈C∞
poly(R

m) and, in particular,
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by Lemma 4.4.20, belongs toD(L ) and so doesPtΓ1( f ,g). The rest follows from
the definitions. ⊓⊔
Proof of Theorem 4.4.18Let h be a positive bounded continuous function so that∫

hdµΦ = 1. We begin by proving thatPt is ergodic in the sense that

lim
t→∞

µΦ(Pth− µΦh)2 = 0. (4.4.21)

A direct proof can be given based on part (i) of Lemma 4.4.22. Instead, we present
a slightly longer proof that allows us to derive useful intermediate estimates.

We first note that we can localize (4.4.21): becausePt1 = 1 andPt f ≥ 0 for f
positive continuous, it is enough to prove (4.4.21) forh∈Cb(R

m) that is compactly
supported. BecauseC∞

b (K) is dense inC(K) for any compactK, it is enough
to prove (4.4.21) forh ∈ C∞

b (Rm). To prepare for what follows, we will prove
(4.4.21) for a functionh satisfyingh = φ(Pθ g) for someg ∈ C∞

b , θ ≥ 0, andφ
that is infinitely differentiable with bounded derivativeson the range ofg (the
immediate interest is withθ = 0, φ(x) = x).

Setht = Pth and fors∈ [0, t], defineψ(s) = PsΓ1(ht−s,ht−s). By part (ii) of
Lemma 4.4.22,Γ1(ht−s,ht−s) ∈ D(L ). Therefore,

d
ds

ψ(s) = 2PsΓ2(Pt−sh,Pt−sh) ≥ 2
c

PsΓ1(Pt−sh,Pt−sh) =
2
c

ψ(s) ,

where we use the BE condition in the inequality. In particular,

‖∇ht‖2
2 = Γ1(ht ,ht) = ψ(0) ≤ e−2t/cψ(t) = e−2t/cPtΓ1(h,h) . (4.4.22)

The expression‖Γ1(ht ,ht)‖∞ converges to 0 ast → ∞ becauseΓ1(h,h) = ‖∇h‖2
2

is uniformly bounded. Further, since for anyx,y∈ Rm,

|ht(x)−ht(y)| =

∣∣∣∣
∫ 1

0
〈∇ht(αx+(1−α)y),(x−y)〉dα

∣∣∣∣

≤ ‖x−y‖2 · ‖‖∇ht‖2‖∞ ≤ ‖x−y‖2e
−t/c‖‖∇h‖2‖∞ ,

it follows thatht(·)−µΦ(ht) converges almost everywhere to zero. SinceµΦ(ht)=

µΦ(h), we conclude thatht converges almost everywhere and inL2(µΦ) to µΦ(h),
yielding (4.4.21).

We now prove Theorem 4.4.18 forf 2 = h∈C∞
b that is uniformly bounded below

by a strictly positive constant. Set

Sf (t) =

∫
(ht loght)dµΦ .

Sinceht loght is uniformly bounded andht ∈ PtC∞
b (Rm), we have by (4.4.21) that
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Sh(t) converges to 0 ast → ∞. Hence

Sf (0) = −
∫ ∞

0
dt

d
dt

Sf (t) =

∫ ∞

0
dt
∫

Γ1(ht , loght)dµΦ , (4.4.23)

where, in the second equality, we used (4.4.7) and the fact that
∫

LΦ(g)dµΦ = 0
for anyg∈C∞

poly(R
m) and, in particular, forg = ht loght .

Next, using the fact thatPt is symmetric together with the Cauchy–Schwarz in-
equality, we get
∫

Γ1(ht , loght)dµΦ =

∫
Γ1 (h,Pt(loght))dµΦ

≤
(∫ Γ1(h,h)

h
dµΦ

) 1
2
(∫

hΓ1(Pt loght ,Pt loght)dµΦ

) 1
2

. (4.4.24)

Now, applying (4.4.22) with the function loght (note that sinceht is bounded
below uniformly away from 0, log(·) is indeed smooth on the range ofht), we
obtain

∫
hΓ1(Pt loght ,Pt loght)dµΦ ≤

∫
he−

2
c tPtΓ1(loght , loght)dµΦ

= e−
2
c t
∫

htΓ1(loght , loght)dµΦ = e−
2
c t
∫

Γ1(ht , loght)dµΦ , (4.4.25)

where in the last equality we have used symmetry of the semigroup and the Leib-
niz rule forΓ1. The inequalities (4.4.24) and (4.4.25) imply the bound

∫
Γ1(ht , loght)dµΦ ≤ e−

2
c t
∫ Γ1(h,h)

h
dµΦ = 4e−

2
c t
∫

Γ1(h
1
2 ,h

1
2 )dµΦ .

(4.4.26)
Using this, one arrives at

Sf (0) ≤
∫ ∞

0
4e−

2t
c dt

∫
Γ1(h

1
2 ,h

1
2 )dµΦ = 2c

∫
Γ1( f , f )dµΦ ,

which completes the proof of (4.4.13) whenf ∈C∞
b is strictly bounded below.

To considerf ∈C∞
b , apply the inequality (4.4.13) to the functionf 2

ε = f 2 + ε,
noting thatΓ1( fε , fε ) ≤ Γ1( f , f ), and use monotone convergence. Another use of
localization and dominated convergence is used to completethe proof for arbitrary
f ∈ L2(µΦ) with Γ1( f , f ) < ∞. ⊓⊔

The setup with M a compact Riemannian manifold

We now consider the version of Corollary 4.4.19 applying to the setting of a com-
pact connected manifoldM of dimensionmequipped with a Riemannian metricg
and volume measureµ , see Appendix F for the notions employed.
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We letΦ be a smooth function onM and define

µΦ(dx) =
1
Z

e−Φ(x)dµ(x)

as well as the operatorLΦ such that for all smooth functionsh, f ∈C∞(M),

µΦ( fLΦh) = µΦ(hLΦ f ) = −
∫

M
g(gradf ,gradh)dµΦ .

We have, for allf ∈C∞(M),

LΦ f = ∆ f −g(gradΦ,gradf ),

where∆ is the Laplace–Beltrami operator. In terms of a local orthonormal frame
{Li}, we can rewrite the above as

LΦ = ∑
i
(L2

i −∇Li Li − (LiΦ)Li) ,

where∇ is the Levi–Civita connection.

Remark 4.4.23For the reader familiar with such language, we note that, in local
coordinates,

LΦ =
m

∑
i, j=1

gi j ∂i∂ j +
m

∑
i=1

bΦ
i ∂i

with

bΦ
i (x) = eΦ(x) ∑

j

∂ j

(
e−Φ(x)

√
det(gx)g

i j
x

)
.

We will not need to use this formula.

Given f ,h∈C∞(M) we define〈Hessf ,Hessh〉 ∈C∞(M) by requiring that

〈Hessf ,Hessh〉 = ∑
i, j

(Hessf )(Li ,L j )(Hessh)(Li ,L j)

for all local orthonormal frames{Li}.

We defineΓn, for n ≥ 0, as in (4.4.10). In particular,Γ1 andΓ2 are given by
(4.4.7) and (4.4.8). We haveΓ1( f ,h) = g(grad f ,gradh) or equivalently

Γ1( f ,h) = ∑
i
(Li f )(Lih)

in terms of a local orthonormal frame{Li}. The latter expression forΓ1 may be
verified by a straightforward manipulation of differentialoperators. The expres-
sion forΓ2 is more complicated and involves derivatives of the metricg, reflecting
the fact that the Levi–Civita connection does not preserve the Lie bracket. In other
words, the curvature intervenes, as follows.
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Lemma 4.4.24 (Bochner–Bakry–Emery)

Γ2( f , f ) = 〈Hessf ,Hessf 〉+(Ric+HessΦ)(grad f ,grad f ).

(See Appendix F for the definition of the Ricci tensor Ric(·, ·).)

Proof Fix p ∈ M arbitrarily and let|p denote evaluation atp. Let L1, . . . ,Lm be
an orthonormal frame defined nearp∈ M. Write ∇Li L j = ∑kCk

i j Lk, whereCk
i j =

g(∇Li L j ,Lk). We assume that the frame{Li} is geodesic atp, see Definition F.26.
After exploiting the simplifications made possible by use ofa geodesic frame, it
will be enough to prove that

Γ2( f , f )|p = ∑
i j

(
(LiL j f )2 +LiL jΦ)(Li f )(L j f )

)
|p

+ ∑
i, j ,k

((LiC
j
kk−LkC

i
jk)(Li f )(L j f ))|p. (4.4.27)

To abbreviate writeAi = LiΦ + ∑kCi
kk. By definition, and after some trivial ma-

nipulations of differential operators, we have

Γ2( f , f ) = ∑
i, j

(
1
2
((L2

i −AiLi) f )(L j f )2− (L j(L
2
i −AiLi) f )(L j f ))

= ∑
i, j

((LiL j f )2 +([Li,L j ]Li +Li [Li ,L j ]+ [L j ,AiLi ]) f )(L j f )).

We have[Li ,L j ] = ∑k(C
k
i j −Ck

ji )Lk because∇ is torsion-free. We also have[Li ,L j ]|p
= 0 because{Li} is geodesic atp. It follows that

[Li ,L j ]Li f |p = 0,

Li [Li ,L j ] f |p = ∑
k

(LiC
k
i j −LiC

k
ji )(Lk f )|p,

([L j ,AiLi ] f )(L j f )|p = ∑
k

(L jC
i
kk+L jLiΦ)(Li f )(L j f )|p.

We haveg(∇Li L j ,Lk)+ g(L j ,∇Li Lk) = Ck
i j +C j

ik = 0 by orthonormality of{Li}
and thus

∑
i, j

(Li [Li ,L j ] f )(L j f )|p = − ∑
i, j ,k

(LiC
k
ji )(Lk f )(L j f )|p.

Therefore, after some relabeling of dummy indices, we can see that equation
(4.4.27) holds. ⊓⊔

Rerunning the proofs of Theorem 4.4.18 and Lemma 2.3.3 (thistime, not wor-
rying about explosions, since the process lives on a compactmanifold, and replac-
ing throughout the spaceC∞

poly(R
m) byC∞

b (M)), we deduce from Lemma 4.4.24 the
following.
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Corollary 4.4.25 If for all x ∈ M and v∈ TxM,

(Ric+HessΦ)x(v,v) ≥ c−1gx(v,v) ,

thenµΦ satisfies the LSI (4.4.13) with constant c and, further, for any differen-
tiable function G on M,

µΦ

(
|G−

∫
G(x)µΦ(dx)| ≥ δ

)
≤ 2e−δ 2/2cEµΦ Γ1(G,G) . (4.4.28)

Applications to random matrices

We begin by applying, in the setupM = Rm andµ =Lebesgue measure, the gen-

eral concentration inequality of Corollary 4.4.19. ForXN ∈ H
(β )

N we write

dβ XN = ∏
i< j

dXN(i, j)∏
i

dXN(i, i) ,

for the product Lebesgue measure on the entries on-and-above the diagonal of
XN, where the Lebesgue measure onC is taken as the product of the Lebesgue
measure on the real and imaginary parts.

Proposition 4.4.26Let V∈C∞
poly(R) be a strictly convex function satisfyingV′′(x)≥

cI for all x ∈ R and some c> 0. Letβ = 1 or β = 2, and suppose XVN is a random
matrix distributed according to the probability measure

1

ZV
N

e−Ntr(V(XN))dβ XN .

Let PV
N denote the law of the eigenvalues(λ1, . . . ,λN) of XV

N . Then, for any Lips-
chitz function f: RN→R ,

PV
N

(
| f (λ1, . . . ,λN)−PV

N f | > δ
)
≤ e

− Ncδ2

2| f |2L .

Note that if f (λ1, . . . ,λN) = 1
N ∑N

i=1g(λi), then| f |L =
√

2N
−1|g|L .

Proof Takem= N(N−1)β/2+ N. Let h : H
(β )

N → Rm denote the one-to-one
and onto mapping as defined in the beginning of Section 2.5.1,and letṼ be the
function onRm defined by trV(X) = Ṽ(h(X)). Note that trX2 ≥ ‖h(X)‖2. For

X,Y ∈ H
(β )

N we have

tr(V(X)−V(Y)− (X−Y)V ′(Y)) ≥ c
2
‖h(X)−h(Y)‖2

by (4.4.3), and hence HessṼ ≥ cIm. Now the functionf gives rise to a function
f̃ (X) = f (λ1, . . . ,λn) on Rm, where theλi are the eigenvalues ofh−1(X). By
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Lemma 2.3.1, the Lipschitz constants off̃ and f coincide. Applying Corollary
4.4.19 yields the proposition. ⊓⊔

We next apply, in the setup of compact Riemannian manifolds,the general con-
centration inequality of Corollary 4.4.25. We study concentration on orthogonal
and unitary groups. We letO(N) denote theN-by-N orthogonal group andU(N)

denote theN-by-N unitary group. (In the notation of Appendix E,O(N) = UN(R)

andU(N) = Un(C).) We let SU(N) = {X ∈ U(N) : detX = 1} and SO(N) =

O(N)∩SU(N). All the groupsO(N), SO(N), U(N) andSU(N) are manifolds
embedded in MatN(C). We consider each of these manifolds to be equipped with
the Riemannian metric it inherits from MatN(C), the latter equipped with the in-
ner productX ·Y = trXY∗. It is our aim is to get concentration results forO(N)

andU(N) by applying Corollary 4.4.25 toSO(N) andSU(N).

We introduce some general notation. Given a compact groupG, let νG denote
the unique Haar probability measure onG. Given a compact Riemannian mani-
fold M with metricg, and f ∈ C∞(M), let | f |L ,M be the maximum achieved by
g(gradf ,gradf )1/2 onM.

Although we are primarily interested inSO(N) andSU(N), in the following
result, for completeness, we consider also the Lie groupUSp(N) = UN(H) ⊂
MatN(H).

Theorem 4.4.27 (Gromov)Let β ∈ {1,2,4}. Let

GN = SO(N),SU(N),USp(N)

according asβ = 1,2,4. Then, for all f∈C∞(GN) andδ ≥ 0, we have

νGN (| f −νGN f | ≥ δ ) ≤ 2e
−

(
β(N+2)

4 −1

)
δ2

2| f |2
L ,GN . (4.4.29)

Proof Recall from Appendix F, see (F.6), that the Ricci curvature of GN is given
by

Ricx(GN)(X,X) =

(
β (N+2)

4
−1

)
gx(X,X) (4.4.30)

for x∈ GN andX ∈ Tx(GN). Consider now the specialization of Corollary 4.4.25
to the following case:

• M = GN, which is a connected manifold;
• g = the Riemannian metric inherited from MatN(F), with F = R,C,H accord-

ing asβ = 1,2,4;
• µ = the volume measure onM corresponding tog;
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• Φ ≡ 0 and (hence)µΦ = νGN .

Then the corollary yields the theorem. ⊓⊔
We next deduce a corollary with an elementary character which does not make

reference to differential geometry.

Corollary 4.4.28 Let β ∈ {1,2}. Let GN = O(N),U(N), according asβ = 1,2.
Put SGN = {X ∈ GN : detX = 1}. Let f be a continuous real-valued function on
GN which, for some constant C and all X,Y ∈ GN, satisfies

| f (X)− f (Y)| ≤Ctr((X−Y)(X−Y)∗)1/2 . (4.4.31)

Then we have

sup
X∈GN

|νGN f −
∫

f (YX)dνSGN(Y)| ≤ 2C, (4.4.32)

and furthermore

νGN

(
| f (·)−

∫
f (Y·)dνSGN (Y)| ≥ δ

)
≤ 2e

−

(
β(N+2)

4 −1

)
δ2

2C2 (4.4.33)

for all δ > 0.

For the proof we need a lemma which records some group-theoretical tricks. We
continue in the setting of Corollary 4.4.28.

Lemma 4.4.29Let HN ⊂GN be the subgroup consisting of diagonal matrices with
all diagonal entries equal to1 except possibly the entry in the upper left corner.
Let H′

N ⊂ GN be the subgroup consisting of scalar multiples of the identity. For
any continuous real-valued function f on GN, put

(S f)(X) =

∫
f (Y X)dνSGN(Y) ,

(T f)(X) =

∫
f (XZ)dνHN (Z) ,

(T ′ f )(X) =

∫
f (XZ)dνH′

N
(Z) .

Then we have TS f= ST f = νGN f . Furthermore, ifβ = 2 or N is odd, then we
have T′S f = ST′ f = νGN f .

Proof It is clear thatTS= ST. SinceGN = {XY : X ∈ SGN, Y ∈ HN}, and Haar
measure on a compact group is both left- and right-invariant, it follows thatTS f
is constant, and hence thatTS f = νGN f . The remaining assertions of the lemma
are proved similarly. ⊓⊔
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Proof of Corollary 4.4.28 From (4.4.31) it follows that| f − T f | ≤ 2C. The
bound (4.4.32) then follows by applying the previous lemma.We turn to the proof
of (4.4.33). By mollifying f as in the course of the proof of Lemma 2.3.3, we
may assume for the rest of this proof thatf ∈ C∞(GN). Now fix Z ∈ HN and
define fZ ∈C∞(SGN) by fZ(Y) = f (Y Z), noting thatνSGN fZ = (S f)(Z) and that
the constantC bounds| fZ|L ,SGN . We obtain (4.4.33) by applying (4.4.29) tofZ
and then averaging overZ ∈ HN. The proof is complete. ⊓⊔

We next describe a couple of important applications of Corollary 4.4.28. We
continue in the setup of Corollary 4.4.28.

Corollary 4.4.30 Let D be a constant and let DN,D′
N ∈ MatN be real diagonal

matrices with all entries bounded in absolute value by D. LetF be a Lipschitz
function onR with Lipschitz constant|F |L . Set f(X) = tr(F(D′

N +XDNX∗)) for
X ∈ GN. Then for everyδ > 0 we have

νGN (| f −νGN f | ≥ δN) ≤ 2exp


−

(
β (N+2)

4 −1
)

Nδ 2

16D2‖F‖2
L


 .

Proof To abbreviate we write‖X‖= (trXX∗)1/2 for X ∈MatN(C). ForX,Y ∈GN

we have

| f (X)− f (Y)| ≤
√

2N‖F‖L

∥∥XD′
NX∗−YD′

NY∗∥∥≤ 2
√

2ND‖X−Y‖ .

Further, by Lemma 4.4.29, sinceT f = f , we haveνGN f = S f. Plugging into
Corollary 4.4.28, we obtain the result. ⊓⊔

In Chapter 5, we will need the following concentration result for noncommuta-
tive polynomials.

Corollary 4.4.31Let Xi ∈ MatN(C) for i = 1, . . . ,k be a collection of nonrandom
matrices and let D be a constant bounding all singular valuesof these matrices.
Let p= p(t1, . . . ,tk+2) be a polynomial in k+2 noncommuting variables with com-
plex coefficients, and for X∈ U(N), define f(X) = tr p(X,X∗,X1, . . . ,Xk). Then
there exist positive constants N0 = N0(p) and c= c(p,D) such that, for anyδ > 0
and N> N0(p),

νU(N)

(
| f −νU(N) f | > δN

)
≤ 2e−cN2δ 2

. (4.4.34)

Proof We may assume without loss of generality thatp= ti1 · · · tiℓ for some indices
i1, . . . , iℓ ∈ {1, . . . ,k+2}, and also thatN > ℓ. We claim first that, for allX ∈U(N),

νU(N) f =

∫
f (YX)dνSU(N)(Y) =: (S f)(X) . (4.4.35)
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For some integera such that|a| ≤ ℓ we havef (eiθ X) = eiaθ f (X) for all θ ∈ R

and X ∈ U(N). If a = 0, thenS f = νU(N) f by Lemma 4.4.29. Otherwise, if

a > 0, thenνU(N) f = 0, but alsoS f = 0, becausef (e2π i/NX) = e2π ia/N f (X) and

e2π ia/NIN ∈ SU(N). This completes the proof of (4.4.35).

It is clear that f is a Lipschitz function, with Lipschitz constant depending
only onℓ andD. Thus, from Corollary 4.4.28 in the caseβ = 2 and the equality
νU(N) f = S f, we obtain (4.4.34) forp = ti1 · · · tiℓ with N0 = ℓ andc = c(ℓ,D),
which finishes the proof of Corollary 4.4.31. ⊓⊔

Exercise 4.4.32Prove Lemma 2.3.2.
Hint: follow the approximation ideas used in the proof of Theorem4.4.17, replac-
ing V by an approximationVε(x) =

∫
V(x+ εz)µ(dz) with µ the normal distribu-

tion.

Exercise 4.4.33In this exercise, you provide another proof of Proposition 4.4.26
by proving directly that the law

PN
V (dλ1, . . . ,dλN) =

1

ZV
N

e−N∑N
i=1V(λi)∆(λi)

β
N

∏
i=1

dλi

on RN satisfies the LSI with constant(Nc)−1. This proof extends to theβ -
ensembles discussed in Section 4.5.
(i) Use Exercise 4.4.32 to show that Theorem 4.4.18 extends to the case where

Φ(λ ) = N
N

∑
i=1

V(λi)−
β
2 ∑

i 6= j

log|λi −λ j | .

(Alternatively, you may prove this directly by first smoothingΦ.)
(ii) Note that

Hess(−β
2 ∑

i 6= j

log|λi −λ j |)kl =

{
−β (λk−λl)

−2 if k 6= l ,
β ∑ j 6=k(λk−λ j)

−2 otherwise ,

is a nonnegative matrix, and apply Theorem 4.4.18.

4.5 Tridiagonal matrix models and theβ ensembles

We consider in this section a class of random matrices that are tridiagonal and
possess joint distribution of eigenvalues that generalizethe classical GOE, GUE
and GSE matrices. The tridiagonal representation has some advantages, among
them a link with the well-developed theory of random Schroedinger operators.
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4.5.1 Tridiagonal representation ofβ ensembles

We begin by recalling the definition ofχ random variables (witht degrees of
freedom).

Definition 4.5.34The density onR+

ft (x) =
21−t/2xt−1e−x2/2

Γ(t/2)

is called theχ distributionwith t degrees of freedom, and is denotedχt .

Here,Γ(·) is Euler’s Gamma function, see (2.5.5). The reason for the name is that
if t is integer andX is distributed according toχt , thenX has the same law as√

∑t
i=1 ξ 2

i whereξi are standard Gaussian random variables.

Let ξi be independent i.i.d. standard Gaussian random variables of zero mean
and variance 1, and letYi ∼ χiβ be independent and independent of the vari-
ables{ξi}. Define the tridiagonal symmetric matrixHN ∈ MatN(R) with en-
triesHN(i, j) = 0 if |i − j| > 1, HN(i, i) =

√
2/βξi andHN(i, i +1) = YN−i/

√
β ,

i = 1, . . . ,N. The main result of this section is the following.

Theorem 4.5.35 (Edelman–Dumitriu)The joint distribution of the eigenvalues
of HN is given by

CN(β )∆(λ )β e−
β
4 ∑N

i=1λ 2
i , (4.5.1)

where the normalization constant CN(β ) can be read off(2.5.11).

We begin by performing a preliminary computation that proves Theorem 4.5.35
in the caseβ = 1 and also turns out to be useful in the proof of the theorem in the
general case.

Proof of Theorem 4.5.35 (β = 1) Let XN be a matrix distributed according to the
GOE law (and in particular, its joint distribution of eigenvalues has the density
(2.5.3) withβ = 1, coinciding with (4.5.1)). SetξN = XN(1,1)/

√
2, noting that,

due to the construction in Section 2.5.1,ξN is a standard Gaussian variable. Let

X(1,1)
N denote the matrix obtained fromXN by striking the first column and row,

and letZT
N−1 = (XN(1,2), . . . ,XN(1,N)). ThenZN−1 is independent ofX(1,1)

N and
ξN. Let H̃N be an orthogonalN− 1-by-N− 1 matrix, measurable onσ(ZN−1),
such thatH̃NZN−1 = (‖ZN−1‖2,0, . . . ,0), and setYN−1 = ‖ZN−1‖2, noting that
YN−1 is independent ofξN and is distributed according toχN−1. (A particular
choice ofH̃N is theHouseholder reflector̃HN = I −2uuT/‖u‖2

2, whereu= ZN−1−
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‖ZN−1‖2(1, . . . ,0).) Let

HN =

(
1 0
0 H̃N

)
.

Then the law of eigenvalues ofHNXNHT
N is still (4.5.1), while

HNXNHT
N =




√
2ξN YN−1 0N−2

YN−1

XN−1

0N−2


 ,

whereXN−1 is again distributed according to the GOE and is independentof ξN

andYN−1. Iterating this constructionN−1 times (in the next step, with the House-
holder matrix corresponding toXN−1), one concludes the proof (withβ = 1). ⊓⊔

We next prove some properties of the eigenvalues and eigenvectors of tridiag-
onal matrices. Recall some notation from Section 2.5:DN denotes the collection
of diagonalN-by-N matrices with real entries,Dd

N denotes the subset ofDN con-
sisting of matrices with distinct entries, andDdo

N denotes the subset of matrices
with decreasing entries, that isDdo

N = {D∈ Dd
N : Di,i > Di+1,i+1}. Recall also that

U
(1)

N denotes the collection ofN-by-N orthogonal matrices, and letU
(1),+

N denote

the subset ofU (1)
N consisting of matrices whose first row has all elements strictly

positive.

We parametrize tridiagonal matrices by two vectors of length N and N− 1,

a = (a1, . . . ,aN) andb = (b1, . . . ,bN−1), so that ifH ∈ H
(1)

N is tridiagonal then

H(i, i) = aN−i+1 andH(i, i +1) = bN−i . Let TN ⊂ H
(1)

N denote the collection of
tridiagonal matrices with all entries ofb strictly positive.

Lemma 4.5.36The eigenvalues of any H∈ TN are distinct, and all eigenvectors
v = (v1, . . . ,vN) of H satisfy v1 6= 0.

Proof The null space of any matrixH ∈ TN is at most one dimensional. Indeed,
supposeHv = 0 for some nonzero vectorv = (v1, . . . ,vN). Because all entries of
b are nonzero, it is impossible thatv1 = 0 (for then, necessarily allvi = 0). So
supposev1 6= 0, and thenv2 = −aN/bN−1. By solving recursively the equation

bN−ivi−1 +aN−ivi = −bN−i−1vi+1, i = 2, . . . ,N−1, (4.5.2)

which is possible because all entries ofb are nonzero, all entries ofv are deter-
mined. Thus, the null space of anyH ∈ TN is one dimensional at most. Since
H −λ I ∈ TN for anyλ , the first part of the lemma follows. The second part fol-
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lows because we showed that ifv 6= 0 is in the null space ofH−λ I , it is impossible
to havev1 = 0. ⊓⊔

Let H ∈ TN, with diagonalsa and b as above, and writeH = UDUT with
D∈Ddo

N andU = [v1, . . . ,vN] orthogonal, such that the first row ofU , denotedv =

(v1
1, . . . ,v

N
1 ), has nonnegative entries. (Note that‖v‖2 = 1.) Write d =

(D1,1, . . . ,DN,N). Let ∆c
N = {(x1, . . . ,xN) : x1 > x2 · · · > xN} and let

SN−1
+ = {v = (v1, . . . ,vN) ∈ RN : ‖v‖2 = 1, vi > 0} .

(Note that∆c
N is similar to∆N, except that the ordering of coordinates is reversed.)

Lemma 4.5.37The map

(a,b) 7→ (d,v) : RN ×R
(N−1)
+ → ∆c

N ×SN−1
+ (4.5.3)

is a bijection, whose Jacobian J is proportional to

∆(d)

∏N−1
i=1 bi−1

i

. (4.5.4)

Proof That the map in (4.5.3) is a bijection follows from the proof of Lemma
4.5.36, and in particular from (4.5.2) (the map(d,v) 7→ (a,b) is determined by
the relationH = UDUT).

To evaluate the Jacobian, we recall the proof of theβ = 1 case of Theorem
4.5.35. LetX be a matrix distributed according to the GOE, consider the tridiag-
onal matrix with diagonalsa,b obtained fromX by the successive Householder
transformations employed in that proof. WriteX =UDU∗ whereU is orthogonal,
D is diagonal (with elementsd), and the first rowu of U consists of nonnegative
entries (and strictly positive except on a set of measure 0).Note that, by Corollary
2.5.4,u is independent ofD and, by Theorem 2.5.2, the density of the distribution
of the vector(d,u) with respect to the product of the Lebesgue measure on∆c

N

and the the uniform measure onSN−1
+ is proportional to∆(d)e−∑N

i=1d2
i /4. Using

Theorem 4.5.35 and the first part of the lemma, we conclude that the latter (when
evaluated in the variablesa,b) is proportional to

Je−∑N
i=1

a2
i
4 −∑N−1

i=1
b2
i
2

N−1

∏
i=1

bi−1
i = Je−∑N

i=1 d2
i /4

N−1

∏
i=1

bi−1
i .

The conclusion follows. ⊓⊔
We will also need the following useful identity.
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Lemma 4.5.38With notation as above, we have the identity

∆(d) =
∏N−1

i=1 bi
i

∏N
i=1vi

1

. (4.5.5)

Proof Write H = UDUT. Let e1 = (1,0, . . . ,0)T. Let w1 be the first column of
UT, which is the vector made out of the first entries ofv1, . . . ,vn. One then has

N−1

∏
i=1

bi
i = det[e1,He1, . . . ,H

N−1e1] = det[e1,UDUTe1, . . . ,UDN−1UTe1]

= ±det[w1,Dw1, . . . ,DN−1w1] = ±∆(d)
N

∏
i=1

vi
1 .

Because all terms involved are positive by construction, the± is actually a+, and
the lemma follows. ⊓⊔

We can now conclude.

Proof of Theorem 4.5.35 (generalβ > 0) The density of the independent vectors
a andb, together with Lemma 4.5.37, imply that the joint density ofd andv with
respect to the product of the Lebesgue measure on∆c

N and the uniform measure
onSN−1

+ is proportional to

J
N−1

∏
i=1

biβ−1
i e−

β
4 ∑N

i=1d2
i . (4.5.6)

Using the expression (4.5.4) for the Jacobian, one has

J
N−1

∏
i=1

biβ−1
i = ∆(d)

(
N−1

∏
i=1

bi
i

)β−1

= ∆(d)β

(
N

∏
i=1

vi
1

)β−1

,

where (4.5.5) was used in the second equality. Substitutingin (4.5.6) and integrat-
ing over the variablesv completes the proof. ⊓⊔

4.5.2 Scaling limits at the edge of the spectrum

By Theorem 4.5.35, Corollary 2.6.3 and Theorem 2.6.6, we know that λN/
√

N,
the maximal eigenvalue ofHN/

√
N, converges to 2 asN → ∞. It is thus natural

to consider the matrixH̃N = HN − 2
√

NIN, and study its top eigenvalue. For
β = 1,2,4, we have seen in Theorems 3.1.4 and 3.1.7 that the top eigenvalue of
N1/6H̃N converges in distribution (to the Tracy–Widom distributionsFβ ). In this
section, we give an alternative derivation, valid for allβ , of the convergence in
distribution, although the identification of the limit doesnot involve the Tracy–
Widom distributions.
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One of the advantages of the tridiagonal representation of Theorem 4.5.35 is
that one can hope that scaling limits of tridiagonal matrices naturally relate to
(second order) differential operators. We begin by providing a heuristic argument
that allows one to guess both the correct scale and the form ofthe limiting oper-
ator. From the definition ofχ variables witht degrees of freedom, such variables
are asymptotically (for larget) equivalent to

√
t + G/

√
2 whereG is a standard

Gaussian random variable. ConsiderH̃N as an operator acting on column vectors
ψ = (ψ1, . . . ,ψN)T. We look for parametersα,γ such that, if one writesn= [xNα ]

andψn = Ψ(x) for some “nice” functionΨ, the action of the top left corner of
Nγ H̃N on ψ approximates the action of a second order differential operator onΨ.
(We consider the upper left corner because this is where the off-diagonal terms
have largest order, and one expects the top of the spectrum tobe related to that
corner.) Toward this end, expandΨ in a Taylor series up to second order, and
write ψn±1 ∼ ψn±N−α Ψ′(x)+ N−2α Ψ′′(x)/2. Using the asymptotic form ofχ
variables mentioned above, one gets, after neglecting small error terms, that, for
α < 1 andx in some compact subset ofR+,

(Nγ H̃Nψ)(n) ∼ Nγ+1/2−2αΨ′′(x)

+

√
1

2β
Nγ
(

2G(1)
n +G(2)

n +G(2)
n−1

)
Ψ(x)−xNα+γ−1/2Ψ(x) , (4.5.7)

where{G(i)
n }, i = 1,2, are independent sequences of i.i.d. standard Gaussian vari-

ables. It is then natural to try to representG(i)
n as discrete derivatives of indepen-

dent Brownian motions: thus, letWx, Wx denote standard Brownian motions and
(formally) write G(1)

n = N−α/2W′
x, G(2)

n = N−α/2W
′
x with the understanding that

a rigorous definition will involve integration by parts. Substituting in (4.5.7) and
writing Bx = (Wx +Wx)/

√
2, we obtain formally

(Nγ H̃Nψ)(n) ∼ Nγ+1/2−2αΨ′′(x)+
2Nγ−α/2B′

x√
β

Ψ(x)−xNα+γ−1/2Ψ(x) , (4.5.8)

where (4.5.8) has to be understood after an appropriate integration by parts against
smooth test functions. To obtain a scaling limit, one then needs to takeα,γ so that

γ +
1
2
−2α = γ − α

2
= α + γ − 1

2
= 0⇒ α =

1
3
,γ =

1
6

.

In particular, we recover the Tracy–Widom scaling, and expect the top of the
spectrum ofN1/6H̃N to behave like the top of the spectrum of the “stochastic Airy
operator”

Hβ :=
d2

dx2 −x+
2√
β

B′
x . (4.5.9)
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The rest of this section is devoted to providing a precise definition of Hβ , devel-
oping some of its properties, and proving the convergence ofthe top eigenvalues
of N1/6H̃N to the top eigenvalues ofHβ . In doing so, the convergence of the
quadratic forms associated withN1/6H̃N toward a quadratic form associated with
Hβ plays an important role. We thus begin by providing some analytical machin-
ery that will be useful in controlling this convergence.

On smooth functions of compact support in(0,∞), introduce the bilinear non-
degenerate form

〈 f ,g〉∗ =

∫ ∞

0
f ′(x)g′(x)dx+

∫ ∞

0
(1+x) f (x)g(x)dx.

DefineL∗ as the Hilbert space obtained by completion with respect to the inner
product〈·, ·〉∗ (and norm‖ f‖∗ =

√
〈 f , f 〉∗). Because of the estimate

| f (x)− f (y)| ≤
√
|x−y|‖ f‖∗ , (4.5.10)

elements ofL∗ are continuous functions, and vanish at the origin. Furtherprop-
erties ofL∗ are collected in Lemma 4.5.43 below.

Definition 4.5.39A pair ( f ,λ ) ∈L∗×R is called aneigenvector–eigenvalue pair
of Hβ if ‖ f‖2 = 1 and, for any compactly supported infinitely differentiable func-
tion φ ,

λ
∫ ∞

0
φ(x) f (x)dx =

∫ ∞

0
[φ ′′(x) f (x)−xφ(x) f (x)]dx

− 2√
β

[∫ ∞

0
φ ′(x) f (x)Bxdx+

∫ ∞

0
φ(x)Bx f ′(x)dx

]
. (4.5.11)

Remark 4.5.40 Equation (4.5.11) expresses the following:( f ,λ ) is an
eigenvector–eigenvalue pair ofHβ if Hβ f = λ f in the sense of Schwarz dis-
tributions, where we understandf (x)B′

x as the Schwarz distribution that is the
derivative of the continuous functionf (x)Bx−

∫ x
0 By f ′(y)dy.

Remark 4.5.41Using the fact thatf ∈ L∗, one can integrate by parts in (4.5.11)
and express all integrals as integrals involvingφ ′ only. In this way, one obtains
that ( f ,λ ) is an eigenvector–eigenvalue pair ofHβ if and only if, for Lebesgue
almost everyx and some constantC, f ′(x) exists and

f ′(x) = C+

∫ x

0
(λ + θ ) f (θ )dθ −Bx f (x)+

∫ x

0
Bθ f ′(θ )dθ . (4.5.12)

Since the right side is a continuous function, we conclude that f ′ can be taken con-
tinuous. (4.5.12) will be an important tool in deriving properties of eigenvector–
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eigenvalue pairs, and in particular the nonexistence of twoeigenvector–eigenvalue
pairs sharing the same eigenvalue.

The main result of this section in the following.

Theorem 4.5.42 (Ramirez–Rider–Virag)Fix β > 0 and let λ N
N > λ N

N−1 > · · ·
denote the eigenvalues of HN. For almost every Brownian path Bx, for each k≥ 0,
the collection of eigenvalues ofHβ possesses a well defined k+1st largest element
λk. Further, the random vector N1/6(λ N

N− j −2
√

N)k
j=0 converges in distribution

to the random vector(λ j)
k
j=0.

The proof of Theorem 4.5.42 will take the rest of this section. It is divided into
two main steps. We first study the operatorHβ by associating with it a variational
problem. We prove, see Corollary 4.5.45 and Lemma 4.5.47 below, that the eigen-
values ofHβ are discrete, that they can be obtained from this variational problem
and that the associated eigenspaces are simple. In a second step, we introduce a
discrete quadratic form associated withĤN = N1/6H̃N and prove its convergence
to that associated withHβ , see Lemma 4.5.50. Combining these facts will then
lead to the proof of Theorem 4.5.42.

We begin with some preliminary material related to the spaceL∗.

Lemma 4.5.43Any f ∈ L∗ is Hölder(1/2)-continuous and satisfies

x1/4| f (x)| ≤ 2‖ f‖∗ , x > 1. (4.5.13)

Further, if { fn} is a bounded sequence inL∗ then it possesses a subsequence that
converges to some f inL∗ in the following senses: (i) fn →L2 f , (ii) f ′n → f ′

weakly in L2, (iii) f n → f uniformly on compacts, (iv) fn → f weakly inL∗.

Proof The Hölder continuity statement is a consequence of (4.5.10). The latter
also implies that for any functionf with derivative inL2,

| f (y)| ≥
(
| f (x)|−

√
|y−x|‖ f ′‖2

)
+

and in particular, for anyx,

f 2(x) ≤ 2‖ f‖2‖ f ′‖2 . (4.5.14)

(Indeed, fixx and consider the setAx = {y : |y− x| ≤ f 2(x)/4‖ f ′‖2
2}. On Ax,

| f (y)| ≥ | f (x)|/2. Writing ‖ f‖2
2 ≥

∫
Ax

f 2(y)dy then gives (4.5.14).) Since‖ f‖2
∗ ≥∫ ∞

z (1+ x) f 2(x)dx≥ z
∫ ∞

z f 2(x)dx, applying the estimate (4.5.14) on the function
f (z)1z≥x yields (4.5.13).
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Points (ii) and (iv) in the statement of the lemma follow fromthe Banach–
Alaoglu Theorem (Theorem B.8). Point (iii) follows from theuniform equi-
continuity on compacts of the sequencefn that is a consequence of the uniform
Hölder estimate. Together with the uniform integrabilitysupn

∫
x f2

n (x)dx < ∞,
this gives (i). ⊓⊔

The next step is the introduction of a bilinear form onL∗ associated withHβ .
Toward this end, note that if one interprets−Hβ φ for φ smooth in the sense of
Schwarz distributions, then it can be applied (as a linear functional) again onφ ,
yielding the quadratic form

〈φ ,φ〉Hβ := ‖φ ′‖2
2 +‖

√
xφ(x)‖2

2 +
4√
β

∫ ∞

0
Bxφ(x)φ ′(x)dx. (4.5.15)

We seek to extend the quadratic form in (4.5.15) to functionsin L∗. The main
issue is the integral

2
∫ ∞

0
Bxφ(x)φ ′(x)dx=

∫ ∞

0
Bx(φ(x)2)′dx.

Since it is not true that|Bx| < C
√

x for all largex, in order to extend the quadratic
form in (4.5.15) to functions inL∗, we need to employ the fact thatBx is itself
regular inx. More precisely, define

B̄x =

∫ x+1

x
Bydy.

For φ smooth and compactly supported, we can writeBx = B̄x + (Bx − B̄x) and
integrate by parts to obtain

∫ ∞

0
Bx(φ(x)2)′dx= −

∫ ∞

0
(B̄x)

′φ2(x)dx+2
∫ ∞

0
(Bx− B̄x)φ(x)φ ′(x)dx.

This leads us to define

〈φ ,φ〉Hβ := ‖φ ′‖2
2+‖

√
xφ(x)‖2

2−
2√
β

[∫ ∞

0
Qxφ2(x)dx−2

∫ ∞

0
Rxφ(x)φ ′(x)dx

]
,

(4.5.16)
where

Qx = (B̄x)
′ = Bx+1−Bx , Rx = Bx− B̄x . (4.5.17)

As we now show, this quadratic form extends toL∗.

Lemma 4.5.44(a) For eachε > 0 there exists a random constant C (depending
on β , ε and B· only) such that

4√
β

sup
x

|Qx| ∨ |Rx|
C+

√
x

≤ ε . (4.5.18)
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(b) The quadratic form〈·, ·〉Hβ of (4.5.16)extends to a continuous symmetric bi-
linear form onL∗×L∗: there exists a (random) constant C′, depending on the
Brownian path B· only, such that, almost surely,

1
2
‖ f‖2

∗−C′‖ f‖2
2 ≤ 〈 f , f 〉Hβ ≤C′‖ f‖2

∗ . (4.5.19)

Proof For part (a), note that

|Qx| ∨ |Rx| ≤ Z[x] +Z[x]+1 ,

whereZi = supy∈[0,1] |Bi+y−Bi |. The random variablesZi are i.i.d. and satisfy
P(Zi > t) ≤ 4P(G > t) whereG is a standard Gaussian random variable. From
this and the Borel–Cantelli Lemma, (4.5.18) follows.

We turn to the proof of (b). The sum of the first two terms in the definition
of 〈 f , f 〉Hβ equals‖ f‖2

∗−‖ f‖2
2. By the estimate (4.5.18) onQ with ε = 1/10,

the third term can be bounded in absolute value by‖ f‖2
∗/10+C1‖ f‖2

2 for some
(random) constantC1 (this is achieved by upper boundingC(1+

√
x) by C1 +

x/10). Similarly, the last term can be controlled as
∫ ∞

0
(C+

1
10

√
x)| f (x)|| f ′(x)|dx≤C‖ f‖‖ f‖∗ +

1
10

‖ f‖2
∗ ≤

1
5
‖ f‖2

∗ +C2‖ f‖2
2 .

Combining these estimates (and the fact that‖ f‖∗ dominates‖ f‖2) yields (4.5.19).
⊓⊔

We can now consider the variational problem associated withthe quadratic form
〈·, ·〉Hβ of (4.5.16).

Corollary 4.5.45The infimum in the minimization problem

Λ0 := inf
f∈L∗,‖ f‖2=1

〈 f , f 〉Hβ (4.5.20)

is achieved at some f∈ L∗, and( f ,−Λ0) is an eigenvector–eigenvalue pair for
Hβ , with−Λ0 = λ0.

We will shortly see in Lemma 4.5.47 that the minimizer in Corollary 4.5.45 is
unique.

Proof By the estimate (4.5.19), the infimum in (4.5.20) is finite. Let { fn}n be a
minimizing sequence, that is‖ fn‖2 = 1 and〈 fn, fn〉Hβ → Λ0. Again by (4.5.19),
there is some (random) constantK so that‖ fn‖∗ ≤ K for all n. Write

〈 fn, fn〉Hβ = ‖ fn‖2
∗−‖ fn‖2

2−
2√
β

[∫ ∞

0
Qx f 2

n (x)dx−2
∫ ∞

0
Rx fn(x) f ′n(x)dx

]
.

Let f ∈ L∗ be a limit point of fn (in all the senses provided by Lemma 4.5.43).
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Then 1= ‖ fn‖2 → ‖ f‖2 and hence‖ f‖2 = 1, while liminf‖ fn‖∗ ≥ ‖ f‖∗. Fix
ε > 0. Then, by (4.5.18), there is a random variableX such that

∣∣∣∣∣
2√
β

[∫ ∞

X
Qx f 2

n (x)dx−2
∫ ∞

X
Rx fn(x) f ′n(x)dx

]∣∣∣∣∣≤ ε‖ fn‖∗ .

The convergence offn to f uniformly on [0,X] together with the boundedness of
‖ fn‖∗ then imply that

〈 f , f 〉Hβ ≤ lim inf
n→∞

〈 fn, fn〉Hβ + εK = Λ0 + εK .

Sinceε is arbitrary, it follows from the definition ofΛ0 that 〈 f , f 〉Hβ = Λ0, as
claimed.

To see that( f ,−Λ0) is an eigenvector–eigenvalue pair, fixε > 0 andφ smooth
of compact support, and setf ε,φ = ( f + εφ)/‖ f + εφ‖2 (reduceε if needed so
thatφ 6= f/ε). Then

〈 f ε , f ε 〉Hβ −〈 f , f 〉Hβ

= −2ε〈 f , f 〉Hβ

∫ ∞

0
f (x)φ(x)dx+2ε

∫ ∞

0
( f ′(x)φ ′(x)+x f(x)φ(x))dx

− 4ε√
β

[∫ ∞

0
Qxφ(x) f (x)dx−

∫ ∞

0
Rx[φ(x) f (x)]′dx

]
+O(ε2) .

Thus, a necessary condition forf to be a minimizer is that the linear inε term in
the last equality vanishes for all such smooth and compactlysupportedφ . Using
the fact thatφ is compactly supported, one can integrate by parts the term involv-
ing Q and rewrite it in terms ofBx. Using also the fact that〈 f , f 〉Hβ = Λ0, one
gets from this necessary condition that( f ,−Λ0) satisfies (4.5.11).

Finally, we note that by (4.5.11) and an integration by parts, if (g,λ ) is an
eigenvector–eigenvalue pair then for any compactly supported smoothφ ,

λ
∫ ∞

0
φ(x)g(x)dx =

∫ ∞

0
[φ ′′(x)g(x)−xφ(x)g(x)]dx

− 4√
β

[∫ ∞

0
φ(x)g(x)Qxdx−

∫ ∞

0
Rx[φ(x)g(x)]′dx

]
. (4.5.21)

Take a sequence{φn} of smooth, compactly supported functions, so thatφn → g in
L∗. Applying the same argument as in the proof of Lemma 4.5.44, one concludes
that all terms in (4.5.21) (withφn replacingφ ) converge to their value withf
replacingφ . This implies that〈g,g〉Hβ =−λ‖g‖2

2, and in particular thatλ ≤−Λ0.
Since the existence of a minimizerf to (4.5.20) was shown to imply that( f ,−Λ0)

is an eigenvector–eigenvalue pair, we conclude that in fact−Λ0 = λ0. ⊓⊔
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Remark 4.5.46The collection of scalar multiples of minimizers in Corollary
4.5.45 forms a linear subspaceH0. We show thatH0 is finite dimensional: in-
deed, let{ fn} denote an orthogonal (inL2) basis ofH0, and suppose that it is
infinite dimensional. By Lemma 4.5.44, there is a constantC such that‖ fn‖∗ ≤C.
Switching to a subsequence if necessary, it follows from Lemma 4.5.43 thatfn
converges to somef in L2, with ‖ f‖2 = 1, and in factf ∈ H0. But on the other
hand,f is orthogonal to allfn in H0 and thusf 6∈ H0, a contradiction.

We can now repeat the construction of Corollary 4.5.45 inductively. Fork≥ 1,
with H ⊥

k−1 denoting the ortho-complement ofHk−1 in L2, set

Λk := inf
f∈L∗,‖ f‖2=1, f∈H ⊥

k

〈 f , f 〉Hβ . (4.5.22)

Mimicking the proof of Corollary 4.5.45, one shows that the infimum in (4.5.22)
is achieved at somef ∈ L∗, and( f ,−Λk) is an eigenvector–eigenvalue pair for
Hβ , with −Λk = λk. We then denote byHk the (finite dimensional) linear space
of scalar multiples of minimizers in (4.5.22). It follows that the collection of
eigenvalues ofHβ is discrete and can be ordered asλ0 > λ1 > · · · .

Our next goal is to show that the spacesHk are one dimensional, i.e. that each
eigenvalue is simple. This will come from the analysis of (4.5.12). We have the
following.

Lemma 4.5.47For each given C,λ and continuous function B·, the solution to
(4.5.12)is unique. As a consequence, the spacesHk are all one-dimensional.

Proof Integrating by parts, we rewrite (4.5.12) as

f ′(x) =C+(λ +x)
∫ x

0
f ′(θ )dθ −

∫ x

0
f ′(θ )dθ −Bx

∫ x

0
f ′(θ )dθ +

∫ x

0
Bθ f ′(θ )dθ .

(4.5.23)
By linearity, it is enough to show that solutions of (4.5.23)vanish whenC = 0.
But, for C = 0, one gets that for some boundedC′(x) = C′(λ ,B·,x) with C′(x)
increasing inx, | f ′(x)| ≤ C′ ∫ x

0 | f ′(θ )|dθ . An application of Gronwall’s Lemma
shows thatf ′(x) = 0 for all positivex. To see thatHk is one dimensional, note
that if f satisfies (4.5.12) with constantC, thenc f satisfies the same with constant
cC. ⊓⊔

Another ingredient of the proof of Theorem 4.5.42 is the representation of the



314 4. SOME GENERALITIES

matrix ĤN := N1/6H̃N as an operator onL∗. Toward this end, define (forx∈ R+)

yN,1(x) = N−1/6

√
2
β

[xN1/3]

∑
i=1

HN(i, i) , (4.5.24)

yN,2(x) = 2N−1/6
[xN1/3]

∑
i=1

(
√

N−HN(i, i +1)) . (4.5.25)

Standard estimates lead to the following.

Lemma 4.5.48There exists a probability space supporting the processes yN, j (·)
and two independent Brownian motions B·, j , j = 1,2, such that, with respect to
the Skorohod topology, the following convergence holds almost surely:

yN, j(·) ⇒
√

2
β

Bx, j +x2( j −1)/2, j = 1,2.

In the sequel, we work in the probability space determined byLemma 4.5.48, and
write Bx = Bx,1+Bx,2 (thus defining naturally a version of the operatorHβ whose
relation to the matriceŝHN needs clarification). Toward this end, we consider the
matricesĤN as operators acting onRN equipped with the norm

‖v‖2
N,∗ = N1/3

N

∑
i=1

(v(i +1)−v(i))2+N−2/3
N

∑
i=1

iv(i)2 +N−1/3
N

∑
i=1

v(i)2 ,

where we setv(N + 1) = 0. Write 〈v,w〉N,2 = N−1/3 ∑N
i=1v(i)w(i) and let‖v‖N,2

denote the associated norm onRN. Recall the random variablesYi appearing in
the definition of the tridiagonal matrixHN, see Theorem 4.5.35, and motivated by
the scaling in Theorem 4.5.42, introduce

ηi = 2N−1/6(
√

N− 1√
β

EYN−i) ,

γi = 2N−1/6 1√
β

(EYN−i −YN−i) .

It is straightforward to verify thatηi ≥ 0 and that, for some constantκ independent
of N,

i

κ
√

N
−κ ≤ ηi ≤

κ i√
N

+ κ . (4.5.26)

Also, with w(1)
k =

√
2/βN−1/6 ∑k

i=1 ξi andw(2)
k = ∑k

i=1 γi , we have that for any
ε > 0 there is a tight sequence of random variablesκN,ε satisfying

sup
i≤k≤i+N1/3

|w( j)
k −w( j)

i |2 ≤ ε iN−1/3 + κN,ε . (4.5.27)
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We now have the following analog of (4.5.19).

Lemma 4.5.49There exists a tight sequence of random variables ci = ci(N), i =
1,2,3, so that, for all N and v,

c1‖v‖2
N,∗−c2‖v‖2

N,2 ≤−〈v,ĤNv〉N,2 ≤ c3‖v‖2
N,∗ .

Proof Using the definitions, one gets (settingv(N+1) = 0)

−〈v,ĤNv〉N,2 = N1/3
N

∑
i=1

(v(i +1)−v(i))2+2N−1/6
N

∑
i=1

ηiv(i)v(i +1)

−
√

2
β

N−1/6
N

∑
i=1

v2(i)ξi +2N−1/6
N

∑
i=1

γiv(i)v(i +1)

=: S1 +S2−S3+S4 . (4.5.28)

One identifiesS1 with the first term in‖v‖2
N,∗. Next, we have

N

∑
i=1

ηiv(i)v(i +1)≤
√

N

∑
i=1

ηiv(i)2 ·
N

∑
i=1

ηiv(i +1)2 ,

and thus, together with the bound (4.5.26), we have thatS2 is bounded above by
a constant multiple of the sum of the second and third terms in‖v‖2

N,∗. Similarly,
we have from the boundab≥−(a−b)2/3+a2/4 that

ηiv(i)v(i +1)≥−1
3

η(vi+1−vi)
2 +

1
4

ηiv
2
i ≥−1

3
η(vi+1−vi)

2 +
1

4κ
iv2

i −
κ
4

v2
i

and using (4.5.26) again, we conclude that, for an appropriate constantc(κ),

S2 +S1 ≥
2
3
‖v‖2

N,∗−c(κ)‖v‖2
2 . (4.5.29)

We turn next toS3. Write δw( j)
k = N−1/3[w( j)

k+N1/3 −w( j)
k ], j = 1,2. Summing

by parts we get

S3 =
N

∑
i=1

(w(1)
i+1−w(1)

i − δw(1)
i )v2(i)+

N

∑
i=1

δw(1)
i v2(i)

= N−1/3
N

∑
i=1

(
i+N1/3

∑
ℓ=i+1

(w(1)
ℓ −w(1)

i )

)
(v2(i +1)−v2(i))+

N

∑
i=1

δw(1)
i v2(i)

=: S3,1 +S3,2 . (4.5.30)
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Using (4.5.27) we find that

|S3,1| ≤
N

∑
i=1

|v2(i +1)−v2(i)|
√

ε iN−1/3 + κN,ε

≤
√

εN1/3
N

∑
i=1

(v(i +1)−v(i))2+
1√
ε

N

∑
i=1

(ε iN−2/3 + κN,εN−1/3)v2(i)

≤
√

ε‖v‖2
N,∗ +

κN,ε√
ε
‖v‖2

2 .

Applying (4.5.27) again to estimateS3,2, we conclude that

|S3| ≤ (
√

ε + ε)‖v‖2
N,∗ +(

1√
ε

+1)κN,ε‖v‖2
2 .

A similar argument applies toS4. Choosingε small and combining with the esti-
mate (4.5.29) then concludes the proof of the lemma. ⊓⊔

Because the family of random variables in Lemma 4.5.49 is tight, any subse-
quence{Nk} possesses a further subsequence{Nki} so that the estimates there
hold with fixed random variablesci (now independent ofN). To prove Theorem
4.5.42, it is enough to consider such a subsequence. With some abuse of notation,
we continue to writeN instead ofNk.

Each vectorv∈ RN can be identified with a piecewise constant functionfv by
the formula fv(x) = v(⌈N1/3x⌉) for x ∈ [0,⌈N2/3⌉] and fv(x) = 0 for all otherx.
The collection of such functions (for a fixedN) forms a closed linear subspace of
L2 := L2(R+), denotedL2,N, andĤN acts naturally onL2,N. Let PN denote the
projection fromL2 to L2,N ⊂ L2. ThenĤN extends naturally to an operator onL2

by the formulaĤN f = ĤNPN f . The relation between the operatorsĤN andHβ
is clarified in the following lemma.

Lemma 4.5.50(a) Let fN ∈ L2,N and suppose fN → f weakly in L2, so that

N1/3( fN(x+N−1/3)− fN(x)) → f ′(x) weakly in L2 .

Then, for any compactly supportedφ ,

〈φ ,ĤN fN〉2 → 〈φ ,φ〉Hβ . (4.5.31)

b) Let fN ∈ L2,N with ‖ fN‖N,∗ ≤ c and‖ fN‖2 = 1. Then there exists an f∈ L∗
and a subsequence Nℓ → ∞ so that fNℓ

→ f in L2 and, for all smooth, compactly
supportedφ , one has

〈φ ,ĤNℓ
fNℓ

〉2 →ℓ→∞ 〈φ , f 〉Hβ .
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Proof The first part is an exercise in summation by parts that we omit. To see
the second part, pick a subsequence such that bothfN andN1/3( fN(x+N−1/3)−
fN(x)) converge weakly inL2 to a limit ( f ,g), with f (x) =

∫ t
0 g(s)ds(this is pos-

sible because‖ fN‖N,∗ < ∞). An application of the first part of the lemma then
completes the proof. ⊓⊔

We have now put in place all the analytic machinery needed to conclude.

Proof of Theorem 4.5.42Write ηN,k = N1/6(λ N
N−k − 2

√
N). ThenηN,k is the

kth top eigenvalue ofĤN. Let vN,k denote the associated eigenvector, so that
‖ fvN,k‖2 = 1. We first claim that̄ηk := limsupηk,N ≤ λk. Indeed, ifη̄k > −∞, one
can find a subsequence, that we continue to denote byN, so that(ηN,1, . . . ,ηN,k)→
(ξ1, . . . ,ξk = η̄k). By Lemma 4.5.49, forj = 1, . . . ,k, ‖vN, j‖N,∗ are uniformly
bounded, and hence, on a further subsequence,fvN, j converge inL2 to a limit f j ,
j = 1, . . . ,N, and thef j are eigenvectors ofHβ with eigenvalue at least̄ηk. Since
the f j are orthogonal inL2 and the spacesH j are one dimensional, it follows that
λk ≥ η̄k.

To see the reverse implication, that will complete the proof, we use an inductive
argument. Suppose thatηN, j → λ j and fvN, j → f j in L2 for j = 1, . . . ,k−1, where
( f j ,λ j) is the jth eigenvector–eigenvalue pair forHβ . Let ( fk,λk) be thekth
eigenvector–eigenvalue pair forHβ . Let f ε

k be smooth and of compact support, so
that‖ fk− f ε

k ‖∗ ≤ ε, and set

fN,k = PN f ε
k −

k−1

∑
j−1

〈vN, j ,PN f ε
k 〉vN, j .

Since‖vN, j‖N,∗ < c for some fixedc by Lemma 4.5.49, and‖PN f ε
k − fvN,k‖2

is bounded by 2ε for N large, it follows that‖ fN,k −PN f ε
k ‖N,∗ < cε for some

(random) constantc. Using Lemma 4.5.49 again, we get that

liminf
N→∞

ηN,k ≥ lim inf
N→∞

〈 fN,k,ĤN fN,k〉
〈 fN,k, fN,k〉

= lim inf
N→∞

〈PN f ε
k ,ĤNPN f ε

k 〉
〈PN f ε

k ,PN f ε
k 〉

+s(ε) ,

(4.5.32)
wheres(ε) →ε→0 0. Applying (4.5.31), we have that

lim
N→∞

〈PN f ε
k ,ĤNPN f ε

k 〉 = 〈 f ε
k , f ε

k 〉Hβ .

Substituting in (4.5.32), we get that

liminf
N→∞

ηN,k ≥
〈 f ε

k , f ε
k 〉Hβ

‖ fk‖2
+s′(ε) ,

where agains′(ε) →ε→0 0. This implies, after takingε → 0, that

liminf
N→∞

ηN,k ≥ λk .
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The convergence offvN,k → fk follows from point (b) of Lemma 4.5.50. ⊓⊔

4.6 Bibliographical notes

The background material on manifolds that we used in Section4.1 can be found
in [Mil97] and [Ada69]. The Weyl formula (Theorem 4.1.28) can be found in
[Wey39]. A general version of the coarea formula, Theorem 4.1.8, is due to Fed-
erer and can be found in [Fed69], see also [Sim83] and [EvG92]for less intimi-
dating descriptions.

The physical motivation for studying different ensembles of random matrices
is discussed in [Dys62e]. We note that the Laguerre and Jacobi ensembles oc-
cur also through statistical applications (the latter under the name MANOVA, or
multivariate analysis of variance), see [Mui81].

Our treatment of the derivation of joint distributions of eigenvalues was influ-
enced by [Due04] (the latter relies directly on Weyl’s formula) and [Mat97]. The
book [For05] is an excellent recent reference on the derivation of joint distribu-
tions of eigenvalues of random matrices belonging to various ensembles; see also
[Meh91] and the more recent [Zir96]. Note, however, that thecircular ensembles
COE andCSEdo not correspond to random matrices drawn uniformly from the
unitary ensembles as in Proposition 4.1.6. A representation theoretic approach to
the study of the latter that also gives central limit theorems for moments is pre-
sented in [DiS94] and further developed in [DiE01]. The observation contained
in Remark 4.1.7 is motivated by the discussion in [KaS99]. For more on the root
systems mentioned in Remark 4.1.5 and their link to the Weyl integration formula,
see [Bou05, Chapter 9, Section 2].

The theory of point processes and the concept of Palm measures apply to much
more general situations than we have addressed in Section 4.2. A good treatment
of the theory is contained in [DaVJ88]. Our exposition builds on [Kal02, Chapter
11].

Point processesx0 onR whose associated difference sequencesy0 (see Lemma
4.2.42) are stationary with marginals of finite mean are calledcyclo-stationary. It
is a general fact, see [Kal02, Theorem 11.4], that all cyclo-stationary processes
are in one-to-one correspondence with nonzero stationary simple point processes
of finite intensity via the Palm recipe.

Determinantal point processes were studied in [Mac75], seealso the survey
[Sos00]. The representation of Proposition 4.2.20, as wellas the observation that
it leads to a simple proof of Corollary 4.2.21 and of the CLT ofCorollary 4.2.23
(originally proved in [Sos02a]), is due to [HoKPV06]. See also [HoKPV09]. The
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Jánossy densities of Definition 4.2.7 for determinantal processes were studied in
[BoS03], see [Sos03] for the Pfaffian analog.

The argument in the proof of Proposition 4.2.30 was suggested to us by T.
Suidan. Lemma 4.2.50 appears in [Bor99]. Lemma 4.2.52 is taken from [GeV85].
A version valid for continuous time processes was proved earlier in [KaM59]. The
relation between non-intersecting random walks, Brownianmotions and queueing
systems was developed in [OcY01], [OcY02], [KoOR02] and [Oco03]. There is
a bijection between paths conditioned not to intersect and certain tiling problems,
see [Joh02], [Kra90] and references therein; thus, certaintiling problems are re-
lated to determinantal processes. The relation with spanning trees in graphs is
described in [BuP93]. Finally, two-dimensional determinantal processes appear
naturally in the study of zeroes of random analytic functions, as was discovered
in [PeV05], see [HoKPV09].

The description of eigenvalues of the GUE as a diffusion process, that is, Theo-
rem 4.3.2, was first stated by Dyson [Dys62a]. McKean [McK05,p.123] consid-
ered the symmetric Brownian motion and related its eigenvalues to Dyson’s Brow-
nian motion. A more general framework is developed in [NoRW86] in the context
of Brownian motions of ellipsoids. The relation between paths conditioned not to
intersect and the Dyson process is studied in [BiBO05] and [DoO05]. The ideas
behind Lemma 4.3.6 come from [Śni02]. A version of Lemma 4.3.10 can be found
in [RoS93]. Whenβ = 1,2, µt in that lemma is the asymptotic limit of the spectral
measure ofXN,β (0)+HN,β (t). It is a special case of free convolution (of the law
µ and the semicircle law with variancet) that we shall describe in Chapter 5. A
refined study of the analytic properties of free convolutionwith a semicircle law
that greatly expands on the results in Lemma 4.3.15 appears in [Bia97b].

The properly rescaled process of eigenvalues converges weakly to thesine pro-
cess(in the bulk) and theAiry process(at the edge), see [TrW03], [Adl05] and
[AdvM05]. The Airy process also appears as the limit of various combinatorial
problems. For details, see [PrS02] or [Joh05]. Other processes occur in the study
of rescaled versions of the eigenvalue processes of other random matrices. In par-
ticular, the Laguerre process arises as the scaling limit ofthe low-lying eigenvalues
of Wishart matrices, see [Bru91], [KoO01] and [Dem07], and has the interpreta-
tion of Bessel processes conditioned not to intersect.

The use of stochastic calculus as in Theorem 4.3.20 to prove central limit theo-
rems in the context of Gaussian random matrices was introduced in [Cab01]. This
approach extends to the study of the fluctuations of words of two (or more) inde-
pendent Wigner matrices, see [Gui02] who considered central limit theorems for
words of a Gaussian band matrix and deterministic diagonal matrices.
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Proposition 4.3.23 is due to [CaG01]. It was completed into afull large devi-
ation principle in [GuZ02] and [GZ04]. By the contraction principle (Theorem
D.7), it implies also the large deviations principle forLN(1), and in particular for
the empirical measure of eigenvalues for the sum of a Gaussian Wigner matrixXN

and a deterministic matrixAN whose empirical measure of eigenvalues converges
and satisfies (4.3.23). ForAN = 0, this recovers the results of Theorem 2.6.1 in
the Gaussian case.

As pointed out in [GuZ02] (see also [Mat94]), the large deviations for the em-
pirical measure of the eigenvalues ofAN +XN are closely related to the Itzykson–
Zuber–Harish-Chandra integral, also called spherical integral, given by

I (2)
N (A,D) =

∫
e

βN
2 tr(UDU∗A)dm(β )

N (U),

where the integral is with respect to the Haar measure on the orthogonal group
(whenβ = 1) and unitary group (whenβ = 2). This integral appeared first in the
work of Harish-Chandra [Har56] who proved that whenβ = 2,

I (2)
N (A,D) =

det((eNdi a j )1≤i, j≤N)

∏i< j(ai −a j)∏i< j(di −d j)
,

where(di)1≤i≤N (resp.(ai)1≤i≤N) denote the eigenvalues ofD (resp.A). Itzykson
and Zuber [ItZ80] rederived this result, proved it using theheat equation, and gave

some properties ofI (2)
N (A,D) asN goes to infinity. The integralI (2)

N (A,D) is also
related to Schur functions, see [GuM05].

Concentration inequalities have a long history, we refer to[Led01] for a modern
and concise introduction. Theorem 4.4.13 is taken from [GuZ00], where analo-
gous bounds are derived, via Talagrand’s method [Tal96], for the case in which
the entries of the matrixXN are bounded uniformly byc/

√
N for some constant

c. Under boundedness assumptions, concentration inequalities for thes-largest
eigenvalue are derived in [AlKV02]. The proof of Klein’s Lemma 4.4.12 follows
[Rue69, Page 26].

In [GuZ00] it is explained how Theorems 2.3.5 and 4.4.4 allowone to obtain
concentration results for the empirical measure, with respect to the Wasserstein
distance

d(µ ,ν) = sup
f :|| f ||∞≤1,|| f ||L ≤1

|
∫

f dµ −
∫

f dν| , µ ,ν ∈ M1(R).

(d(µ ,ν) is also called the Monge–Kantorovich–Rubinstein distance, see the his-
torical comments in [Dud89, p. 341–342]).

Concentration inequalities for the Lebesgue measure on compact connected
Riemannian manifold were first obtained, in the case of the sphere, in [Lév22]
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and then generalized to arbitrary compact connected Riemannian manifold of di-
mensionn with Ricci curvature bounded below by(n−1)R2 for someR> 0 in
[GrMS86, p. 128]. Our approach in Section 4.4.2 follows Bakry and Emery
[BaE85], who introduced the criterion that carries their names. The ergodicity of
Pt invoked in the course of proving Theorem 4.4.18, see (4.4.21), does not depend
on the BE criterion and holds in greater generality, as a consequence of the fact
thatΓ vanishes only on the constants, see [Bak94]. In much of our treatment, we
follow [AnBC+00, Ch. 5], [GuZ03, Ch. 4] and [Roy07], which we recommend
for more details and other applications.

Concentration inequalities for the empirical measure and largest eigenvalue of
Hermitian matrices with stable entries are derived in [HoX08].

The first derivation of tridiagonal matrix models for theβ -Hermite and La-
guerre ensembles is due to [DuE02]. These authors used the models to derive
CLT results for linear statistics [DuE06]. In our derivation, we borrowed some
tools from [Par80, Ch. 7]. Soon after, other three- and five-diagonal models for
the β -Jacobi and circular ensembles were devised in [KiN04], explicitly linking
to the theory of orthogonal polynomials on the unit circle and the canonical ma-
trix form of unitary matrices introduced in [CaMV03]. The book [Sim05a] and
the survey [Sim07] contains much information on the relations between the coef-
ficients in the three term recursions for orthogonal polynomials on the unit circle
with respect to a given measure (the Verblunsky coefficients) and the CMV ma-
trices of [CaMV03]. In this language, the key observation of[KiN04] is that the
Verblunsky coefficients corresponding to Haar-distributed unitaries are indepen-
dent. See also [FoR06], [KiN07] and [BoNR08] for further developments in this
direction.

The derivation in Section 4.5.2 of the asymptotics of the eigenvalues of the
β -ensembles at the edge is due to [RaRV06], who followed a conjecture of Edel-
man and Sutton [EdS07]. (In [RaRV06], tail estimates on the top eigenvalue are
deduced from the diffusion representation.) The results in[RaRV06] are more
general than we have exposed here in that they apply to a largeclass of tridiagonal
matrices, as long as properly rescaled coefficients converge to Brownian motion.
Analogous results for the “hard edge” (as in the case of the bottom eigenvalue
of Wishart matrices) are described in [RaR08]. A major challenge is to identify
the Tracy–Widom distributions (and theirβ -analogs) from the diffusion in The-
orem 4.5.42. The description of the process of eigenvalues in the bulk involves
a different machinery, see [VaV07] (where it is called “Brownian carousel”) and
[KiS09].
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Free probability

Citing D. Voiculescu,“Around 1982, I realized that the right way to look at certain
operator algebra problems was by imitating some basic probability theory. More
precisely, in noncommutative probability theory a new kindof independence can
be defined by replacing tensor products with free products and this can help un-
derstand the von Neumann algebras of free groups. The subject has evolved into a
kind of parallel to basic probability theory, which should be called free probability
theory.”

Thus, Voiculescu’s first motivation to introduce free probability was the analy-
sis of the von Neumann algebras of free groups. One of his central observations
was that such groups can be equipped with tracial states (also called traces), which
resemble expectations in classical probability, whereas the property of freeness,
once properly stated, can be seen as a notion similar to independence in classical
probability. This led him to the statement

free probability theory=noncommutative probability theory+ free independence.

These two components are the basis for a probability theory for noncommuta-
tive variables where many concepts taken from probability theory such as the no-
tions of laws, convergence in law, independence, central limit theorem, Brownian
motion, entropy and more can be naturally defined. For instance, the law of one
self-adjoint variable is simply given by the traces of its powers (which generalizes
the definition through moments of compactly supported probability measures on
the real line), and the joint law of several self-adjoint noncommutative variables
is defined by the collection of traces of words in these variables. Similarly to the
classical notion of independence, freeness is defined by certain relations between
traces of words. Convergence in law just means that the traceof any word in the
noncommutative variables converges towards the right limit.

322
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This chapter is devoted to free probability theory and some of its consequences
for the study of random matrices.

5.1 Introduction and main results

The key relation between free probability and random matrices was discovered
by Voiculescu in 1991 when he proved that the trace of any wordin independent
Wigner matrices converges toward the trace of the corresponding word in free
semicircular variables. Roughly speaking, he proved the following (see Theorem
5.4.2 for a complete statement).

Theorem 5.1.1Let (Ω,B,P) be a probability space and N, p be positive inte-

gers. Let XN
i : Ω →H

(β )
N , 1≤ i ≤ p, be a family of independent Gaussian Wigner

matrices following the (rescaled) GOE or GUE. Then, for any integer k≥ 1 and
i1, . . . , ik ∈ {1, . . . , p}, N−1tr(XN

i1
· · ·XN

iℓ
) converges almost surely (and in expec-

tation) as N→ ∞ to a limit denotedσ (p)(Xi1 · · ·Xip). σ (p) is a linear form on
noncommutative polynomial functions which is called thelaw of p free semicir-
cular variables.

Laws of free variables are defined in Definition 5.3.1. These are noncommutative
laws which are defined uniquely in terms of the laws of their variables, that is,
in terms of their one-variable marginal distributions. In Theorem 5.1.1 all the
one-variable marginals are the same, namely, the semicircle law. The statement
of Theorem 5.1.1 extends to Hermitian or real symmetric Wigner matrices whose
entries have finite moments, see Theorem 5.4.2. Another extension deals with
words that include also deterministic matrices whose law converges, as in the
following.

Theorem 5.1.2Letβ = 1 or 2 and let(Ω,B,P) be a probability space. LetDN =

{DN
i }1≤i≤p be a sequence of Hermitian deterministic matrices with uniformly

bounded spectral radius, and letXN = {XN
i }1≤i≤p, XN

i : Ω → H
(β )

N , 1≤ i ≤ p,
be self-adjoint independent Wigner matrices whose entrieshave zero mean and
finite moments of all order. Assume that for any positive integer k and i1, . . . , ik ∈
{1, . . . , p}, N−1tr(DN

i1
· · ·DN

ik
) converges to some numberµ(Di1 · · ·Dik).

Then, for any positive integerℓ and polynomial functions(Qi ,Pi)1≤i≤ℓ,

1
N

tr
(
Q1(DN)P1(XN)Q2(DN) · · ·Pℓ(X

N)
)
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converges almost surely and in expectation to a limit denoted

τ (Q1(D)P1(X)Q2(D) · · ·Pℓ(X)) .

Here,τ is the law of p free semicircular variablesX, free from the collection of
noncommutative variablesD of law µ .

(See Theorem 5.4.5 for the full statement and the proof.)

Theorems 5.1.1 and 5.1.2 are extremely useful in the study ofrandom matrices.
Indeed, many classical models of random matrices can be written as some polyno-
mials in Wigner matrices and deterministic matrices. This is the case for Wishart
matrices or, more generally, for band matrices (see Exercises 5.4.14 and 5.4.16).

The law of free variables appears also when one considers random matrices fol-
lowing Haar measure on the unitary group. The following summarizes Theorem
5.4.10.

Theorem 5.1.3TakeDN = {DN
i }1≤i≤p as in Theorem 5.1.2. LetUN = {UN

i }1≤i≤p

be a collection of independent Haar-distributed unitary matrices independent
from{DN

i }1≤i≤p, and set(UN)∗ = {(UN
i )∗}1≤i≤p. Then, for any positive integerℓ

and any polynomial functions(Qi ,Pi)1≤i≤ℓ,

lim
N→∞

1
N

tr
(
Q1(D

N)P1(U
N,(UN)∗)Q2(D

N) · · ·Pℓ(U
N,(UN)∗)

)

= τ (Q1(D)P1(U,U∗)Q2(D) · · ·Pℓ(U,U∗)) a.s.,

whereτ is the law of p free variablesU = (U1, . . . ,Up), free from the noncommu-
tative variablesD of law µ . The law of Ui , 1≤ i ≤ p, is such that

τ((UiU
∗
i −1)2) = 0, τ(Un

i ) = τ((U∗
i )n) = 1n=0 .

Thus, free probability appears as the natural setting to study the asymptotics of
traces of words in several (possibly random) matrices.

Adopting the point of view that traces of words in several matrices are funda-
mental objects is fruitful because it leads to the study of some general structure
such as freeness (see Section 5.3); freeness in turns simplifies the analysis of con-
vergence of moments. The drawback is that one needs to consider more general
objects than empirical measures of eigenvalues convergingtowards a probabil-
ity measure, namely, traces of noncommutative polynomialsin random matrices
converging towards a linear functional on such polynomials, called a tracial state.
Analysis of such objects is then achieved using free probability tools.

In the first part of this chapter, Section 5.2, we introduce the setup of free prob-
ability theory (the few required notions from the theory of operator algebras are
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contained in Appendix G). We then define in Section 5.3 the property of freeness
and discuss free cumulants and free convolutions. In Section 5.4, which can be
read independently of the previous ones except for the description of the limit-
ing quantities in terms of free variables, we show that the asymptotics of many
classical models of random matrices satisfy the freeness property, and use that
observation to evaluate limiting laws. Finally, Section 5.5 uses free probability
tools to describe the behavior of spectral norms of noncommutative polynomials
in independent random matrices taken from the GUE.

5.2 Noncommutative laws and noncommutative probability spaces

In this section, we introduce the notions of noncommutativelaws and noncommu-
tative probability spaces. An example that the reader should keep in mind con-
cernsN×N matrices(M1, . . . ,Mp); a natural noncommutative probability space
is then the algebra ofN×N matrices, equipped with the normalized traceN−1tr,
whereas the law (or empirical distribution) of(M1, . . . ,Mp) is given by the collec-
tion of the normalized traces of all words in these matrices.

5.2.1 Algebraic noncommutative probability spaces and laws

Basic algebraic notions are recalled in Appendix G.1.

Definition 5.2.1A noncommutative probability spaceis a pair(A ,φ) whereA

is a unital algebra overC andφ is a linear functionalφ : A →C so thatφ(1) = 1.
Elementsa∈ A are callednoncommutative random variables.

Let us give some relevant examples of noncommutative probability spaces.

Example 5.2.2

(i) Classical probability theoryLet (X,B,µ) be a probability space and set
A = L∞(X,B,µ). Takeφ to be the expectationφ(a) =

∫
X a(x)µ(dx).

Note that, for anyp < ∞, the spacesLp(X,B,µ) are not algebras for the
usual product. (But the intersection

⋂
1≤p<∞ Lp(X,B,µ) is again an alge-

bra.) To consider unbounded variables, we will introduce later the notion
of affiliated operators, see Subsection 5.2.3.

(ii) Discrete groupsLet G be a discrete group with identitye and letA =

C(G) denote the group algebra (see Definition G.1). Takeφ to be the
linear functional onA so that, for allg∈ G, φ(g) = 1g=e.
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(iii) Matrices Let N be a positive integer andA = MatN(C). Let 〈·, ·〉 denote
the scalar product onCN and fixv∈ CN such that〈v,v〉 = 1. We can take
φ onA to be given byφv(a) = 〈av,v〉, or byφN(a) = N−1tr(a).

(iv) Random matricesLet (X,B,µ) be a probability space. DefineA =

L∞(X,µ ,MatN(C)), the space ofN×N-dimensional complex random ma-
trices withµ-almost surely uniformly bounded entries. Set

φN(a) =
1
N

∫

X
tr(a(x))µ(dx) =

1
N

N

∑
i=1

∫
〈a(x)ei ,ei〉µ(dx) , (5.2.1)

where here theei are the standard basis vectors inCN. Alternatively, one
can consider, withv∈ CN so that〈v,v〉 = 1,

φv(a) =
∫

X
〈a(x)v,v〉µ(dx) . (5.2.2)

(v) Bounded operators on a Hilbert spaceLet H be a Hilbert space with inner
product〈·, ·〉 andB(H) be the set of bounded linear operators onH. We
set forv∈ H so that〈v,v〉 = 1 anda∈ B(H),

φv(a) = 〈av,v〉.

The GNS construction discussed below will show that this example is in a
certain sense universal. It is therefore a particularly important example to
keep in mind.

We now describe the notion oflaws of noncommutative variables. Hereafter,J
denotes a subset ofN, andC〈Xi |i ∈ J〉 denotes the set of polynomials in noncom-
mutative indeterminates{Xi}i∈J, that is, the set of all finiteC-linear combinations
of words in the variablesXi with the empty word identified to 1∈ C; in symbols,

C〈Xi |i ∈ J〉 = {γ0 +
m

∑
k=1

γkXik1
· · ·Xikpk

,γk ∈ C,m∈ N, ikj ∈ J}.

C[X] = C〈X〉 denotes the set of polynomial functions in one variable.

Definition 5.2.3Let {ai}i∈J be a family of elements in a noncommutative proba-
bility space(A ,φ). Then, thedistribution(or law) of {ai}i∈J is the mapµ{ai}i∈J

:
C〈Xi |i ∈ J〉 → C such that

µ{ai}i∈J
(P) = φ(P({ai}i∈J)) .

This definition is reminiscent of the description of compactly supported proba-
bility measures (on a collection of random variables) by means of their (mixed)
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moments. Since linear functionals onC〈Xi |i ∈ J〉 are uniquely determined by their
values on wordsXi1 · · ·Xik, (i1, . . . , ik) ∈ J, we can and often do think of laws as
word-indexed families of complex numbers.

Example 5.2.4Example 5.2.2 continued.

(i) Classical probability theoryIf a∈ L∞(X,B,µ), we get by definition that

µa(P) =

∫
P(a(x))dµ(x)

and soµa is (the sequence of moments of) the law ofa underµ (or equiv-
alently the push-forwarda#µ of µ by a).

(ii) Discrete groupsLetGbe a group with identityeand takeφ(g) = 1g=e. Fix
{gi}1≤i≤n ∈Gn. The lawµ = µ{gi}1≤i≤n

has then the following description:
for any monomialP= Xi1Xi2 · · ·Xik, we haveµ(P) = 1 if gi1 · · ·gik = eand
µ(P) = 0 otherwise.

(iii) One matrix Let a be an N×N Hermitian matrix with eigenvalues
(λ1, . . . ,λN). Then we have, for all polynomialsP∈ C[X],

µa(P) =
1
N

tr(P(a)) =
1
N

N

∑
i=1

P(λi).

Thus,µa is (the sequence of moments of) the spectral measure ofa, and
thus (in effect) a probability measure onR.

(iv) One random matrixIn the setting of part (iv) of Example 5.2.2, ifa : X→
H

(β )
N , for β = 1 or 2, has eigenvalues(λ1(x), . . . ,λN(x))x∈X , we have

φN(P(a)) =
1
N

∫

X
tr(P(a)(x))µ(dx) =

1
N

N

∑
i=1

∫
P(λi(x))µ(dx)

= 〈L̄N,P〉 . (5.2.3)

Thus,µa is (the sequence of moments of) the mean spectral measure ofa.
(v) Several matrices(Setting of Example 5.2.2, parts (iii) and (iv)) If we are

given{ai}i∈J ∈ MatN(C) so thatai = a∗i for all i ∈ J, then forP∈ C〈Xi |i ∈
J〉,

µ{ai}i∈J
(P) := N−1tr(P({ai}i∈J))

defines a distribution of noncommutative variables.µ{ai}i∈J
is called the

empirical distribution or law of the matrices{ai}i∈J. Note that ifJ = {1}
anda1 is self-adjoint,µa1 can be identified, by the previous example, as the
empirical distribution of the eigenvalues ofa1. Observe that if the{ai}i∈J

are random and with the notation of Example 5.2.2, part 4, we may define
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their “quenched empirical distribution”̂µ{ai(x)}i∈J
for almost allx, or their

“annealed empirical distribution”
∫

µ̂{ai(x)}i∈J
dµ(x).

(vi) Bounded operators on a Hilbert spaceLet H be a Hilbert space andT a
bounded normal linear operator onH with spectrumσ(T) (see Appendix
G, and in particular Section G.1, for definitions). According to the spec-
tral theorem, Theorem G.6, ifχ is the spectral resolution ofT, for any
polynomial functionP∈ C[X],

P(T) =
∫

σ(T)
P(λ )dχ(λ ).

Therefore, withv∈ H so that〈v,v〉 = 1, we find that

φv(P(T)) = 〈P(T)v,v〉 =

∫

σ(T)
P(λ )d〈χ(λ )v,v〉.

Hence, the law ofT ∈ (B(H),φv) is (the sequence of moments of) the
compactly supported complex measured〈χ(λ )v,v〉.

(vii) Tautological exampleLet A = C〈Xi |i ∈ J〉 and letφ ∈ A ′ be any linear
functional such thatφ(1) = 1. Then(A ,φ) is a noncommutative proba-
bility space andφ is identically equal to the lawµ{Xi}i∈J

.

It is convenient to have a notion of convergence of laws. It iseasiest to work
with the weak*-topology. This leads us to the following definition.

Definition 5.2.5Let (AN,φN), N ∈ N∪{∞}, be noncommutative probability spa-
ces, and let{aN

i }i∈J be a sequence of elements ofAN. Then{aN
i }i∈J converges in

law to {a∞
i }i∈J if and only if for all P∈ C〈Xi |i ∈ J〉,

lim
N→∞

µ{aN
i }i∈J

(P) = µ{a∞
i }i∈J

(P).

We also say in such a situation that{aN
i }i∈J converges in momentsto {a∞

i }i∈J.

Since a law is uniquely determined by its values on monomialsin the noncom-
mutative variablesXi , the notion of convergence introduced here is the same as
“word-wise” convergence.

The tautological example mentioned in Example 5.2.4 underscores the point
that the notion of law is purely algebraic and for that reasontoo broad to capture
any flavor of analysis. We have to enrich the structure of a noncommutative prob-
ability space in various ways in order to put the analysis back. To begin to see
what sort of additional structure would be useful, considerthe case in whichJ is
reduced to a single element. Then a lawα is simply a linear functionalα ∈ C[X]′

such thatα(1) = 1, or equivalently a sequence of complex numbersαn = α(Xn)

indexed by positive integersn. Consider the following question.
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Does there exist a probability measureµ on the real line such thatα(P) =
∫

P(x)µ(dx) for
all P∈ C[X]?

This is a reformulation in the present setup of the Hamburgermoment problem.
It is well known that the problem has an affirmative solution if and only if all the
momentsαn are real, and furthermore the matrices{αi+ j}n−1

i, j=0 are positive defi-
nite for alln. We can rephrase the latter conditions in our setup as follows. Given
P= ∑i aiXi ∈C[X], ai ∈C, putP∗ = ∑i a

∗
i Xi. Then the Hamburger moment prob-

lem has an affirmative solution if and only ifα(P∗P) ≥ 0 for all P∈ C[X]. This
example underscores the important role played by positivity. Our next immedi-
ate goal is, therefore, to introduce the notion of positivity into the setup of non-
commutative probability spaces, through the concept of states andC∗-probability
spaces. We will then give sufficient conditions, see Proposition 5.2.14, for a linear
functionalτ ∈ C〈Xi |i ∈ J〉′ to be writtenφ(P({ai}i∈J)) = τ(P) for all polynomi-
alsP∈ C〈Xi |i ∈ J〉, where{ai}i∈J is a fixed family of elements of aC∗-algebraA
andφ is a state onA .

5.2.2 C∗-probability spaces and the weak*-topology

We first recallC∗-algebras, see Appendix G.1 for detailed definitions. We will re-
strict our discussion throughout to unitalC∗-algebras (andC∗-subalgebras) with-
out further mentioning it. Thus, in the following, aC∗-algebraA is a unital
algebra equipped with a norm‖ · ‖ and an involution∗ so that

‖xy‖ ≤ ‖x‖‖y‖, ‖a∗a‖ = ‖a‖2.

Recall thatA is complete under its norm.

An elementa of A is said to beself-adjoint(respectively,normal) if a∗ = a
(respectively,a∗a = aa∗). Let Asa (respectively,An) denote the set of self-adjoint
(respectively, normal) elements ofA .

Example 5.2.6The following are examples ofC∗-algebras.

(i) Function spacesIf X is a Polish space, the spacesB(X) andCb(X), of
C-valued functions which are, respectively, bounded and bounded contin-
uous, are unitalC∗-algebras when equipped with the supremum norm and
the conjugation operation. Note however that the spaceC0(R) of contin-
uous functions vanishing at infinity is in general not a (unital)C∗-algebra,
for it has no unit.

(ii) Classical probability theoryTake(X,B,µ) a measure space and setA =
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L∞(X,µ), with the norm

|| f || = ess supx| f (x)| .

(iii) MatricesAn important example is obtained if one takesA = MatN(C). It
is aC∗-algebra when equipped with the standard involution

(A∗)i j = Ā ji , 1≤ i, j ≤ N

and the operator norm given by the spectral radius.
(iv) Bounded operators on a Hilbert spaceThe previous example generalizes

as follows. TakeH a complex Hilbert space, and consider asA the space
B(H) of linear operatorsT : H → H which are bounded for the norm

||T||B(H) = sup
||e||H=1

||Te||H .

Here, the multiplication operation is taken as composition. The adjointT∗

of T ∈ B(H) is defined as the unique element ofB(H) such that〈Ty,x〉 =

〈y,T∗x〉 for all x,y∈ H, see (G.3).

Part (iv) of Example 5.2.6 is, in a sense, generic: anyC∗-algebraA is isomorphic
to a subC∗-algebra ofB(H) for some Hilbert spaceH (see e.g. [Rud91, Theorem
12.41]). We provide below a concrete example.

Example 5.2.7Let µ be a probability measure on a Polish spaceX. TheC∗-
algebraA = L∞(X,µ) can be identified as a subset ofB(H) with H = L2(X,µ) as
follows. For all f ∈ L∞(X,µ), we define the multiplication operatorM f ∈ B(H)

by M f g = f ·g (which is inH if g∈ H). ThenM mapsL∞(X,µ) into B(H).

In C∗-algebras, spectral analysis can be developed. We recall (see Appendix
G.2) that the spectrum of a normal operatora in a C∗-algebraA is the compact
set

sp(a) = {λ ∈ C : λe−a is not invertible} ⊂ {z∈ C : |z| ≤ ‖a‖}.

The same functional calculus we encountered in the context of matrices can be
used inC∗-algebras, for such normal operatorsa. Suppose thatf is continuous on
sp(a). By the Stone–Weierstrass Theorem,f can be uniformly approximated on
sp(a) by a sequence of polynomialspf

n in a anda∗. Then, by part (iii) of Theorem
G.7, the limit

f (a) = lim
n→∞

pf
n(a,a∗)

always exists, does not depend on the sequence of approximations, and yields an
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element ofA . It can thus serve as the definition off : a∈ A 7→ f (a) ∈ A (one
may alternatively use the spectral theorem, see Section G.2).

Remark 5.2.8The smallestC∗-subalgebraAa⊂A containing a given self-adjoint
operatora is given byAa = { f (a) : f ∈ C(sp(a))}. Indeed,Aa contains{p(a) :
p ∈ C[X]} and so, by functional calculus, contains{ f (a) : f ∈ C(sp(a))}. The
conclusion follows from the fact that the latter is aC∗-algebra. The norm onAa

is necessarily the spectral radius by Theorem G.3. Observe that this determines
an isomorphism ofC(sp(a)) into A that preserves linearity and involution. It is
a theorem of Gelfand and Naimark (see e.g. [Rud91, Theorem 11.18]) that if a
C∗-algebraA is commutative then it is isomorphic to the algebraC(X) for some
compactX; we will not need this fact.

To begin discussing probability, we need two more concepts:the first is posi-
tivity and the second is that of a state.

Definition 5.2.9Let (A ,‖ · ‖,∗) be aC∗-algebra.

(i) An elementa∈ A is nonnegative(denoteda≥ 0) if a∗ = a and its spec-
trum sp(a) is nonnegative.

(ii) A stateis a linear mapφ : A → C with φ(e) = 1 andφ(a) ≥ 0 if a≥ 0.
(iii) A state istracial if φ(ab) = φ(ba) for all a,b∈ A .

It is standard to check (see e.g. [Mur90, Theorem 2.2.4]) that

{a∈ A : a≥ 0} = {aa∗ : a∈ A } . (5.2.4)

Example 5.2.10An important example isA =C(X) with X some compact space.
Then, by the Riesz representation theorem, Theorem B.11, a state is a probability
measure onX.

C∗-probability spaces

Definition 5.2.11A quadruple(A ,‖ · ‖,∗,φ) is called aC∗-probability spaceif
(A ,‖ · ‖,∗) is aC∗-algebra andφ is a state.

As a consequence of Theorem 5.2.24 below, the law of a family of random vari-
ables{ai}i∈J in aC∗-probability space can always be realized as the law of random
variables{bi}i∈J in aC∗-probability space of the form(B(H),‖ ·‖,∗,a 7→ 〈av,v〉),
whereH is a Hilbert space with inner product〈·, ·〉, ‖ ·‖ is the operator norm, and
v∈ H is a unit vector.
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We show next how all cases in Example 5.2.2 can be made to fit thedefinition
of C∗-probability space.

Example 5.2.12Examples 5.2.2 and 5.2.4 continued.

(i) Classical probability theoryLet (X,B,µ) be a probability space and set
A = L∞(X,B,µ). Let φ(a) =

∫
X a(x)µ(dx) be the expectation operator.

In this setup, useH = L2(X,B,µ), consider eacha ∈ A as an element
of B(H) by associating with it the multiplication operatorMa f = a f (for
f ∈ H), and then writeφ(a) = 〈Ma1,1〉. A is equipped with a structure
of C∗-algebra as in part (i) of Example 5.2.6. Note that ifa is self-adjoint,
it is just a real-valued element ofL∞(X,B,µ), and the spectrum ofMa is
a subset of[ess-infx∈Xa(x),ess-supx∈Xa(x)]. The spectral projections are
then given byE(∆) = M1a−1(∆)

for any∆ in that interval.

(ii) Discrete groupsLet G be a discrete group. Consider an orthonormal basis
{vg}g∈G of ℓ2(G), the set of sums∑g∈G cgvg with cg ∈ C and∑ |cg|2 < ∞.
ℓ2(G) is equipped with a scalar product

〈∑
g∈G

cgvg, ∑
g∈G

c′gvg〉 = ∑
g∈G

cgc̄′g ,

which turns it into a Hilbert space. The action of eachg′ ∈ G on ℓ2(G)

becomesλ (g′)(∑gcgvg) = ∑gcgvg′g, yielding the left regular represen-
tation determined byG, which defines a family of unitary operators on
ℓ2(G). These operators are determined byλ (g)vh = vgh. TheC∗-algebra
associated with this representation is generated by the unitary operators
{λ (g)}g∈G, and coincides with the operator-norm closure of the linear
span of{λ (g)}g∈G (the latter contains any sum∑cgλ (g) when∑ |cg| <

∞). It is in particular included inB(ℓ2(G)). Take as trace the function
φ(a) = 〈ave,ve〉 wheree∈ G is the unit. In particular,φ(∑gbgλ (g)) = be.

(iii) Random matricesIn the setting of part (iv) of Example 5.2.2, consider
A = L∞(X,µ ,MatN(C)). The function

φN(a) =
1
N

∫

X
tr(a(x))µ(dx) =

1
N

N

∑
i=1

∫
〈a(x)ei ,ei〉µ(dx) , (5.2.5)

on A is a tracial state. There are many other states onA ; for any vector
v∈ CN with ||v|| = 1,

φv(a) =

∫
〈a(x)v,v〉dµ(x)

is a state.
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We now consider the set of laws of variables{ai}i∈J defined on aC∗-probability
space.

Definition 5.2.13Let (A ,‖ · ‖,∗) be aC∗-algebra. DefineMA = MA ,‖·‖,∗ to be
the set ofstatesonA , i.e. the set of linear formsα onA so that, for all positive
elementsa∈ A ,

α(a) ≥ 0, α(1) = 1. (5.2.6)

(By Lemma G.11, a stateα automatically satisfies‖α‖ ≤ 1, that is,|α(x)| ≤ ‖x‖
for anyx ∈ A .) Note that by either Lemma G.11 or (5.2.4), equation (5.2.6) is
equivalent to

α(bb∗) ≥ 0 ∀b∈ A , α(1) = 1. (5.2.7)

In studying laws of random variables{ai}i∈J in aC∗-algebraA , we may restrict
attention to self-adjoint variables, by writing for anya∈ A , a = b+ ic with b =

(a+ a∗)/2 andc = i(a∗−a)/2 both self-adjoint. Thus, in the sequel, we restrict
ourselves to studying the law of self-adjoint elements. In view of this restriction,
it is convenient to equipC〈Xi |i ∈ J〉 with the unique involution so thatXi = X∗

i ,
and, as a consequence,

(λXi1 · · ·Xim)∗ = λ̄Xim · · ·Xi1 , (5.2.8)

We now present a criterion for verifying that a given linear functional on
C〈Xi |i ∈ J〉 represents the law of a family of (self-adjoint) random variables on
someC∗-algebra. Its proof follows ideas that are also employed in the proof of
the Gelfand–Naimark–Segal construction, Theorem 5.2.24 below.

Proposition 5.2.14Let J be a set of positive integers. Fix a constant0 < R< ∞.
Let the involution onC〈Xi |i ∈ J〉 be as in(5.2.8). Then there exists a C∗-algebra
A = A (R,J) and a family{ai}i∈J of self-adjoint elements of it with the following
properties.

(a) supi∈J ‖ai‖ ≤ R.
(b) A is generated by{ai}i∈J as a C∗-algebra.
(c) For any C∗-algebraB and family of self-adjoint elements{bi}i∈J of it

satisfyingsupi∈J ‖bi‖ ≤ R, we have‖P({ai}i∈J)‖ ≥ ‖P({bi}i∈J)‖ for all
polynomials P∈ C〈Xi |i ∈ J〉.

(d) A linear functionalα ∈ C〈Xi |i ∈ J〉′ is the law of{ai}i∈J under some state
τ ∈ MA if and only ifα(1) = 1,

|α(Xi1 · · ·Xik)| ≤ Rk (5.2.9)

for all words Xi1, . . . ,Xik, andα(P∗P) ≥ 0 for all P ∈ C〈Xi |i ∈ J〉.
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(e) Under the equivalent conditions stated in point(d), the stateτ is unique,
and furthermoreτ is tracial if α(PQ) = α(QP) for all P,Q∈ C〈Xi |i ∈ J〉.

Points (a), (b) and (c) of Proposition 5.2.14 imply that, foranyC∗-algebraB and
{bi}i∈J as in point (c), there exists a unique continuous algebra homomorphism
A → B commuting with∗ sendingai to bi for i ∈ J. In this sense,A is the
universal example of aC∗-algebra equipped with anR-boundedJ-indexed family
of self-adjoint elements.

Proof To abbreviate notation, we write

A = C〈Xi |i ∈ J〉.

First we constructA and{ai}i∈J to fulfill the first three points of the proposition
by completingA in a certain way. ForP = P({Xi}i∈J) ∈ A, put

‖P‖R,J,C∗ = sup
B,{bi}i∈J

‖P({bi}i∈J)‖ , (5.2.10)

whereB ranges over allC∗-algebras and{bi}i∈J ranges over all families of self-
adjoint elements ofB such that supi∈J ‖bi‖ ≤ R. Put

L = {P∈ A : ‖P‖R,J,C∗ = 0}.

Now the function‖·‖R,J,C∗ is a seminorm on the algebraA . It follows thatL is
a two-sided ideal ofA and that‖·‖R,J,C∗ induces on the quotientA/L a norm.

Furthermore‖PP∗‖R,J,C∗ = ‖P‖2
R,J,C∗ , and hence‖P∗‖R,J,C∗ = ‖P‖R,J,C∗ for all

P∈ A. In particular, the involution∗ passes to the quotientA/L and preserves the
norm induced by‖·‖R,J,C∗ . Now completeA/L with respect to the norm induced
by ‖·‖R,J,C∗ , and equip it with the involution induced byP 7→ P∗, thus obtaining
aC∗-algebra. Call this completionA and letai denote the image ofXi in A for
i ∈ J. Thus we obtainA and self-adjoint{ai}i∈J fulfilling points (a), (b), (c).

Since the implication (d)(⇒) is trivial, and point (e) is easy to prove by approxi-
mation arguments, it remains only to prove (d)(⇐). GivenP= ∑ξ cξ ξ ∈ A, where
the summation extends over all wordsξ in theXi (including the empty word) and
all but finitely many of the coefficientscξ ∈ C vanish, we define

‖P‖R,J = ∑ |cξ |Rdegξ < ∞ ,

where degξ denotes the length of the wordξ . One checks that‖P‖R,J is a norm
onA and further, from assumption (5.2.9),

|α(P)| ≤ ‖P‖R,J , P∈ A. (5.2.11)
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ForP∈ A andQ∈ A satisfyingα(Q∗Q) > 0 we define

αQ(P) =
α(Q∗PQ)

α(Q∗Q)
,

and we set

‖P‖α =


 sup

Q∈A
α(Q∗Q)>0

αQ(P∗P)




1/2

.

By the continuity ofα with respect to‖ · ‖R,J, see (5.2.11), and Lemma G.22, we

have that‖P‖α ≤ ‖P∗P‖1/2
R,J . In particular,‖Xi‖α ≤ R for all i ∈ J.

We check that‖·‖α is a seminorm onA satisfying‖P∗P‖α = ‖P‖2
α for all P∈A.

Indeed, forλ ∈ C, ‖λP‖α = |λ | · ‖P‖α by definition. We verify next the sub-
additivity of ‖ · ‖α . SinceαQ is a nonnegative linear form onA, we have from
(G.6) that for anyS,T ∈ A,

[αQ((S+T)∗(S+T))]1/2 ≤ [αQ(S∗S)]1/2+[αQ(T∗T)]1/2 ,

from which‖S+T‖α ≤ ‖S‖α +‖T‖α follows by optimization overQ.

To prove the sub-multiplicativity of‖ ·‖, note first that by the Cauchy–Schwarz
inequality (G.5), forQ,S,T ∈ A with α(Q∗Q) > 0,

αQ(T∗S∗ST) vanishes if αQ(T∗T) = 0.

Then, assuming‖T‖α > 0,

‖ST‖2
α = sup

Q∈A
α(Q∗Q)>0

αQ(T∗S∗ST)

= sup
Q∈A

α(Q∗T∗TQ)>0

αTQ(S∗S)αQ(T∗T) ≤ ‖S‖2
α‖T‖2

α . (5.2.12)

We conclude that‖ · ‖α is a seminorm onA.

To verify that ‖TT∗‖α = ‖T‖2
α , note that by the Cauchy–Schwarz inequal-

ity (G.5) andαQ(1) = 1, we have|αQ(T∗T)|2 ≤ αQ((T∗T)2), hence‖T‖2
α ≤

‖T∗T‖α . By (5.2.12),‖T∗T‖α ≤ ‖T‖α‖T∗‖α and therefore we get that‖T‖α ≤
‖T∗‖α . By symmetry, this implies‖T∗‖α = ‖T‖α = ‖T∗T‖1/2

α , as claimed.

Using again the quotient and completion process which we used to construct
A , but this time using the seminorm‖·‖α , we obtain aC∗-algebraB and self-
adjoint elements{bi}i∈J satisfying supi∈J ‖bi‖ ≤ R and‖P‖α = ‖P({bi}i∈J)‖ for
P ∈ A. But then by point (c) we have‖P‖α ≤ ‖P‖R,J,C∗ for P ∈ A, and thus
|α(P)| ≤ ‖P‖R,J,C∗ . Let τ be the unique continuous linear functional onA such
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thatτ(P({ai}i∈J)) = α(P) for all P∈ A. Sinceα(P∗P) ≥ 0 for P∈ A, it follows,
see (5.2.7), thatτ is positive and hence a state onA . The proof of point (d)(⇐) is
complete. ⊓⊔

Example 5.2.15Examples 5.2.2 continued.

(i) Classical probability The setM1([−R,R]) of probability measures on
[−R,R] can be recovered as the setMA (R,{1}).

(ii) MatricesThe study of noncommutative laws of matrices{ai}i∈J belonging
to MatN(C) with spectral radii bounded byR reduces, by the remark fol-
lowing (5.2.7), to the study of laws of Hermitian matrices. For the latter,
the noncommutative law ofk matrices whose spectral radii are bounded
by Rcan be represented as elements ofMA (R,{1,...,k}).

The examples above do not accommodate laws of unbounded variables. We will
see in Section 5.2.3 that such laws can be defined using the notion of affiliated
operators.

Weak*-topology

Recall that we endowed the set of noncommutative laws with its weak*-topology,
see Definition 5.2.5.

Corollary 5.2.16For N ∈ N, let {aN
i }i∈J be self-adjoint elements of a C∗-proba-

bility space(AN,‖ ·‖N,∗N,φN). Assume that for all P∈ C〈Xi |i ∈ J〉, φN(P(aN
i , i ∈

J)) converges to someα(P). Let R> 0 be given, withA (R,J) the universal C∗-
algebra and{ai}i∈J the elements of it defined in Proposition 5.2.14.

(i) If supi∈J,N ‖aN
i ‖N ≤ R, then there exists a collection of statesψN, ψ on

A (R,J) so that, for any P∈ C〈Xi |i ∈ J〉,

ψN(P({ai}i∈J)) = φN(P({aN
i }i∈J)) , ψ(P({ai}i∈J)) = α(P) .

(ii) If there exists a finite R so that for all k∈ N and all (i j )1≤ j≤k ∈ Jk,

|α(Xi1 · · ·Xik)| ≤ Rk , (5.2.13)

then there exists a stateψ onA (R,J) so that, for any P∈ C〈Xi |i ∈ J〉,

ψ(P({ai}i∈J)) = α(P) .

Proof By the remark following Proposition 5.2.14, there exist forN ∈ N C∗-
homomorphismshN : A (R,J) → AN so thataN

i = hN(ai) and the stateψN =

φN ◦hN satisfiesφN(P({aN
i }i∈J)) = ψN(P({ai}i∈J)) for eachP∈ C〈Xi |i ∈ J〉. By

assumption,ψN(P({ai})) converges toα(P), and thus|α(P)| ≤ ‖P({ai}i∈J)‖ (the
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norm here is the norm onA (R,J)). As a consequence,α extends to a state on
A (R,J), completing the proof of the first part of the corollary.

The second part of the corollary is a direct consequence of part (d) of Proposi-
tion 5.2.14. ⊓⊔

We remark that a different proof of part (i) of Corollary 5.2.16 can be given
directly by using part (d) of Proposition 5.2.14. A different proof of part (ii) is
sketched in Exercise 5.2.20.

Example 5.2.17Examples 5.2.2, parts (iii) and (iv), continued.

(i) MatricesLet {MN
j } j∈J ∈ MatN(C) be a sequence of Hermitian matrices

and assume that there existsRfinite so that

limsup
N→∞

|µ{MN
j } j∈J

(Xi1 · · ·Xik)| ≤ Rk.

Assume thatµ{MN
j } j∈J

(P) converge asN goes to infinity to some limit

α(P) for all P ∈ C〈Xi |i ∈ J〉. Then, there exist noncommutative random
variables{a j} j∈J in a C∗-probability space so thatai = a∗i and{MN

j } j∈J

converge in law to{a j} j∈J.
(ii) Random matricesLet (Ω,B,µ) be a probability space. Forj ∈ J, let

MN
j (ω) ∈ H

(2)
N be a collection of Hermitian random matrices. If the re-

quirements of the previous example are satisfied for almost all ω ∈ Ω,
then we can conclude similarly that{MN

j (ω)} j∈J ∈ MatN(C) converges
in law to some{a j(ω)} j∈J. Alternatively, assume one can show the con-
vergence of the moments of products of elements from{MN

j (ω)} j∈J, in

L1(µ). In this case, we endow theC∗-algebra(MatN(C),‖ ·‖N,∗) with the
tracial stateφN = N−1µ ◦ tr. Observe thatφN is continuous with respect
to ‖M‖µ

∞ := ess sup‖M(ω)‖∞, but the latter unfortunately may be infinite.
However, if we assume that for alli j ∈ J, φN(MN

i1
· · ·MN

ik
) converges asN

goes to infinity toα(Xi1 · · ·Xik), and that there existsR< ∞ so that, for all
i j ∈ J,

α(Xi1 · · ·Xik)| ≤ Rk ,

then it follows from Corollary 5.2.16 that there exists a stateφα on the uni-
versal C∗-algebra A (R,J) and elements{ai}i∈J ∈ A (R,J) so that
{MN

i (ω)}i∈J converges in expectation to{ai}i∈J, i.e.

lim
N→∞

φN(P(MN
i (ω), i ∈ J)) = φα(P(ai , i ∈ J)) ∀P∈ C〈Xi |i ∈ J〉 .

This example applies in particular to collections of independent Wigner
matrices.
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The spaceMA possesses a nice topological property that we state next. The
main part of the proof (which we omit) uses the Banach–Alaoglu Theorem, The-
orem B.8.

Lemma 5.2.18Let (A ,‖ · ‖,∗) be a C∗-algebra, withA separable. ThenMA is
compact and separable, hence metrizable.

Thus, onMA , sequential convergence determines convergence.

As we next show, the construction of noncommutative laws is such that any
one-dimensional marginal distribution is a probability measure. This can be seen
as a variant of the Riesz representation theorem, Theorem B.11.

Lemma 5.2.19Let (A ,‖ ·‖,∗) be a C∗-algebra andµ a state on(A ,‖ ·‖,∗). Let
F ∈A , F = F∗. Then there exists a unique probability measureµF ∈ M1(R) with
moments

∫
xkµF(dx) = µ(Fk). The support ofµF is included in[−‖F‖A ,‖F‖A ].

Further, the mapµ 7→ µF from MA furnished with the weak*-topology, into
M1(R), equipped with the weak topology, is continuous.

Proof The uniqueness ofµF with the prescribed properties is a standard con-
sequence of the bound|µ(Fk)| ≤ ‖F‖k

A . To prove existence ofµF , recall the
functional calculus described in Remark 5.2.8 which provides us with a mapf 7→
f (F) identifying theC∗-algebraC(spA (F)) isometrically with theC∗-subalgebra
AF ⊂ A generated byF. The composite mapf 7→ µ( f (F)) is then a state on
C(spA (F)) and hence by Example 5.2.10 a probability measure onspA (F) ⊂
[−‖F‖A ,‖F‖A ]. It is clear that this probability measure has the moments pre-
scribed forµF . Existence ofµF ∈ M1(R) with the prescribed moments follows.
Abusing notation, forf ∈ Cb(R), let f (F) = g(F) ∈ A whereg = f |spF (F) and
note thatµF( f ) =

∫
f dµF = µ( f (F)) by construction. Finally, to see the claimed

continuity, if we take a sequenceµn ∈ MA converging toµ for the weak*-
topology, for anyf ∈Cb(R), µn

F( f ) converges toµF( f ) asn goes to infinity since
f (F) ∈ A . Thereforeµ 7→ µF is indeed continuous. ⊓⊔

Exercise 5.2.20In the setting of Corollary 5.2.16, show, without using part(d) of
Proposition 5.2.14, that under the assumptions of part (ii)of the corollary, there
exists a sequence of statesψN on A (R+ 1,J) so thatψN(P) converges toα(P)

for all P∈ C〈Xi |i ∈ J〉. Conclude thatα is a state onA (R+1,J).
Hint: set fR(x) = x∧ (R+ 1)∨ (−(R+ 1)), and defineaN,R

i = fR(aN
i ). Using the

Cauchy–Schwarz inequality, show thatφN(P({aN,R
i }i∈J)) converges toα(P) for

all P∈ C〈Xi |i ∈ J〉. Conclude by applying part (i) of the corollary.
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5.2.3 W∗-probability spaces

In the previous section, we considered noncommutative probability measures de-
fined onC∗-algebras. This is equivalent, in the classical setting, todefining proba-
bility measures as linear forms on the set of continuous bounded functions. How-
ever, in the classical setting, it is well known that one can define probability
measures as linear forms, satisfying certain regularity conditions, on the set of
measurablebounded functions. One can define a generalization to the notion of
measurable functions in the noncommutative setting.

If one deals with a single (not necessarily bounded) self-adjoint operatorb, it
is possible by the spectral theorem G.6 to defineg(b) for any functiong in the
setB(sp(b)) of bounded, Borel-measurable functions on sp(b). This extension is
such that for anyx,y∈ H, there exists a compactly supported measureµb

x,y (which
equals〈χbx,y〉 if χb is the resolution of the identity ofb, see Appendix G.2) such
that

〈g(b)x,y〉 =
∫

g(z)dµb
x,y(z) . (5.2.14)

In general,g(b) may not belong to theC∗-algebra generated byb; it will, however,
belong to a larger algebra that we now define.

Definition 5.2.21A C∗-algebraA ⊂ B(H) for some Hilbert spaceH is a von
Neumann algebra(orW∗-algebra) if it is closed with respect to the weak operator
topology.

(Weak operator topology closure means thatbα → b on a netα if, for any fixed
x,y∈H, 〈bαx,y〉 converges to〈bx,y〉. Recall, see Theorem G.14, that in Definition
5.2.21, the requirement of closure with respect to the weak operator topology is
equivalent to closure with respect to the strong operator topology, i.e., with the
previous notation, tobαx converging tobx in H.)

Definition 5.2.22A W∗-probability spaceis a pair(A ,φ) whereA is a W∗-
algebra, subset ofB(H) for some Hilbert spaceH, andφ is a state that can be
written asφ(a) = 〈aξ ,ξ 〉 for some unit vectorξ ∈ H.

Example 5.2.23

(i) We have seen in Remark 5.2.8 that theC∗-algebraAb generated by a
self-adjoint bounded operatorb on a separable Hilbert spaceH is exactly
{ f (b), f ∈C(sp(b))}. It turns out that the von Neumann algebra generated
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by b is ¯Ab = { f (b), f ∈ B(sp(b))}. Indeed, by Lusin’s Theorem, Theorem
B.13, for all x,y ∈ H, for any bounded measurable functiong, there ex-
ists a sequencegn of uniformly bounded continuous functions converging
in µb

x,y probability tog. Since we assumed thatH is separable, we can,
by a diagonalization argument, assume that this convergence holds for all
x,y ∈ H simultaneously. Therefore, the above considerations showthat
gn(b) converges weakly tog(b). Thus the weak closure ofAb contains

¯Ab. One sees that¯Ab is a von Neumann algebra by the double commutant
theorem, Theorem G.13, and the spectral theorem, Theorem G.7.

(ii) As a particular case of the previous example (takeb to be the right mul-
tiplication operator by a random variable with lawµ), L∞(X,µ) can be
identified as aW∗-algebra. In fact, every commutative von Neumann al-
gebra on a separable Hilbert spaceH can be represented asL∞(X,µ) for
some(X,B,µ). (Since we do not use this fact, the proof, which can be
found in [Mur90, Theorem 4.4.4], is omitted.)

(iii) An important example of aW∗-algebra isB(H) itself which is a von Neu-
mann algebra since it is trivially closed.

We saw in Proposition 5.2.14 sufficient conditions for a linear functional on
C〈Xi |i ∈ J〉 to be represented by a state in aC∗-algebra(A ,‖ · ‖,∗). The fol-
lowing GNS constructiongives a canonical way to represent the latter as a state
onB(H) for some Hilbert spaceH.

Theorem 5.2.24 (Gelfand–Naimark–Segal construction)Let α be a state on
a unital C∗-algebra(A ,‖ · ‖,∗) generated by a countable family{ai}i∈J of self-
adjoint elements. Then there exists a separable Hilbert space H, equipped with
a scalar product〈·, ·〉, a norm-decreasing∗-homomorphismπ : A →B(H) and a
vectorξ1 ∈ H so that the following hold.

(a) {π(a)ξ1 : a∈ A } is dense in H.
(b) Setφα (x) = 〈ξ1,xξ1〉 for x∈ B(H). Then, for all a inA ,

α(a) = φα(π(a)) .

(c) The noncommutative law of{ai}i∈J in the C∗-probability space
(A ,‖ · ‖,∗,α) equals the law of{π(ai)}i∈J in the W∗-probability space
(B(H),φα ).

(d) Let W∗({ai}i∈J) denote the von Neumann algebra generated by
{π(ai) : i ∈ J} in B(H). If α is tracial, so is the restriction of the stateφα
to W∗({ai}i∈J).

Proof of Theorem 5.2.24Let Lα = { f ∈ A |α( f ∗ f ) = 0}. As in the proof of
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Proposition 5.2.14,Lα is a left ideal. It is closed due to the continuity of the map
f 7→ α( f ∗ f ). Consider the quotient spaceA α := A \Lα . Denote byξ : a 7→ ξa

the map fromA into A α . Note that, by (G.6),α(x∗y) depends only onξx,ξy, and
put

〈ξx,ξy〉 = α(x∗y), ‖ξx‖α := 〈ξx,ξx〉
1
2 ,

which defines a pre-Hilbert structure onA α . Let H be the (separable) Hilbert
space obtained by completingA α with respect to the Hilbert norm‖ · ‖α .

To construct the morphismπ , we considerA as acting onA α by left multipli-
cation and define, fora∈ A andb∈ A α ,

π(a)ξb := ξab ∈ A α .

By (G.7),

||π(a)ξb||2α = ||ξab||2α = α(b∗a∗ab)≤ ||a||2α(b∗b) = ||a||2||ξb||2α ,

and thereforeπ(a) extends uniquely to an element ofB(H), still denotedπ(a),
with operator norm bounded by‖a‖. π is a∗-homomorphism fromA into B(H),
that is,π(ab) = π(a)π(b) andπ(a)∗ = π(a∗). To complete the construction, we
takeξ1 as the image underξ of the unit inA .

We now verify the conclusions (a)–(c) of the theorem. Part (a) holds sinceH
was constructed as the closure of{π(a)ξ1 : a ∈ A }. To see (b), observe that
for all a ∈ A , 〈ξ1,π(a)ξ1〉 = 〈ξ1,ξa〉 = α(a). Finally, sinceπ is a morphism,
π(P({ai}i∈J)) = P({π(ai)}i∈J), which together with part (b), shows part (c).

To verify part (d), note that part (b) implies that fora,b∈ A ,

α(ab) = φα(π(ab)) = φα (π(a)π(b))

and thus, ifα is tracial, one getsφα(π(a)π(b)) = φα(π(b)π(a)). The conclusion
follows by a density argument, using the Kaplansky density theorem, Theorem
G.15, to first reduce attention to self-adjoint operators and their approximation by
a net, belonging toπ(A ), of self-adjoint operators. ⊓⊔

The norm-decreasing∗-homomorphism constructed by the theorem is in gen-
eral not one-to-one. This defect can be corrected as follows.

Corollary 5.2.25 In the setup of Theorem 5.2.24, there exists a separable Hilbert
spaceH̃, a norm-preserving∗-homomorphism̃π : A → B(H̃) and a unit vector
ξ̃ ∈ H̃ such that for all a∈ A , α(a) = 〈π̃(a)ξ̃ , ξ̃ 〉.

Proof By Theorem G.5 there exists a norm-preserving∗-homomorphismπA :
A → B(HA ) but HA might be nonseparable. Using the separability ofA , it is
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routine to construct a separable Hilbert spaceH0 ⊂ HA stable under the action of
A via πA so that the induced representationπ0 : A →B(H0) is a norm-preserving
∗-homomorphism. Then, withπ : A → B(H) andξ1 as in Theorem 5.2.24, the
direct sumπ̃ = π0 ⊕ π : A → B(H0 ⊕H) of representations and the unit vector
ξ̃ = 0⊕ ξ1 ∈ H0⊕H have the desired properties. ⊓⊔

We will see that the stateφα of Theorem 5.2.24 satisfies additional properties
that we now define. These properties will play an important role in our treatment
of unbounded operators in subsection 5.2.3.

Definition 5.2.26Let A be a von Neumann algebra.

• A stateτ onA is faithful iff τ(xx∗) = 0 impliesx = 0.

• A state onA is normal iff for any monotone decreasing to zero netaβ of
nonnegative elements ofA ,

inf
β

τ(aβ ) = 0.

The normality assumption is an analog in the noncommutativesetup of the reg-
ularity assumptions on linear functionals on measurable functions needed to en-
sure they are represented by measures. For some consequences of normality, see
Proposition G.21.

We next show that the Gelfand–Naimark–Segal construction allows us, if α
is tracial, to represent any joint law of noncommutative variables as the law of
elements of a von Neumann algebra equipped with a faithful normal state. In what
follows, we will always restrict ourselves toW∗-probability spaces equipped with
a tracial stateφ . The properties we list below often depend on this assumption.

Corollary 5.2.27 Let α be a tracial state on a unital C∗-algebra satisfying the
assumptions of Theorem 5.2.24. Then, the tracial stateφα on W∗({ai}i∈J) of
Theorem 5.2.24 is normal and faithful.

Proof We keep the same notation as in the proof of Theorem 5.2.24. Webegin by
showing thatφα is faithful onW∗({ai}i∈J) ⊂ B(H). Takex∈W∗({ai}i∈J) so that
φα(x∗x) = 0. Then we claim that

xπ(a)ξ1 = 0, for all a∈ A . (5.2.15)

Indeed, we have

‖xπ(a)ξ1‖2
H = 〈xπ(a)ξ1,xπ(a)ξ1〉 = 〈ξ1,π(a)∗x∗xπ(a)ξ1〉

= φα (π(a)∗x∗xπ(a)) = φα(xπ(a)π(a∗)x∗) ,
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where we used in the last equality the fact thatφα is tracial onW∗({ai}i∈J). Be-
causeπ is a morphism we haveπ(a)π(a∗) = π(aa∗), and because the operator
norm ofπ(aa∗) ∈ B(H) is bounded by the norm‖aa∗‖ in A , we obtain from the
last display

‖xπ(a)ξ1‖2
H = 〈ξ1,xπ(aa∗)x∗ξ1〉 ≤ ‖aa∗‖φα(x∗x) = 0,

completing the proof of (5.2.15). Sinceπ(a)ξ1 is dense inH by part (a) of The-
orem 5.2.24, andx∈ B(H), we conclude thatxξ = 0 for all ξ ∈ H, and therefore
x = 0, completing the proof thatφα is faithful in W∗({ai}i∈J). By using Proposi-
tion G.21 withx the projection onto the linear vector space generated byξ1, we
see thatφα is normal. ⊓⊔

Laws of self-adjoint operators

So far, we have considered bounded operators. However, withapplications to
random matrices in mind, it is useful also to consider unbounded operators. The
theory incorporates such operators via the notion of affiliated operators. LetA be
aW∗ -algebra, subset ofB(H) for some Hilbert spaceH.

Definition 5.2.28A densely defined self-adjoint operatorX on a Hilbert spaceH
is said to beaffiliated toA if, for any bounded Borel functionf on the spectrum
of X, f (X) ∈ A . A closed densely defined operatorY is affiliated withA if its
polar decompositionY = uX (see Lemma G.9) is such thatu ∈ A is a partial
isometry andX is a self-adjoint operator affiliated withA . We denote byÃ the
collection of operators affiliated withA .

(Here, f (X) is defined by the spectral theorem, Theorem G.8, see Section G.2 for
details.)

It follows from the definition that a self-adjoint operatorX is affiliated withA

iff (1+ zX)−1X ∈ A for one (or equivalently all)z∈ C\R. (Equivalently, iff all
the spectral projections ofX belong toA .) By the double commutant theorem,
Theorem G.13, this is also equivalent to saying that, for anyunitary operatoru in
the commutant ofA , uXu∗ = X.

Example 5.2.29Letµ be a probability measure onR, H = L2(µ) andA = B(H).
Let X be the left multiplication by x with lawµ , that is, X f := x f , f ∈ H. Then X
is a densely defined operator, affiliated withA .

We define below the noncommutative laws of affiliated operators and of poly-
nomials in affiliated operators.
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Definition 5.2.30Let (A ,τ) be aW∗-probability space and letT be a self-adjoint
operator affiliated withA . Then, thelaw µT of T is the unique probability mea-
sure onR such thatτ(u(T)) =

∫
u(λ )dµT(λ ) for any bounded measurable func-

tion u. The associateddistribution functionis FT(x) := FµT (x) := µT((−∞,x]),
x∈ R.

(The uniqueness ofµT follows from the Riesz representation theorem, Theorem
B.11.) The spectral theorem, Theorem G.8, implies thatFT(x) = τ(χT((−∞,x]))
if χT is the resolution of the identity of the operatorT (this is well defined since
the spectral projectionχT((−∞,x]) belongs toA ).

Polynomials of affiliated operators are defined by the following algebraic rules:
(A+ B)v := Av+ Bv for any v ∈ H belonging to the domains of bothA andB,
and similarly,(AB)v := A(Bv) for v in the domain ofB such thatBv is in the
domain ofA. One difficulty arising with such polynomials is that, in general, they
are not closed, and therefore not affiliated. This difficultyagain can be overcome
by an appropriate completion procedure, which we now describe. Given aW∗-
algebraA equipped with a normal faithful tracial stateτ, introduce a topology by
declaring the sets

N(ε,δ ) = {a∈ A : for some projectionp∈ A ,‖ap‖ ≤ ε,τ(1− p) ≤ δ}

and their translates to be neighborhoods. Similarly, introduce neighborhoods inH
by declaring the sets

O(ε,δ ) = {h∈ H : for some projectionp∈ A ,‖ph‖ ≤ ε,τ(1− p)≤ δ}

to be a fundamental system of neighborhoods, i.e. their translates are also neigh-
borhoods. LetÂ be the completion of vector spaceA with respect to the uni-
formity defined by the systemN(ε,δ ) of neighborhoods of origin. Let̂H be the
analogous completion with respect to the system of neighborhoodsO(ε,δ ). A
fundamental property of this completion is the following theorem, whose proof,
which we skip, can be found in [Nel74].

Theorem 5.2.31 (Nelson)SupposeA is a von Neumann algebra equipped with a
normal faithful tracial state.

(i) The mappings a7→ a∗, (a,b) 7→ a+b, (a,b) 7→ ab,(h,g) 7→ h+g, (a,h) 7→
ah with a,b∈A and h,g∈ H possess unique uniformly continuous exten-
sions toÂ andĤ.

(ii) With b∈ Â associate a multiplication operator Mb, with domainD(Mb)=

{h∈ H : bh∈ H}, by declaring Mbh = bh for h∈ D(Mb). Then Mb is a
closed, densely defined operator affiliated withA , with M∗

b = Mb∗ . Fur-

ther, if a∈ Ã , then there exists a unique b∈ Â so that a= Mb.
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The advantage of the operatorsMb is that they recover an algebraic structure.
Namely, while if a,a′ ∈ Ã then it is not necessarily the case thata+ a′ or aa′

belong toÃ , however, ifa = Mb anda′ = Mb′ thenMb+b′ andMbb′ are affiliated
operators that equal the closure ofMb+Mb′ andMbMb′ (see [Nel74, Theorem 4]).
Thus, with some standard abuse of notation, ifTi ∈ Ã , i = 1, . . . ,k, we say that
for Q∈ C〈Xi |1≤ i ≤ k〉, Q(T1, . . . ,Tk) ∈ Ã , meaning that withTi = Mai , we have

MQ(a1,...,ak) ∈ Ã .

The assumption of the existence of a normal faithful tracialstate ensures Prop-
erty G.18, which is crucial in the proof of the following proposition.

Proposition 5.2.32Let(A ,τ) be a W∗-probability space, subset of B(H) for some
separable Hilbert space H. Assume thatτ is a normal faithful tracial state. Let
Q ∈ C〈Xi |1≤ i ≤ k〉 be self-adjoint. Let T1, . . . ,Tk ∈ Ã be self-adjoint, and let
Q(T1, . . . ,Tk) be the self-adjoint affiliated operator described following Theorem
5.2.31. Then, for any sequence un of bounded measurable functions converging,
as n goes to infinity, to the identity uniformly on compact subsets ofR, the law of
Q(un(T1), . . . ,un(Tk)) converges to the law of Q(T1, . . . ,Tk).

The proof of Proposition 5.2.32 is based on the two followingauxiliary lemmas.

Lemma 5.2.33Let (A ,τ) be as in Proposition 5.2.32. Let T1, . . . ,Tk be self-
adjoint operators inÃ , and let Q∈ C〈Xi |1≤ i ≤ k〉. Then there exists a constant
m(Q) < ∞, such that, for any projections p1, . . . , pk ∈ A so that T′i = Ti pi ∈ A

for i = 1,2, . . . ,k, there exists a projection p such that

• Q(T1, . . . ,Tk)p = Q(T ′
1, . . . ,T

′
k)p,

• τ(p) ≥ 1−m(Q)max1≤i≤k(1− τ(pi)).

Note that part of the statement is thatQ(T1, . . . ,Tk)p∈A . In the proof of Proposi-
tion 5.2.32, we use Lemma 5.2.33 with projectionspi = pn

i := χTi ([−n,n]) on the
domain of theTi that ensure that(T ′

1, . . . ,T
′
k) belong toA . Since such projections

can be chosen with traces arbitrarily close to 1, Lemma 5.2.33 will allow us to
define the law of polynomials in affiliated operators by density, as a consequence
of the following lemma.

Lemma 5.2.34Let(A ,τ) be as in Proposition 5.2.32. Let X,Y be two self-adjoint
operators inÃ . Fix ε > 0. Assume that there exists a projection p∈ A such that
pX p= pY p andτ(p) ≥ 1− ε for someε > 0. Then

sup
x∈R

|FX(x)−FY(x)| ≤ ε .
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Note that the Kolmogorov–Smirnov distance

dKS(µ ,ν) := max
x∈R

|Fµ(x)−Fν(x)|

dominates the Lévy distance onM1(R) defined in Theorem C.8. Lemma 5.2.34
shows that, withX,Y, p,ε as in the statement,dKS(µX ,µY) ≤ ε.

Proof of Lemma 5.2.33The key to the proof is to show that ifZ ∈ Ã andp is a
projection, then there exists a projectionq such that

τ(q) ≥ τ(p) andZq= pZq. (5.2.16)

With (5.2.16) granted, we proceed by induction, as follows.Let Si ∈ Ã andpi be
projections so thatS′i = Si pi ∈A , i = 1,2. (To prepare for the induction argument,
at this stage we do not assume that theSi are self-adjoint.) Writep12 = p1∧ p2.
By (5.2.16) (applied withp = p12), there exist two projectionsq andq′ such that
p12S1q = S1q, p12S2q′ = S2q′. Setp := p1∧ p2 ∧q∧q′. We have thatp2p = p
andq′p = p, and thusS2p = S2q′p. The range ofS2q′ belongs to the range ofp1

and ofp2 (becausep12S2q′ = S2q′). Thus

S2p = S2q′p = p1S2q′p = p1S2p = p1S2p2p. (5.2.17)

Therefore

S1S2p = S′1S′2p, (5.2.18)

where (5.2.17) was used in the last equality. Note that part of the equality is that
the image ofS2p is in the domain ofS1 and soS1S2p ∈ A . Moreover,τ(p) ≥
1−4maxτ(1− pi) by Property G.18. We proceed by induction. We first detail
the next step involving the productS1S2S3. SetS= S2S3 and letp be the projection
as in (5.2.18), so thatSp= S′2S′3p∈ A . Repeat the previous step now withSand
S1, yielding a projectionq so thatS1S2S3pq= S′1S′2S′3pq. Proceeding by induction,
we can thus find a projectionp′ so thatS1 · · ·Snp′ = S′1 · · ·S′np′ with S′i = Si pi and
τ(p) ≥ 1− 2nmaxτ(1− pi). Similarly, (S1 + · · ·+ Sn)q′ = (S′1 + · · ·+ S′n)q

′ if
q′ = p1∧ p2 · · · ∧ pn. Iterating these two results, for any given polynomialQ, we
find a finite constantm(Q) such that for anyT ′

i = Ti pi with τ(pi)≥ 1−ε, 1≤ i ≤ k,
there existsp so thatQ(T1, . . . ,Tk)p = Q(T ′

1, . . . ,T
′
k)p andτ(p) ≥ 1−m(Q)ε.

To complete the argument by proving (5.2.16), we write the polar decompo-
sition (1− p)Z = uT (see G.9), with a self-adjoint nonnegative operatorT =

|(1− p)Z| andu a partial isometry such thatu vanishes on the ortho-complement
of the range ofT. Setq = 1−u∗u. Noting thatuu∗ ≤ 1− p, we haveτ(q)≥ τ(p).
Also, qT = (1−u∗u)T = 0 implies thatTq= 0 sinceT andq are self-adjoint, and
therefore(1− p)Zq= 0. ⊓⊔
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Proof of Lemma 5.2.34We first claim that, given an unbounded self-adjoint op-
eratorT affiliated toA and a real numberx, we have

FT(x) = sup{τ(q) : q∗ = q2 = q∈ A , qTq∈ A , qTq≤ xq}. (5.2.19)

More precisely, we now prove that the supremum is achieved for c ↓ −∞ with the
projectionsqT,c(x) = χT((c,x]) provided by the spectral theorem. At any rate, it is
clear thatFT(x) = τ(χT((−∞,x])) is a lower bound for the right side of (5.2.19).
To show thatFT(x) is also an upper bound, consider any projectionr ∈ A such
thatτ(r) > FT(x) with rTr bounded. Putq = χT((−∞,x]). We haveτ(r) > τ(q).
We haveτ(r − r ∧q) = τ(r ∨ q−q) ≥ τ(r)− τ(q) > 0 using Proposition G.17.
Therefore we can find a unit vectorv∈ H such that〈rTrv,v〉 > x, thus ruling out
the possibility thatτ(r) belongs to the set of numbers on the right side of (5.2.19).
This completes the proof of the latter equality.

Consider next the quantity

FT,p(x) = sup{τ(q) : q∗ = q2 = q∈ A , qTq∈ A , qTq≤ xq,q≤ p} .

We claim that

FT(x)− ε ≤ FT,p(x) ≤ FT(x) . (5.2.20)

The inequality on the right of (5.2.20) is obvious. We get thelower equality by
takingq= qT,c(x)∧ p on the right side of the definition ofFT,p(x) with c large and
using Proposition G.17 again. Thus, (5.2.20) is proved.

To complete the proof of Lemma 5.2.34, simply note thatFX,p(x) = FY,p(x) by
hypothesis, and apply (5.2.20). ⊓⊔
Proof of Proposition 5.2.32Put Tn

i := Ti pn
i with pn

i = χTi ([−n,n]). Define the
multiplication operatorMQ := MQ(T1,...,Tk) as in Theorem 5.2.31. By Lemma
5.2.33, we can find a projectionpn such that

Xn := pnQ(Tn
1 , . . . ,Tn

k )pn = pnQ(T1, . . . ,Tk)pn = pnMQpn

andτ(pn) ≥ 1−m(Q)maxi τ(1− χTi ([−n,n])). By Lemma 5.2.34,

dKS(µMQ,µQ(Tn
1 ,...,Tn

k )) ≤ m(Q)max
i

τ(1− χTi ([−n,n])) ,

implying the convergence of the law ofQ(Tn
1 , . . . ,Tn

k ) to the law ofMQ. Since also
by constructionpn

i Ti pn
i = wn(Ti) with wn(x) = x1|x|≤n, we see that we can replace

nowwn by any other local approximationun of the identity since the difference

Xn− pnQ(un(T1), . . . ,u
n(Tk))pn

is uniformly bounded bycsup|x|≤n |wn − un|(x) for some finite constantc =

c(n,sup|x|≤n |wn(x)|,Q) and therefore goes to zero whenun(x) approaches the
identity map on[−n,n]. ⊓⊔
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5.3 Free independence

What makes free probability special is the notion of freeness that we define in
Section 5.3.1. It is the noncommutative analog of independence in probability.
In some sense, probability theory distinguishes itself from integration theory by
the notions of independence and of random variables which are the basis to treat
problems from a different perspective. Similarly, free probability differentiates
from noncommutative probability by this very notion of freeness which makes it
a noncommutative analog of classical probability.

5.3.1 Independence and free independence

Classical independence of random variables can be defined inthe noncommuta-
tive context. We assume throughout that(A ,φ) is a noncommutative probability
space. Suppose{Ai}i∈I is a family of subalgebras ofA , each containing the
unit of A . The family is calledindependentif the algebrasAi commute and
φ(a1 · · ·an) = φ(a1) · · ·φ(an) for ai ∈ Ak(i) with i 6= j ⇒ k(i) 6= k( j). This is the
natural notion of independence when considering tensor products, as is the case
in the classical probability exampleL∞(X,B,µ).

Free independence is a completely different matter.

Definition 5.3.1Let {A j} j∈I be a family of subalgebras ofA , each containing
the unit ofA . The family{A j} j∈I is calledfreely independentif for any positive
integern, indicesk(1) 6= k(2), k(2) 6= k(3), . . . , k(n− 1) 6= k(n) in I and any
a j ∈ Ak( j), j = 1, . . . ,n, with φ(a j) = 0, it holds that

φ(a1 · · ·an) = 0.

Let r,(mk)1≤k≤r be positive integers. The sets(X1,p, . . . ,Xmp,p)1≤p≤r of noncom-
mutative random variables are calledfree if the algebras they generate are free.

Note that, in contrast to the classical notion of independence, repetition of indices
is allowed provided they are not consecutive; thus, free independence is a truly
noncommutative notion. Note also that it is impossible to haveai = 1 in Definition
5.3.1 because of the conditionφ(ai) = 0.

Observe that we could have assumed thatA as well as all members of the
family {Ai}i∈I areW∗-algebras. In that situation, ifσi is a family of generators
of theW∗-algebraAi, then theW∗-subalgebras{Ai}i∈I are free iff the families of
variables{σi}i∈I are free.
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Remark 5.3.2

(i) Independence and free independence are quite different. Indeed, letX,Y
be two self-adjoint elements of a noncommutative probability space(A ,φ)

such thatφ(X) = φ(Y) = 0 butφ(X2) 6= 0 andφ(Y2) 6= 0. If X,Y commute
and are independent,

φ(XY) = 0, φ(XYXY) = φ(X2)φ(Y2) 6= 0,

whereas ifX,Y are free, thenφ(XY) = 0 butφ(XYXY) = 0.
(ii) The interest in free independence is that if the subalgebrasAi are freely

independent, the restrictions ofφ to theAi are sufficient in order to com-
puteφ on the subalgebra generated by allAi . To see that, note that it is
enough to computeφ(a1a2 · · ·an) for ai ∈ Ak(i) andk(i) 6= k(i +1). But,
from the freeness condition,

φ((a1−φ(ai)1)(a2−φ(a2)1) · · · (an−φ(an)1)) = 0. (5.3.1)

Expanding the product (using linearity), one can inductively compute
φ(a1 · · ·an) as a function of lower order terms. We will see a systematic
way to perform such computations in Section 5.3.2.

(iii) The law of free sets of noncommutative variables is a continuous func-
tion of the laws of the sets. For example, letXp = (X1,p, . . . ,Xm,p) and
Yp = (Y1,p, . . . ,Yn,p) be sets of noncommutative variables for eachp which
are free. Assume that the law ofXp (respectively,Yp) converges asp
goes to infinity towards the law ofX = (X1, . . . ,Xm) (respectively,Y =

(Y1, . . . ,Yn)).
(a) If the setsX andY are free, then the joint law of(Xp,Yp) converges to
the joint law of(X,Y).
(b) If instead the joint law of(Xp,Yp) converge to the joint law of(X,Y),
thenX andY are free.

(iv) If the restriction ofφ to each of the subalgebras{Ai}i∈I is tracial, then the
restriction ofφ to the algebra generated by{Ai}i∈I is also tracial.

The proof of some basic properties of free independence thatare inherited by
subalgebras is left to Exercise 5.3.8.

The following are standard examples of free variables.

Example 5.3.3

(i) Free products of groups(Continuation of Example 5.2.2, part (ii)) Sup-
poseG is a group which is the free product of its subgroupsGi , that is,
every element inG can be written as the product of elements in theGi and
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g1g2 · · ·gn 6= e wheneverg j ∈ Gi( j) \ {e} and i( j) 6= i( j + 1) for all j. In
this setup, we may take asA theW∗-algebra generated by the left regular
representationλ (G), see part (ii) of Example 5.2.12, and we may takeτ as
the traceφ defined in that example. Take also asAi theW∗-algebra gen-
erated by the left regular representationsλ (Gi). This coincides with those
operators∑gcgλ (g) with c(g) = 0 for g 6∈ Gi that form bounded opera-
tors. Now, ifa∈ Ai andφ(a) = 0 thence = φ(a) = 0. Thus, ifai ∈ Ak(i)

with φ(ai) = 0 andk(i) 6= k(i + 1), the resulting operator corresponding
to a1 · · ·an, denoted∑gcgλ (g), satisfiescg 6= 0 only if g = g1 · · ·gn for
gi ∈ Gk(i) \ e. In particular, sinceg1 · · ·gn 6= e, we have thatce = 0, i.e.
φ(a1 · · ·an) = 0, which proves the freeness of theAi . The converse is also
true, that is, if the subalgebrasAi associated with the subgroupsGi are
free, then the subgroups are algebraically free.

(ii) Fock spaces.Let H be a Hilbert space and define theBoltzmann–Fock
space as

T =
⊕

n≥0

H⊗n . (5.3.2)

(Here,H⊗0 = C1 where 1 is an arbitrary unit vector inH). T is itself a
Hilbert space (with the inner product determined from the inner product in
H by (G.1) and (G.2)). If{ei} is an orthonormal basis inH, then{1} is
an orthonormal basis forH⊗0, and{ei1 ⊗·· ·⊗ein} is an orthonormal basis
for H⊗n. An orthonormal basis forT is constructed naturally from these
bases.

For h ∈ H, defineℓ(h) to be the left creation operator,ℓ(h)g = h⊗ g.
On the algebra of bounded operators onT , denotedB(T ), consider the
state given by thevacuum, φ(a) = 〈a1,1〉. We next show that the family
{ℓ(ei), ℓ

∗(ei)} is freely independent in(B(T ),φ). Here,ℓ∗i := ℓ∗(ei), the
left annihilationoperator, is the operator adjoint toℓi := ℓ(ei). We have
ℓ∗i 1 = 0. More generally,

ℓ∗i ei1 ⊗ei2 ⊗·· ·⊗ein = δii1ei2 ⊗·· ·⊗ein

because, forg∈ T with (n−1)th term equal togn−1,

〈ei1 ⊗ei2 ⊗·· ·⊗ein, ℓig〉 = 〈ei1 ⊗ei2 ⊗·· ·⊗ein,ei ⊗gn−1〉
= δii1〈ei2 ⊗·· ·⊗ein,gn−1〉 .

Note that even thoughℓiℓ
∗
i is typically not the identity, it does hold true that

ℓ∗i ℓ j = δi j I with I the identity inB(T ). Due to that, the algebra generated
by (ℓi , ℓ

∗
i , I) is generated by the termsℓq

i (ℓ
∗
i )

p, p+q > 0, andI . Note also
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that

φ(ℓ
q
i (ℓ

∗
i )

p) = 〈(ℓ∗i )p1,(ℓ∗i )
q1〉 = 0,

since at least one ofp,q is nonzero. Thus, we need only to prove that if
pk +qk > 0, ik 6= ik+1,

Z := φ
(
ℓ

q1
i1

(ℓ∗i1)
p1ℓ

q2
i2

(ℓ∗i2)
p2 · · ·ℓqn

in (ℓ∗in)
pn
)

= 0.

But necessarily ifZ 6= 0 thenq1 = 0 (for otherwise a termei1 pops out
on the left of the expression which will then be annihilated in the scalar
product with 1). Thus,p1 > 0, and then one must haveq2 = 0, implying
in turn p2 > 0, etc., up topn > 0. But since(ℓ∗in)

pn1 = 0, we conclude that
Z = 0.

In classical probability one can create independent randomvariables by forming
products of probability spaces. Analogously, in free probability, one can create
free random variables by forming free products of noncommutative probability
spaces. More precisely, if{(A j ,φ j )} is a family of noncommutative probability
spaces, one may construct a noncommutative probability space(A ,φ) equipped
with injectionsi j : A j → A such thatφ j = φ ◦ i j and the imagesi j(A j) are free
in A .

We now explain the construction of free products in a simplified setting suf-
ficient for the applications we have in mind. We assume each noncommutative
probability space(A j ,φ j ) is aC∗-probability space,A j is separable, and the fam-
ily {(A j ,φ j)} is countable. By Corollary 5.2.25, we may assume thatA j is a
C∗-subalgebra ofB(H j) for some separable Hilbert spaceH j , and that for some
unit vectorζ j ∈ H j we haveφ j (a) = 〈aζ j ,ζ j 〉 for all a∈ A j . Then the free prod-
uct (A ,φ) we aim to construct will be aC∗-subalgebra ofB(H ) for a certain
separable Hilbert spaceH , and we will have for some unit vectorζ ∈ H that
φ(a) = 〈aζ ,ζ 〉 for all a∈ A .

We construct(H ,ζ ) as thefree productof the pairs(H j ,ζ j). Toward that end,
given f ∈ H j , let f̊ = f −〈 f ,ζ j〉ζ j ∈ H j and putH̊ j = { f̊ : f ∈ H j}. Then, for a
unit vectorζ in some Hilbert space which is independent ofj, put

H ( j) := Cζ ⊕
⊕

n≥1




⊕

j1 6= j2···6= jn
j1 6= j

H̊ j1 ⊗ H̊ j2 ⊗·· ·⊗ H̊ jn


 . (5.3.3)

Let H be defined similarly but without the restrictionj1 6= j. Note that all the
Hilbert spacesH ( j) are closed subspaces ofH . We equipB(H ) with the state
τ = (a 7→ 〈aζ ,ζ 〉), and hereafter regard it as a noncommutative probability space.
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We need next for each fixedj to define an embedding ofB(H j) in B(H ).
Toward that end we define a Hilbert space isomorphismVj : H j ⊗H ( j) → H as
follows, whereh j denotes a general element ofH j .

ζ j ⊗ ζ 7→ ζ ,

h̊ j ⊗ ζ 7→ h̊ j ,

ζ j ⊗ (h̊ j1 ⊗ h̊ j2 ⊗·· ·⊗ h̊ jn) 7→ h̊ j1 ⊗ h̊ j2 ⊗·· ·⊗ h̊ jn ,

h̊ j ⊗ (h̊ j1 ⊗ h̊ j2 ⊗·· ·⊗ h̊ jn) 7→ h̊ j ⊗ h̊ j1 ⊗ h̊ j2 ⊗·· ·⊗ h̊ jn .

Then, givenT ∈ B(H j), we defineπ j(T) ∈ B(H ) by the formula

π j(T) = Vj ◦ (T ⊗ IH ( j))◦V∗
j

whereIH ( j) denotes the identity mapping ofH ( j) to itself. Note thatπ j is a
norm-preserving∗-homomorphism ofB(H j) into B(H ). The crucial feature of
the definition is that forj 6= j1 6= j2 6= · · · 6= jm,

π j(T)(h̊ j1 ⊗·· ·⊗ h̊ jm) = φ j(T)h̊ j1 ⊗·· ·⊗ h̊ jm +(Tζ j)˚⊗ h̊ j1 ⊗·· ·⊗ h̊ jm . (5.3.4)

We have nearly reached our goal. The key point is the following.

Lemma 5.3.4In the noncommutative probability space(B(H ),τ), the subalge-
brasπ j(B(H j)) are free.

The lemma granted, we can quickly conclude the constructionof the free product
(A ,φ), as follows. We takeA to be theC∗-subalgebra ofB(H ) generated by
the imagesπ j(A j), φ to be the restriction ofτ to A , andi j to be the restriction of
π j to A j . It is immediate that the imagesi j(A j) are free in(A ,φ).

Proof of Lemma 5.3.4Fix j1 6= j2 6= · · · 6= jm and operatorsTk ∈ B(H jk) for
k = 1, . . . ,m. Note that by definitionτ(π jk(Tk)) = 〈Tkζ jk,ζ jk〉. Put T̊k = Tk −
〈Tkζ jk,ζ jk〉I jk, whereI jk denotes the identity mapping ofH jk to itself, noting that
τ(π jk(T̊k)) = 0. By iterated application of (5.3.4) we have

π j1(T̊1) · · ·π jm(T̊m)ζ = (T̊1ζ j1)⊗·· ·⊗ (T̊mζ jm) ∈ H̊ j1 ⊗ H̊ j2 ⊗·· ·⊗ H̊ jm .

Since the space on the right is orthogonal toζ , we have

τ(π j1(T̊1) · · ·π jm(T̊m)) = 0.

Thus theC∗-subalgebrasπ j(B(H j)) are indeed free inB(H ) with respect to the
stateτ. ⊓⊔

Remark 5.3.5In point (i) of Example 5.3.3 the underlying Hilbert space equipped
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with unit vector is the free product of the pairs(ℓ2(Gi),veGi
), while in point (ii) it

is the free product of the pairs(
⊕∞

n=0Ce⊗n
i ,1).

Remark 5.3.6The free product(A ,φ) of a family{(A j ,φ j )} can be constructed
purely algebraically, using just the spaces(A j ,φ j) themselves, but it is less simple
to describe precisely. Givena∈A j , put å = a−φ j(a)1A j and ˚A j = {å : a∈ A j}.
At the level of vector spaces,

A = C1A ⊕
(

⊕

j1 6= j2 6=···6= jm

˚A j1 ⊗·· ·⊗ ˚A jm

)
.

The injectioni j : A j → A is given by the formula

i j(a) = φ j (a)1A ⊕ å∈ C1A ⊕ ˚A j ⊂ A

and the stateφ is defined by

φ(1A ) = 1, φ
(

˚A j1 ⊗·· ·⊗ ˚A jm

)
= 0.

Multiplication inA is obtained, roughly, by simplifying as much as possible when
elements of the same algebraA j are juxtaposed. Since a rigorous definition takes
some effort and is not needed, we do not describe it in detail.

Exercise 5.3.7In the setting of part (ii) of Example 5.3.3, show that, for all n∈ N,

φ [(ℓ1 + ℓ∗1)
n] =

1
π

∫ 2

−2
xn
√

4−x2dx.

Hint: Expand the left side and show thatφ(ℓp1ℓp2 · · ·ℓpn), with pi = 1 or ∗, van-
ishes unless∑n

i=11pi=1 = ∑n
i=11pi=∗. Deduce that the left side vanishes whenn

is odd. Show that whenn is even, the only indices(p1, · · · , pn) contributing to
the expansion are those for which the path(Xi = Xi−1+1pi=1−1pi=∗)1≤i≤n, with
X0 = 0, is a Dyck path. Conclude by using Section 2.1.3.

Exercise 5.3.8(i) Show that freely independent algebras can be “piled up”,as
follows. Let{Ai}i∈I be a family of freely independent subalgebras ofA . Partition
I into subsets{I j} j∈J and denote byB j the subalgebra generated by the family
{Ai}i∈I j . Show that the family{B j} j∈J is freely independent. (ii) Show that
freeness is preserved under (strong or weak) closures, as follows. Suppose that
(A ,φ) is aC∗- or W∗-probability space. Let{Ai}i∈I be a family consisting of
unital subalgebras closed under the involution, and for each index i ∈ I let Âi

be the strong or weak closure ofAi . Show that the family{Âi}i∈I is still freely
independent.
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5.3.2 Free independence and combinatorics

The definition 5.3.1 of free independence is given in terms ofthe vanishing of
certain moments of the variables. It is not particularly easy to handle for com-
putation. We explore in this section the notion of cumulant,which is often much
easier to handle.

Basic properties of non-crossing partitions

Whereas classical cumulants are related to moments via a sumon the whole set
of partitions, free cumulants are defined with the help of non-crossing partitions
(recall Definition 2.1.4). A pictorial description of non-crossing versus crossing
partitions was given in Figure 2.1.1.

Before turning to the definition of free cumulants, we need toreview key prop-
erties of non-crossing partitions. It is convenient to define, for any finite nonempty
setJ of positive integers, the setNC(J) to be the family of non-crossing partitions
of J. This makes sense because the non-crossing property of a partition is well de-
fined in the presence of a total ordering. Also, we define aninterval in J to be any
nonempty subset consisting of consecutive elements ofJ. Givenσ ,π ∈ NC(J) we
say thatσ refinesπ if every block ofσ is contained in some block ofπ , and in
this case we writeσ ≤ π . Equipped with this partial order,NC(J) is a poset, that
is, a partially ordered set. ForJ = {1, . . . ,n}, we simply writeNC(n) = NC(J).
The unique maximal element ofNC(n), namely{{1, . . . ,n}}, we denote by1n.

Property 5.3.9For any finite nonempty family{πi}i∈J of elements of NC(n) there
exists a greatest lower bound∧i∈Jπi ∈ NC(n) and a least upper bound∨i∈Jπi ∈
NC(n) with respect to the refinement partial ordering.

We remark that greatest lower bounds and least upper bounds in a poset are auto-
matically unique. Below, we write∧i∈{1,2}πi = π1∧π2 and∨i∈{1,2}πi = π1∨π2.

Proof It is enough to prove existence of the greatest lower bound∧i∈Jπi , for then
∨i∈Jπi can be obtained as∧k∈Kσk, where{σk}k∈K is the family of elements of
NC(n) coarser thanπi for all i ∈ J. (The family{σk} is nonempty since1n belongs
to it.) It is clear that in the refinement-ordered family of all partitions of{1, . . . ,n}
there exists a greatest lower boundπ for the family{πi}i∈J. Finally, it is routine
to check thatπ is in fact non-crossing, and henceπ = ∧i∈Jπi. ⊓⊔

Remark 5.3.10As noted in the proof above, forπ ,σ ∈ NC(n), the greatest lower
bound ofπ andσ in the posetNC(n) coincides with the greatest lower bound in
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the poset of all partitions of{1, . . . ,n}. But the analogous statement about least
upper bounds is false in general.

Property 5.3.11Let π be a non-crossing partition of a finite nonempty set S of
positive integers. Let S1, . . . ,Sm be an enumeration of the blocks ofπ . For i =

1, . . . ,m let πi be a partition of Si . Then the partition
⋃m

i=1 πi of S obtained by
combining theπi is non-crossing if and only ifπi is non-crossing for i= 1, . . . ,m.

The proof is straightforward and so omitted. But this property bears emphasis
because it is crucial for defining free cumulants.

Property 5.3.12If a partition π of a finite nonempty set S of positive integers is
non-crossing, then there is at least one block ofπ which is an interval in S.

Proof Let W be any block ofπ , let W′ ⊃ W be the interval inS bounded by the
least and greatest elements ofW, and putS′ =W′ \W. If S′ is empty, we are done.
OtherwiseS′ is a union of blocks ofπ , by the non-crossing property. Letπ ′ be the
restriction ofπ to S′. By induction on the cardinality ofS, some blockV of π ′ is
an interval ofS′, henceV is an interval inSand a block ofπ . ⊓⊔

Free cumulants and freeness

In classical probability, moments can be written as a sum over partitions of clas-
sical cumulants. A similar formula holds in free probability except that partitions
have to be non-crossing. This relation between moments and free cumulants can
be used to define free cumulants, as follows.

We pause to introduce some notation. Suppose we are given a collection {ℓn :
A n → C}∞

n=1 of multilinear functionals on a fixed complex algebraA . We
defineℓπ({ai}i∈J) ∈ C for finite nonempty setsJ of positive integers, families
{ai}i∈J of elements ofA andπ ∈ NC(J) in two stages: first we writeJ = {i1 <

· · · < im} and defineℓ({ai}i∈J) = ℓm(ai1, . . . ,aim); then we defineℓπ({ai}i∈J) =

∏V∈π ℓ({ai}i∈V).

Definition 5.3.13Let (A ,φ) be a noncommutative probability space. Thefree
cumulantsare defined as a collection of multilinear functionals

kn : A n → C (n∈ N)

by the following system of equations:

φ(a1 · · ·an) = ∑
π∈NC(n)

kπ(a1, . . . ,an). (5.3.5)
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Lemma 5.3.14The free cumulants are well defined.

Proof We defineφπ({ai}i∈J) ∈ C for finite nonempty setsJ of positive integers,
families {ai}i∈J of elements ofA andπ ∈ NC(J) in two stages: first we write
J = {i1 < · · · < im} and define∏i∈J ai = ai1 · · ·aim; then we defineφπ({ai}i∈J) =

∏V∈π φ(∏i∈V ai). If the defining relations (5.3.5) hold, then, more generally, we
must have

φπ(a1, . . . ,an) = ∑
σ∈NC(n)

σ≤π

kσ (a1, . . . ,an) (5.3.6)

for all n, (a1, . . . ,an)∈A n andπ ∈NC(n), by Property 5.3.11. Since every partial
ordering of a finite set can be extended to a linear ordering, the system of linear
equations (5.3.6), for fixedn and(a1, . . . ,an) ∈ A n, has (in effect) a square tri-
angular coefficient matrix with 1s on the diagonal, and hencea unique solution.
Thus, the free cumulants are indeed well defined. ⊓⊔

We now turn to the description of freeness in terms of cumulants, which is
analogous to the characterization of independence by cumulants in classical prob-
ability.

Theorem 5.3.15Let (A ,φ) be a noncommutative probability space and consider
unital subalgebrasA1, . . . ,Am ⊂ A . Then,A1, . . . ,Am are free if and only if, for
all n ≥ 2 and for all ai ∈ A j(i) with 1≤ j(1), . . . , j(n) ≤ m,

kn(a1, . . . ,an) = 0 if there exist1≤ l ,k≤ n with j(l) 6= j(k). (5.3.7)

Before beginning the proof of the theorem, we prove a result which explains
why the description of freeness by cumulants does not require any centering of
the variables.

Proposition 5.3.16Let (A ,φ) be a noncommutative probability space and as-
sume a1, . . . ,an ∈ A with n≥ 2. If there is i∈ {1, . . . ,n} so that ai = 1, then

kn(a1, . . . ,an) = 0.

As a consequence, for n≥ 2 and any a1, . . . ,an ∈ A ,

kn(a1, . . . ,an) = kn(a1−φ(a1),a2−φ(a2), . . . ,an−φ(an)).

Proof We use induction onn ≥ 2. To establish the induction base, forn = 2 we
have, sincek1(a) = φ(a),

φ(a1a2) = k2(a1,a2)+ φ(a1)φ(a2)
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and so, ifa1 = 1 or a2 = 1, we deduce, sinceφ(1) = 1, thatk2(a1,a2) = 0. For
the rest of the proof we assume thatn > 2. By induction we may assume that for
p ≤ n− 1, kp(b1, . . . ,bp) = 0 if one of thebi is the identity. Suppose now that
ai = 1. Then

φ(a1 · · ·an) = kn(a1, . . . ,an)+ ∑
π∈NC(n)

π 6=1n

kπ(a1, . . . ,an) , (5.3.8)

where by our induction hypothesis all the partitionsπ contributing to the above
sum must be such that{i} is a block. But then, by the induction hypothesis,

∑
π∈NC(n)

π 6=1n

kπ(a1, . . . ,an) = ∑
π∈NC(n−1)

kπ(a1, . . . ,ai−1,ai+1, . . . ,an)

= φ(a1 · · ·ai−1ai+1 · · ·an)

= φ(a1 · · ·an)−kn(a1, . . . ,an)

where the second equality is due to the definition of cumulants and the third to
(5.3.8). As a consequence, becauseφ(a1 · · ·ai−1ai+1 · · ·an) = φ(a1 · · ·an), we
have proved thatkn(a1, . . . ,an) = 0. ⊓⊔
Proof of the implication ⇐ in Theorem 5.3.15We assume that the cumulants
vanish when evaluated at elements of different algebrasA1, . . . ,Am and consider,
for ai ∈ A j(i) with j(i) 6= j(i +1) for all i ∈ {1, . . . ,n−1}, the equation

φ((a1−φ(a1)) · · · (an−φ(an))) = ∑
π∈NC(n)

kπ(a1, . . . ,an).

By our hypothesis,kπ vanishes as soon as a block ofπ contains 1≤ p,q≤ n so that
j(p) 6= j(q). Therefore, since we assumedj(p) 6= j(p+1) for all p∈ {1, . . . ,n−
1}, we see that the contribution in the above sum comes from partitions π whose
blocks cannot contain two nearest neighbors{p, p+1} for anyp∈ {1, . . . ,n−1}.
On the other hand, by Property 5.3.12,π must contain an interval in{1, . . . ,n},
and the previous remark implies that this interval must be ofthe formV = {p}
for somep∈ {1, . . . ,n−1}. But thenkπ vanishes sincek1 = 0 by centering of the
variables. Therefore, if for 1≤ p≤ n−1, j(p) 6= j(p+1), we get

φ((a1−φ(a1)) · · · (an−φ(an))) = 0,

and henceφ satisfies (5.3.1). ⊓⊔
The next lemma handles an important special case of the implication⇒ in

Theorem 5.3.15.
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Lemma 5.3.17If A1, . . . ,Am are free, then for n≥ 2,

kn(a1, . . . ,an) = 0 if a j ∈ A j(i) with j(1) 6= j(2) 6= · · · 6= j(n). (5.3.9)

Proof We proceed by induction onn≥ 2. We have

0 = φ((a1−φ(a1)) · · · (an−φ(an))) = ∑
π∈NC(n)

kπ(a1−φ(a1), . . . ,an−φ(an))

= ∑
π∈NC(n)

π has no singleton blocks

kπ(a1, . . . ,an) , (5.3.10)

where the second equality is due to Proposition 5.3.16 and the vanishingk1(ai −
φ(ai)) = 0. To finish the proof of (5.3.9) it is enough to prove that the last sum
reduces tokn(a1, . . . ,an). If n = 2 this is clear; otherwise, forn > 2, this holds by
induction onn, using Property 5.3.12. ⊓⊔

The next lemma provides the inductive step needed to finish the proof of Theo-
rem 5.3.15.

Lemma 5.3.18Fix n ≥ 2 and a1, . . . ,an ∈ A . Fix 1 ≤ i ≤ n− 1 and let σ ∈
NC(n) be the non-crossing partition all blocks of which are singletons except for
{i, i +1}. Then for allη ∈ NC(n−1) we have that

kη (a1, . . . ,aiai+1, . . . ,an) = ∑
π∈NC(n)
π∨σ=η

kπ(a1, . . . ,an). (5.3.11)

Proof Fix ζ ∈ NC(n− 1) arbitrarily. It will be enough to prove equality after
summing both sides of (5.3.11) overη ≤ ζ . Let

f : {1, . . . ,n}→ {1, . . . ,n−1}

be the unique onto monotone increasing function such thatf (i) = f (i + 1). Let
ζ ′ ∈ NC(n) be the partition whose blocks are of the formf−1(V) with V a block
of ζ . Summing the left side of (5.3.11) onη ≤ ζ we getφζ (a1, . . . ,aiai+1, . . . ,an)

by (5.3.6). Now summing the right side of (5.3.11) onη ≤ ζ is the same thing as
replacing the sum already there by a sum overπ ∈ NC(n) such thatπ ≤ ζ ′. Thus,
summing the right side of (5.3.11) overη ≤ ζ , we getφζ ′(a1, . . . ,an) by another
application of (5.3.6). But clearly

φζ (a1, . . . ,aiai+1, . . . ,an) = φζ ′(a1, . . . ,an),

Thus (5.3.11) holds. ⊓⊔
Proof of the implication ⇒ in Theorem 5.3.15Forn≥ 2, indicesj(1), . . . , j(n)∈
{1, . . . ,m} such that{ j(1), . . . , j(n)} is a set of more than one element, andai ∈
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A j(i) for i = 1, . . . ,m, assumingA1, . . . ,Am are free inA with respect toφ , we
have to prove thatkn(a1, . . . ,an) = 0. We proceed by induction onn ≥ 2. The
induction basen = 2 holds by (5.3.9). Assume for the rest of the proof thatn > 2.
Because of (5.3.9), we may assume there existsi ∈ {1, . . . ,n−1} such thatj(i) =

j(i +1). Let σ ∈ NC(n) be the unique partition all blocks of which are singletons
except for the block{i, i +1}. In the special caseη = 1n−1, equation (5.3.11) after
slight rearrangement takes the form

kn(a1, . . . ,an)= kn−1(a1, . . . ,aiai+1, . . . ,an)− ∑
1n 6=π∈NC(n)

π∨σ=1n

kπ(a1, . . . ,an). (5.3.12)

In the present case the first of the terms on the right vanishesby induction onn.
Now eachπ ∈ NC(n) contributing on the right is of the formπ = {Vi,Vi+1} where
i ∈ Vi and i + 1 ∈ Vi+1. Since the functioni 7→ j(i) cannot be constant both on
Vi and onVi+1 lest it be constant, it follows that every term in the sum on the far
right vanishes by induction onn. We conclude thatkn(a1, . . . ,an) = 0. The proof
of Theorem 5.3.15 is complete. ⊓⊔

Exercise 5.3.19Prove that

k3(a1,a2,a3) = φ(a1a2a3)−φ(a1)φ(a2a3)−φ(a1a3)φ(a2)

−φ(a1a2)φ(a3)+2φ(a1)φ(a2)φ(a3) .

5.3.3 Consequence of free independence: free convolution

We postpone giving a direct link between free independence and random matrices
in order to first exhibit some consequence of free independence, often described as
free harmonic analysis. We will consider two self-adjoint noncommutative vari-
ablesa andb. Our goal is to determine the law ofa+b or of abwhena,b are free.
Since the law of(a,b) with a,b free is uniquely determined by the lawsµa of a and
µb of b (see part (ii) of Remark 5.3.2), the law of their sum (respectively, product)
is a function ofµa andµb denoted byµa ⊞ µb (respectively,µa ⊠ µb). There are
several approaches to these questions; we will detail first apurely combinatorial
approach based on free cumulants and then mention an algebraic approach based
on the Fock space representations (see part (ii) of Example 5.3.3). These two
approaches concern the case where the probability measuresµa,µb have compact
support (that is,a andb are bounded). We will generalize the results to unbounded
variables in Section 5.3.5.
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Free additive convolution

Definition 5.3.20Let a,b be two noncommutative variables in a noncommutative
probability space(A ,φ) with law µa,µb respectively. Ifa,b are free, then the law
of a+b is denotedµa ⊞ µb.

We usekn(a) = kn(a, . . . ,a) to denote thenth cumulant of the variablea.

Lemma 5.3.21Let a,b be two bounded operators in a noncommutative probability
space(A ,φ). If a and b are free, then for all n≥ 1,

kn(a+b) = kn(a)+kn(b).

Proof The result is obvious forn = 1 by linearity ofk1. Moreover, for alln≥ 2,
by multilinearity of the cumulants,

kn(a+b) = ∑
εi=0,1

kn(ε1a+(1− ε1)b, . . . ,εna+(1− εn)b)

= kn(a)+kn(b) ,

where the second equality is a consequence of Theorem 5.3.15. ⊓⊔

Definition 5.3.22For a bounded operatora the formal power series

Ra(z) = ∑
n≥0

kn+1(a)zn

is called theR-transform of the lawµa. We also writeRµa := Ra sinceRa only
depends on the lawµa.

By Lemma 5.3.21, theR-transform is to free probability what the log-Fourier
transform is to classical probability in the sense that it islinear for free additive
convolution, as stated by the next corollary.

Corollary 5.3.23Let a,b be two bounded operators in a noncommutative proba-
bility space(A ,φ). If a and b are free, we have

Rµa⊞µb = Rµa +Rµb ,

where the equalities hold between formal series.

We next provide a more tractable definition of theR-transform in terms of the
Stieltjes transform. Letµ : C[X] → C be a distribution in the sense of Definition
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5.2.3 and define the formal power series

Gµ(z) := ∑
n≥0

µ(Xn)z−(n+1) . (5.3.13)

Let Kµ(z) be the formal inverse ofGµ , i.e. Gµ(Kµ(z)) = z. The formal power
series expansion ofKµ is

Kµ(z) =
1
z

+
∞

∑
n=1

Cnzn−1 .

Lemma 5.3.24Let µ be a compactly supported probability measure. For n≥ 1
integer, Cn = kn and so we have equality in the sense of formal series

Rµ(z) = Kµ(z)−1/z.

Proof Consider the generating function of the cumulants as the formal power
series

Ca(z) = 1+
∞

∑
n=1

kn(a)zn

and the generating function of the moments as the formal power series

Ma(z) = 1+
∞

∑
n=1

mn(a)zn

with mn(a) := µ(an). We will prove that

Ca(zMa(z)) = Ma(z) . (5.3.14)

The rest of the proof is pure algebra since

Ga(z) := Gµa(z) = z−1Ma(z
−1) , Ra(z) := z−1(Ca(z)−1)

then givesCa(Ga(z)) = zGa(z) and so, by composition withKa,

zRa(z)+1 = Ca(z) = zKa(z) .

This equality proves thatkn = Cn for n≥ 1. To derive (5.3.14), we will first show
that

mn(a) =
n

∑
s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is=n−s

ks(a)mi1(a) · · ·mis(a) . (5.3.15)
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With (5.3.15) granted, (5.3.14) follows readily since

Ma(z) = 1+
∞

∑
n=1

mn(a)zn

= 1+
∞

∑
n=1

n

∑
s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is=n−s

ks(a)zsmi1(a)zi1 · · ·mis(a)zis

= 1+
∞

∑
s=1

ks(z)z
s

(
∞

∑
i=0

zimi(a)

)s

= Ca(zMa(z)) .

To prove (5.3.15), recall that, by definition of the cumulants,

mn(a) = ∑
π∈NC(n)

kπ(a) .

Given a non-crossing partitionπ = {V1, . . . ,Vr} ∈NC(n), writeV1 = (1,v2, . . . ,vs)

with s = |V1| ∈ {1, . . . ,n}. Sinceπ is non-crossing, we see that for anyl ∈
{2, . . . , r}, there existsk ∈ {1, . . . ,s} so that the elements ofVl lie betweenvk

andvk+1. Herevs+1 = n+ 1 by convention. This means thatπ decomposes into
V1 and at mostsother (non-crossing) partitions̃π1, . . . , π̃s. Therefore

kπ = kskπ̃1 · · ·kπ̃s.

If we let ik denote the number of elements inπ̃k, we thus have proved that

mn(a) =
n

∑
s=1

ks(a) ∑
π̃k∈NC(ik),

i1+···+is=n−s

kπ̃1(a) · · ·kπ̃s(a)

=
n

∑
s=1

ks(a) ∑
i1+···+is=n−s

ik≥0

mi1(a) · · ·mis(a) ,

where we used again the relation (5.3.5) between cumulants and moments. The
proof of (5.3.15), and hence of the lemma, is thus complete. ⊓⊔

We now digress by rapidly describing the original proof of Corollary 5.3.23
due to Voiculescu. The idea is that since laws only depends onmoments, one can
choose a specific representation of the free noncommutativevariablesa,b with
given marginal distribution to actually compute the law ofa+b. A standard choice
is then to use left creation and annihilation operators as described in part (ii) of
Example 5.3.3. LetT denote the Fock space described in (5.3.2) andℓi = ℓ(ei),
i = 1,2, be two creation operators onT .
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Lemma 5.3.25Let (α j ,i , i = 1,2, j ∈ N) be complex numbers and consider the
operators onT

ai = ℓ∗i + α0,i I +
∞

∑
j=1

α j ,iℓ
j
i , i = 1,2.

Then, denoting in shortℓ0
i = I for i = 1,2, we have that

a1 +a2 = (ℓ∗1 + ℓ∗2)+
∞

∑
j=0

α j ,1ℓ
j
1 +

∞

∑
j=0

α j ,2ℓ
j
2 (5.3.16)

and

a3 = ℓ∗1 +
∞

∑
j=0

α j ,1ℓ
j
1 +

∞

∑
j=0

α j ,2ℓ
j
1 (5.3.17)

possess the same distribution in the noncommutative probability space(T , 〈·1,1〉).

In the above lemma, infinite sums are formal. The law of the associated operators
is still well defined since the(ℓ j

i ) j≥M will not contribute to moments of order
smaller thanM; thus, any finite family of moments is well defined.

Proof We need to show that the traces〈ak
31,1〉 and 〈(a1 + a2)

k1,1〉 are equal
for all positive integersk. Comparing (5.3.16) and (5.3.17), there is a bijection
between each term in the sum defining(a1 +a2) and the sum defininga3, which
extends to the expansions ofak

3 and(a1 +a2)
k. We thus only need to compare the

vacuum expectations of individual terms; for〈ak
31,1〉 they are of the formZ :=

〈ℓw1
1 ℓw2

1 · · ·ℓwn
1 1,1〉 wherewi ∈ {∗,1}, whereas the expansion of〈(a1 + a2)

k1,1〉
yields similar terms except thatℓ∗1 has to be replaced byℓ∗1 + ℓ∗2 and some of the
ℓ1

1 by ℓ1
2. Note, however, thatZ 6= 0 if and only if the sequencew1,w2, . . . ,wn is

a Dyck path, i.e. the walk defined by it forms a positive excursion that returns
to 0 at timen (replacing the symbol∗ by −1). But, since(ℓ∗1 + ℓ∗2)ℓi = 1 = ℓ∗i ℓi

for i = 1,2, the value ofZ is unchanged under the rules described above, which
completes the proof. ⊓⊔

To deduce another proof of Lemma 5.3.21 from Lemma 5.3.25, wenext show
that the cumulants of the distribution of an operator of the form

a = ℓ∗ + ∑
j≥0

α jℓ
j ,
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for some creation operatorℓ on T , are given byki = αi+1. To prove this point,
we compute the moments ofa. By definition,

〈an1,1〉 = 〈
(

ℓ∗ + ∑
j≥0

α jℓ
j

)n

1,1〉

= ∑
i(1),...,i(n)∈{−1,0,...,n−1}

〈ℓi(1) · · ·ℓi(n)1,1〉αi(1) · · ·αi(n) ,

where for j = −1 we wroteℓ∗ for ℓ j and setα−1 = 1, and further observed that
mixed moments vanish if somei(l) ≥ n. Recall now that〈ℓi(1) · · ·ℓi(n)1,1〉 van-
ishes except if the path(i(1), . . . , i(n)) forms a positive excursion that returns to
the origin at timen, that is,

i(1)+ · · ·+ i(m) ≥ 0 for all m≤ n, andi(1)+ · · ·+ i(n) = 0. (5.3.18)

(Such a path is not in general a Dyck path since the(i(p),1 ≤ p ≤ n) may take
any values in{−1,0, . . . ,n−1}.) We thus have proved that

〈an1,1〉 = ∑
i(1),...,i(n)∈{−1,...,n−1},

∑m
p=1 i(p)≥0,∑n

p=1 i(p)=0

αi(1) · · ·αi(n) . (5.3.19)

Define next a bijection between the set of integers(i(1), . . . , i(n)) satisfying
(5.3.18) and non-crossing partitionsπ = {V1, . . . ,Vr} by i(m) = |Vi | − 1 if m is
the first element of the blockVi, andi(m) = −1 otherwise. To see it is a bijection,
being given a partition, the numbers(i(1), . . . , i(n)) satisfy (5.3.18). Reciprocally,
being given the numbers(i(1), . . . , i(n)), we have a unique non-crossing partition
π = (V1, . . . ,Vk) satisfying|Vi | = i(m)+1 with m the first point ofVi . It is drawn
inductively by removing block intervals which are sequences of indices such that
{i(m) = p, i(m+k) =−1,1≤ k≤ p} (includingp= 0 in which case an interval is
{i(m) = 0}). Such a block must exist by the second assumption in (5.3.18). Fixing
such intervals as blocks of the partition, we can remove the corresponding indices
and search for intervals in the corresponding subsetS of {i(k),1 ≤ k ≤ n}. The
indices inSalso satisfy (5.3.18), so that we can continue the construction until no
indices are left.

This bijection allows us to replace the summation over thei(k) in (5.3.19) by
summation over non-crossing partitions to obtain

〈an1,1〉 = ∑
π=(V1,...,Vr )

α|V1|−1 · · ·α|Vr |−1 .

Thus, by the definition (5.3.5) of the cumulants, we deduce that, for all i ≥ 0,
αi−1 = ki , with ki the ith cumulant. Therefore, Lemma 5.3.25 is equivalent to the
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additivity of the free cumulants of Lemma 5.3.21 and the restof the analysis is
similar.

Example 5.3.26Consider the standard semicircle lawνa(dx) = σ(x)dx. By
Lemma 2.1.3 and Remark 2.4.2,

Ga(z) =
z−

√
z2−4
2

.

Thus,Ka(z) = z−1+z. In particular, theR-transform of the semicircle is the linear
function z, and summing two (freely independent) semicircular variables yields
again a semicircular variable with a different variance. Indeed, repeating the com-
putation above, theR-transform of a semicircle with support[−α,α] (or equiva-
lently with varianceα2/4) isα2z/4. Note here that the linearity of theR-transform
is equivalent tokn(a) = 0 except ifn = 2, andk2(a) = α2/4 = φ(a2).

Exercise 5.3.27(i) Let µ = 1
2(δ+1 + δ−1). Show thatGµ(z) = (z2−1)−1zand

Rµ(z) =

√
1+4z2−1

2z

with the appropriate branch of the square root. Deduce thatGµ⊞µ(z) =
√

z2−4
−1

.
Recall that ifσ is the standard semicircle lawdσ(x) = σ(x)dx, Gσ (x) = 1

2(z−√
z2−4). Deduce by derivations and integration by parts that

1
2
(1−zGµ⊞µ(z)) =

∫
1

z−x
∂xσ(x)dx.

Conclude thatµ ⊞ µ is absolutely continuous with respect to Lebesgue measure
and with density proportional to 1|x|≤2(4−x2)−

1
2 .

(ii) (Free Poisson) Letα > 0. Show that if one takespn(dx) = (1− λ
n )δ0 + λ

n δα ,
p⊞n

n converges to a limitp whoseR-transform is given by

R(z) =
λ α

1−αz
.

Deduce thatp is the Marčenko–Pastur law given, ifλ > 1, by

p(dx) = p̃(dx) =
1

2παx

√
4λ α2− (x−α(λ +1))2dx,

and forλ < 1, p = (1−λ )δ0+ λ p̃.

Multiplicative free convolution

We consider again two bounded self-adjoint operatorsa,b in a noncommutative
probability space(A ,φ) with laws µa andµb, but now study the law ofab, that
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is, the collection of moments{φ((ab)n),n∈ N}. Note thatabdoes not need to be
a self-adjoint operator. In the case whereφ is tracial anda self-adjoint positive,
we can, however, rewriteφ((ab)n) = φ((a

1
2 ba

1
2 )n) so that the law ofabcoincides

with the spectral measure ofa
1
2 ba

1
2 whenb is self-adjoint. However, the following

analysis of the family{φ((ab)n),n ∈ N} holds in a more general context where
these quantities might not be related to a spectral measure.

Definition 5.3.28Let a,b be two noncommutative variables in a noncommutative
probability space(A ,φ) with lawsµa andµb respectively. Ifa andb are free, the
law of ab is denotedµa ⊠ µb.

Denote byma the generating function of the moments, that is, the formal power
series

ma(z) := ∑
m≥1

φ(an)zn = Ma(z)−1.

Whenφ(a) 6= 0, ma is invertible as a formal power series. Denote bym−1
a its

(formal) inverse. We then define

Definition 5.3.29Assumeφ(a) 6= 0. TheS-transformof a is given by

Sa(z) :=
1+z

z
m−1

a (z).

We next prove that theS-transform plays the same role in free probability that the
Mellin transform does in classical probability.

Lemma 5.3.30Let a,b be two free bounded operators in a noncommutative prob-
ability space(A ,φ), so thatφ(a) 6= 0, φ(b) 6= 0. Then

Sab(z) = Sa(z)Sb(z) .

See Exercise 5.3.31 for extensions of Lemma 5.3.30 to the case where eitherφ(a)

or φ(b) vanish.

Proof The idea is to use the structure of non-crossing partitions to relate the gen-
erating functions

Mab(z) = ∑
n≥0

φ((ab)n)zn, Md
cd(z) = ∑

n≥0

φ(d(cd)n)zn ,
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where(c,d) = (a,b) or (b,a). Note first that, from Theorem 5.3.15,

φ((ab)n) = φ(abab· · ·ab) = ∑
π∈NC(2n)

kπ(a,b, . . . ,a,b)

= ∑
π1∈NC(1,3,...,2n−1)π2∈NC(2,4,...,2n)

π1∪π2∈NC(2n)

kπ1(a)kπ2(b) .

The last formula is symmetric ina,b so that, even ifφ is not tracial,φ((ab)n) =

φ((ba)n) for all n≥ 1. We use below the notationP(odd) andP(even) for the
partitions on the odd, respectively, even, positive integers. Fix the first blockV1 =

{v1, . . . ,vs} in the partitionπ1. We denote byW1, . . . ,Ws the intervals between the
elements ofV1∪{2n}. For k = 1, . . . ,s, the sum over the non-crossing partitions
of Wk corresponds to a wordb(ab)ik if |Wk| = 2ik +1 = vk+1−vk−1. Therefore
we have

φ((ab)n) =
n

∑
s=1

ks(a) ∑
i1+···+is=n−s

ik≥0

s

∏
k=1


 ∑

π1∈P(odd),π2∈P(even)
π1∪π2∈NC({1,...,2ik+1})

kπ1(b)kπ2(a)




=
n

∑
s=1

ks(a) ∑
i1+···+is=n−s

ik≥0

s

∏
k=1

φ(b(ab)ik) . (5.3.20)

Now we can do the same forφ(b(ab)n) by fixing the first blockV1 = (v1, . . . ,vs) in
the partition of thebs (on the odd numbers); the corresponding first intervals are
{vk +1,vk+1−1} for k ≤ s−1 (representing the words of the form(ab)ika, with
ik = 2−1(vk+1−vk)−1), whereas the last interval{vs+1,2n+1} corresponds to
a word of the form(ab)i0 with i0 = 2−1(2n+1−vs). Thus we get, forn≥ 0,

φ(b(ab)n) =
n

∑
s=0

ks+1(b) ∑
i0+···+is=n−s

ik≥0

φ((ab)i0)
s

∏
k=1

φ(a(ba)ik) . (5.3.21)

Setca(z) := ∑n≥1kn(a)zn. Summing (5.3.20) and (5.3.21) yields the relations

Mab(z) = 1+ca(zMb
ab(z)) ,

Mb
ab(z) = ∑

s≥0
zsks+1(b)Mab(z)M

a
ba(z)

s =
Mab(z)
zMa

ba(z)
cb(zMa

ba(z)) .

SinceMab = Mba, we deduce that

Mab(z)−1 = ca(zMb
ab(z)) = cb(zMa

ba(z)) =
zMb

ab(z)M
a
ba(z)

Mab(z)
,
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which yields, noting thatca,cb are invertible as formal power series sincek1(a) =

φ(a) 6= 0 andk1(b) = φ(b) 6= 0 by assumption,

c−1
a (Mab(z)−1)c−1

b (Mab(z)−1) = zMab(z)(Mab(z)−1) . (5.3.22)

Finally, from the equality (5.3.14) (note here thatca = Ca− 1), if ma = Ma − 1,
then

ma(z) = ca(z(1+ma(z))) ⇒ c−1
a (z) = (1+z)m−1

a (z) = zSa(z) .

Therefore, (5.3.22) implies

z2Sa(z)Sb(z) = (1+z)zm−1
ab (z) = z2Sab(z) ,

which completes the proof of the lemma. ⊓⊔

Exercise 5.3.31In the case wherea is a self-adjoint operator such thatφ(a) = 0
but a 6= 0, definem−1

a , the inverse ofma, as a formal power series in
√

z. Define
the S-transformSa(z) = (z−1 + 1)m−1

a (z) and extend Lemma 5.3.30 to the case
whereφ(a) or φ(b) may vanish.
Hint: Note thatφ(a2) 6= 0 so thatma(z) = φ(a2)z2 + ∑m≥3 φ(am)zm has formal

inversem−1
a (z) = φ(a2)−

1
2
√

z+(φ(a3)/2φ(a2)2)z+ · · · , which is a formal power
series in

√
z.

5.3.4 Free central limit theorem

In view of the free harmonic analysis that we developed in theprevious sections,
which is analogous to the classical one, it is no surprise that standard results from
classical probability can be generalized to the noncommutative setting. One of the
most important such generalizations is the free central limit theorem.

Lemma 5.3.32Let {ai}i∈N be a family of free self-adjoint random variables in
a noncommutative probability space with a tracial stateφ . Assume that, for all
k∈ N,

sup
j
|φ(ak

j )| < ∞ . (5.3.23)

Assumeφ(ai) = 0, φ(a2
i ) = 1. Then

XN =
1√
N

N

∑
i=1

ai

converges in law as N goes to infinity to a standard semicircledistribution.
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Proof Note that by (5.3.23) the cumulants of words in theai are well defined and
finite. Moreover, by Lemma 5.3.21, for allp≥ 1, we have

kp(XN) =
N

∑
k=1

kp(
ai√
N

) =
1

N
p
2

N

∑
k=1

kp(ai) .

Since, for eachp, {kp(ai)}∞
i=1 are bounded uniformly ini, we get, forp≥ 3,

lim
N→∞

kp(XN) = 0.

Moreover, sinceφ(ai) = 0,φ(a2
i ) = 1, for any integerN, k1(XN) = 0 whereas

k2(XN) = 1. Therefore, we see by definition 5.3.13 that, for allp∈ N,

lim
N→∞

φ(Xp
N) =

{
0 if p is odd,
♯{π ∈ NC(p),π pair partition} .

Here we recall that a pair partition is a partition whose blocks have exactly two
elements. The right side corresponds to the definition of themoments of the semi-
circle law, see Proposition 2.1.11. ⊓⊔

5.3.5 Freeness for unbounded variables

The notion of freeness was defined for bounded variables possessing all moments.
It naturally extends to general unbounded variables thanksto the notion ofaffili-
ated operatorsdefined in Section 5.2.3, as follows.

Definition 5.3.33Self-adjoint operators{Xi}1≤i≤p, affiliated with a von Neumann
algebraA , are calledfreely independent, or simply free, iff the algebras generated
by { f (Xi) : f bounded measurable}1≤i≤p are free.

Free unbounded variables can be constructed in a noncommutative space, even
though it is not possible anymore to represent these variables as bounded opera-
tors, so that standard tools such as the GNS representation,Theorem 5.2.24, do
not hold directly. However, we can construct free affiliatedvariables as follows.

Proposition 5.3.34Let (µ1, . . . ,µp) be probability measures onR. Then there
exist a W∗-probability space(A ,τ) with τ a normal faithful tracial state, and self-
adjoint operators{Xi}1≤i≤p which are affiliated withA , with lawsµi , 1≤ i ≤ p,
and which are free.

Proof SetAi = B(Hi) with Hi = L2(µi) and construct the free productH as in the
discussion following (5.3.3), yielding aC∗-probability space(A ,φ) with a tracial
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stateφ and a morphismπ such that the algebras(π(Ai))1≤i≤p are free. By the
GNS construction, see Proposition 5.2.24 and Corollary 5.2.27, we can construct
a normal faithful tracial stateτ on a von Neumann algebraB and unbounded
operators(a1, . . . ,ap) affiliated with B, with marginal distribution(µ1, . . . ,µp).
They are free since since the algebras they generate are free(note thatφ andτ
satisfy the relations of Definition 5.3.1 according to Remark 5.3.2). ⊓⊔

From now on we assume that we are given a Hilbert spaceH as well as a
W∗-algebraA ⊂ B(H) and self-adjoint operators affiliated withA . The law of
affiliated operators is given by their spectral measure and,according to Theorem
5.2.31 and Proposition 5.2.32, if{Ti}1≤i≤k are self-adjoint affiliated operators, the
law of Q({Ti}1≤i≤k) is well defined for any polynomialQ.

The following corollary is immediate.

Corollary 5.3.35 Let {Ti}1≤i≤k ∈ Ã be free self-adjoint variables with marginal
distribution{µi}1≤i≤k and let Q be a self-adjoint polynomial in k noncommuting
variables. Then the law of Q({Ti}1≤i≤k) depends only on{µi}1≤i≤k and it is
continuous in these measures.

Proof of Corollary 5.3.35 Let un : R → R be bounded continuous functions so
thatun(x) = x for |x| < n andun(x) = 0 for |x| > 2n. By Proposition 5.2.32, the
law of Q({Ti}1≤i≤k) can be approximated by the law ofQ({un(Ti)}1≤i≤k). To see
the claimed continuity, note that ifµ p

i → µi converges weakly asp → ∞ for i =

1, . . . ,k, then the sequences{µ p
i } are tight, and thus for eachε > 0 there exists an

M independent ofp so thatµ p
i ({x : |x|> M}) < ε. In particular, withT p

i denoting
the operators corresponding to the measuresµ p

i , it follows that the convergence of
the law ofQ({un(T

p
i )}1≤i≤k) to the law ofQ({T p

i }1≤i≤k) is uniform in p. Since,
for eachn, the law ofQ({un(T

p
i )}1≤i≤k) converges to that ofQ({un(Ti)}1≤i≤k),

the claimed continuity follows. ⊓⊔

Free harmonic analysis can be extended to affiliated operators, that is, to laws
with unbounded support. We consider here the additive free convolution. We
first show that theR-transform can be defined as an analytic function, at least
for arguments with large enough imaginary part, without using the existence of
moments.

Lemma 5.3.36Let µ be a probability measure onR. For α,β > 0, let Γα ,β ⊂C+

be given by

Γα ,β = {z= x+ iy∈ C+ : |x| < αy,y > β} .
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Put, for z∈ C\R,

Gµ(z) :=
∫

1
z−x

dµ(x), Fµ(z) = 1/Gµ(z). (5.3.24)

For anyα > 0 andε ∈ (0,α), there existsβ > 0 so that:

(i) Fµ is univalent onΓα ,β ;

(ii) Fµ(Γα ,β ) containsΓα−ε,β (1+ε) and in particular, the inverse of Fµ , de-
noted F−1

µ , satisfies F−1
µ : Γα−ε,β (1+ε)→Γα ,β ;

(iii) F−1
µ is analytic onΓα−ε,β (1+ε).

Proof Observe thatFµ is analytic onΓα ,β and

lim
|z|→∞,z∈Γα,β

F ′
µ(z) = −1.

In particular, the latter shows that|F ′
µ(z)| > 1/2 on Γα ,β for β large enough.

We can thus apply the implicit function theorem (also known in this context as
the Lagrange inversion theorem) to deduce thatFµ is invertible, with an analytic
inverse. The other claims follow by noting thatFµ is approximately the identity
for β sufficiently large. ⊓⊔

Definition 5.3.37Let Γα ,β be as in Lemma 5.3.36. We define theVoiculescu
transformof µ on Γα ,β as

φµ(z) = F−1
µ (z)−z.

For 1/z∈ Γα ,β , we define theR-transformof µ asRµ(z) := φµ(1
z).

By Lemma 5.3.36, forβ large enough,φµ is analytic onΓα ,β . As the following
lemma shows, the analyticity extends to a full neighborhoodof infinity (and to an
analyticity ofRµ in a neighborhood of 0) as soon asµ is compactly supported.

Lemma 5.3.38If µ is compactly supported and|z| is small enough, then Rµ(z)
equals the absolutely convergent series∑n≥0kn+1(a)zn.

Note that the definition ofGµ given in (5.3.24) is analytic (in the upper half plane),
whereas it was defined as a formal power series in (5.3.13). However, whenµ is
compactly supported andz is large enough, the formal series (5.3.13) is absolutely
convergent and is equal to the analytic definition (5.3.24),which justifies the use
of the same notation. Similarly, Lemma 5.3.38 shows that theformal Definition
5.3.22 ofRµ can be strengthened into an analytic definition whenµ is compactly
supported.
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Proof Let µ be supported in[−M,M] for someM < ∞. Then observe thatGµ
defined in (5.3.13) can be as well defined as an absolutely converging series for
|z| > M, and the resulting function is analytic in this neighborhood of infinity. Rµ
is then defined using Lemma 5.3.36 by applying the same procedure as in Lemma
5.3.24, but on analytic functions rather than formal series. ⊓⊔

By Property 5.3.34, we can always construct a Hilbert spaceH, a tracial state
φ , and two free variablesX1,X2 with lawsµ1 andµ2, respectively, affiliated with
B(H). By Corollary 5.3.35, we may define the law ofX1 + X2 which we denote
µ1 ⊞ µ2.

Corollary 5.3.39 Let µ1 andµ2 be probability measures onR, and letµ = µ1 ⊞

µ2. For eachα > 0, we haveφµ = φµ1 + φµ2 in Γα ,β for β sufficiently large.

Proof The proof is obtained by continuity from the bounded variables case. In-
deed, Lemmas 5.3.23 and 5.3.24, together with the last pointof Lemma 5.3.36,
show that Corollary 5.3.39 holds whenµ1 andµ2 are compactly supported. We
will next show that

if µn converge toµ in the weak topology, then there exist
α,β > 0 such thatφµn converges toφµ uniformly on
compacts subsets ofΓα ,β .

(5.3.25)

With (5.3.25) granted, putdµn
i = µi([−n,n])−11|x|≤ndµi , note thatµn

i converges
to µi for i = 1,2, and observe that the lawµn

1 ⊞ µn
2 of un(X1)+un(X2), with X1,X2

being two free affiliated variables, converges toµ1 ⊞ µ2 by Proposition 5.2.32.
The convergence ofφµn to φµ on the compacts of someΓα ,β for µ = µ1, µ2

andµ1 ⊞ µ2, together with the corollary applied to the compactly supported µn
i ,

implying

φµn
1⊞µn

2
= φµn

1
+ φµn

2
,

yield the corollary for arbitrary measuresµi .

It remains to prove (5.3.25). Fix a probability measureµ and a sequenceµn

converging toµ . Then,Fµ converges toFµ uniformly on compact sets ofC+ (as
well as its derivatives, since the functionsFµn are analytic). Since|F ′

µn
(z)| > 1/2

onΓα ,β for β sufficiently large,|F ′
µn

(z)|> 1/4 uniformly inn large enough forz in
compact subsets ofΓα ,β for β sufficiently large. Therefore, the implicit function
theorem asserts that there existα,β > 0 such thatFµn has a right inverseF−1

µn
on

Γα ,β , and thus the functions(φµn,n ∈ N,φµ) are well defined analytic functions
on Γα ,β and are such thatφµn(z) = o(z) uniformly in n as |z| goes to infinity.
Therefore, by Montel’s Theorem, the family{φµn,n∈ N} has subsequences that
converge uniformly on compacts ofΓα ,β . We claim that all limit points must be
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equal toφµ and henceφµn converges toφµ onΓα ,β . Indeed, assumeφµnj
converges

to φ on a compactK ⊂ Γα ,β . We have

|Fµ(φ(z)+z)−z| = |Fµ(φ(z)+z)−Fµnj
(φµnj

(z)+z)|
= |Fµ(φ(z)+z)−Fµ(φµnj

(z)+z)|
+|Fµ(φµnj

(z)+z)−Fµnj
(φµnj

(z)+z)| .

The first term in the right side goes to zero asj goes to infinity by continuity ofFµ
and the second term goes to zero by uniform convergence ofFµnj

on Γα ,β . (Note

thatφµnj
(z) is uniformly small compared to|z| so thatz+ φµnj

(z), j ∈ N, stays in
Γα ,β .) Thus,z+ φ is a right inverse ofFµ , that is,φ = φµ . ⊓⊔

The study of free convolution via the analytic functionsφµ (or Rµ) is useful
in deducing properties of free convolution and of free infinitely divisible laws
(whose definition is analogous to the classical one, with free convolution replacing
classical convolution). The following lemma sheds light onthe special role of the
semicircle law with respect to free convolution. For a measure µ ∈ M1(R), we
define the rescaled measureµ# 1√

2
∈ M1(R) by the relation

〈µ# 1√
2
, f 〉 =

∫
f (

x√
2
)dµ(x) for all bounded measurable functionsf .

Lemma 5.3.40Let µ be a probability measure onR, so that〈µ ,x2〉 < ∞. If

µ# 1√
2
⊞ µ# 1√

2
= µ , (5.3.26)

thenµ is a scalar rescale of the semicircle law.

(The assumption of finite variance in Lemma 5.3.40 is superfluous, see Section
5.6. The statement we present has the advantage of possessing a short proof.)

Proof Below, we consider the definition of Voiculescu’s transformof µ , see Defi-
nition 5.3.37. We deduce from (5.3.26) that

φµ(z) = 2φµ
# 1√

2

(z) .

But

Gµ
# 1√

2

(z) =
√

2Gµ(
√

2z) ⇒ φµ(z) =
√

2φµ
# 1√

2

(z/
√

2) ,

and so we obtain

φµ(z/
√

2) =
√

2φµ(z) . (5.3.27)
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When〈µ ,x2〉 < ∞ andzhas large imaginary part, since

Gµ(z) =
1
z

(
1+

〈µ ,x〉
z

+
〈µ ,x2〉

z2 +o(|ℑz|−2)

)
,

we get

φµ(z) = 〈µ ,x〉+ 〈µ ,x2〉− 〈µ ,x〉2

2z
+o(|ℑz|−1) . (5.3.28)

From (5.3.27) and (5.3.28), we deduce first that〈µ ,x〉 = 0 and then that, asℑz→
∞, zφµ(z) converges to〈µ ,x2〉/2. Since 5.3.27 implies thatzφµ(z)= 2n/2φµ(2n/2z),
it follows by lettingn go to infinity thatzφµ(z) = 〈µ ,x2〉/2, for all zwith ℑz 6= 0.
From Example 5.3.26, we conclude thatµ is a scalar rescale of the semicircle
law. ⊓⊔

Exercise 5.3.41Let ε > 0 andpε(dx) be the Cauchy law

pε(dx) =
ε
π

1
x2 + ε2dx.

Show that forz∈ C+, Gpε (z) = 1/(z+ iε) and soRpε (z) = −iε and therefore that
for any probability measureµ onR, Gµ⊞pε (z) = Gµ(z+ iε). Show by the residue
theorem thatGµ∗pε (z) = Gµ(z+ iε) and conclude thatµ ⊞ pε = µ ∗ pε , that is, the
free convolution by a Cauchy law is the same as the standard convolution.

5.4 Link with random matrices

Random matrices played a central role in free probability since Voiculescu’s sem-
inal observation that independent Gaussian Wigner matrices converge in distri-
bution as their size goes to infinity to free semicircular variables (see Theorem
5.4.2). This result can be extended to approximate any law offree variables by
taking diagonal matrices and conjugating them by independent unitary matrices
(see Corollary 5.4.11). In this section we aim at presentingthese results and the
underlying combinatorics.

Definition 5.4.1A sequence of collections of noncommutative random variables

({aN
i }i∈J)N∈N

in noncommutative probability spaces(AN,∗,φN) is calledasymptotically freeif it
converges in law asN goes to infinity to a collection of noncommutative random
variables{ai}i∈J in a noncommutative probability space(A,∗,φ), where{ai}i∈J
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is free. In other words, for any positive integerp and anyi1, . . . , ip ∈ J,

lim
N→∞

φN(aN
i1aN

i2 · · ·a
N
ip) = φ(ai1 · · ·aip)

and the noncommutative variablesai, i ∈ J, are free in(A,∗,φ).

We first prove that independent (not necessarily Gaussian) Wigner matrices are
asymptotically free.

Theorem 5.4.2Let(Ω,B,P) be a probability space and N, p be positive integers.

Letβ = 1 or 2, and let XN
i : Ω →H

(β )
N , 1≤ i ≤ p, be a family of random matrices

such that XNi /
√

N are Wigner matrices. Assume that, for all k∈ N,

sup
N∈N

sup
1≤i≤p

sup
1≤m≤ℓ≤N

E[|XN
i (m, ℓ)|k] ≤ ck < ∞ , (5.4.1)

that(XN
i (m, ℓ),1≤m≤ ℓ≤N,1≤ i ≤ p) are independent, and that E[XN

i (m, ℓ)] =

0 and E[|XN
i (m, ℓ)|2] = 1.

Then the empirical distribution̂µN := µ{ 1√
N

XN
i }1≤i≤p

of{ 1√
N

XN
i }1≤i≤p converges

almost surely and in expectation to the law of p free semicircular variables. In
other words, the matrices{ 1√

N
XN

i }1≤i≤p, viewed as elements of the noncom-

mutative probability space(MatN(C),∗, 1
N tr) (respectively,(MatN(C),∗,E[ 1

N tr])),
are almost surely asymptotically free (respectively, asymptotically free) and their
spectral measures almost surely converge (respectively, converge) to the semicir-
cle law.

In the course of the proof of this theorem, we shall prove the following useful
intermediate remark, which in particular holds when only one matrix is involved.

Remark 5.4.3 Under the hypotheses of Theorem 5.4.2, except that we do not
require thatE[|XN

i (m, l)|2] = 1 but only that it is bounded by 1, for all monomials
q∈ C〈Xi ,1≤ i ≤ p〉 of degreek normalized so thatq(1,1, . . . ,1) = 1,

limsup
N→∞

|E[µ̂N(q)]| ≤ 2k .

Proof of Theorem 5.4.2We first prove the convergence ofE[µ̂N]. The proof
follows closely that of Lemma 2.1.6 (see also Lemma 2.2.3 in the case of complex
entries). We need to show, for any monomialq({Xi}1≤i≤p)= Xi1 · · ·Xik ∈C〈Xi |1≤
i ≤ p〉, the convergence of

E[µ̂N(q)] =
1

N
k
2+1 ∑

j
T̄ j , (5.4.2)
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wherej = ( j1, . . . , jk) and

T̄ j := E
(
XN

i1 ( j1, j2)X
N
i2 ( j2, j3) · · ·XN

ik ( jk, j1)
)

.

(Compare with (2.1.10).) By (5.4.1),̄T j is uniformly bounded byck.

We use the language of Section 2.1.3. Consider the closed word w = wj =

j1 · · · jk j1 and recall that its weight wt(w) is the number of distinct letters inw.
Let Gw = (Vw,Ew) be the graph as defined in the proof of Lemma 2.1.6. As there,
we need to find out which set of indices contributes to the leading order of the
sum in the right side of (5.4.2). Loosely speaking,T̄ j vanishes more often when
one has independent matrices than when one always has the same matrix. Hence,
the indices corresponding to graphsGw which are not trees will be negligible. We
will then only consider indices corresponding to graphs which are trees, for which
T̄ j will be easily computed. Recall the following from the proofof Lemma 2.1.6
(see also Lemma 2.2.3 for complex entries).

(i) T̄ j vanishes if each edge inEwj is not repeated at least twice (i.e.N
w j
e ≥ 2

for eache∈ Ewj ). Hence, wt(wj ) ≤ k
2 +1 for all contributing indices.

(ii) The number ofN-words in the equivalence class of a givenN-word of
weightt is N(N−1) · · ·(N− t +1)≤ Nt .

(iii) The number of equivalence classes of closedN-wordsw of lengthk+ 1
and weightt such thatNw

e ≥ 2 for eache∈ Ew is bounded bytk ≤ kk.

Therefore, ∣∣∣∣∣∣ ∑
j :wtj≤ k

2

T̄ j

∣∣∣∣∣∣
≤ ∑

t≤ k
2

Ntckt
k ≤C(k)N

k
2

and, considering (5.4.2), we deduce
∣∣∣∣∣∣
E[µ̂N(q)]− 1

N
k
2+1 ∑

j :wtj =
k
2+1

T̄ j

∣∣∣∣∣∣
≤C(k)N−1 , (5.4.3)

where the set{j : wtj = k
2 +1} is empty ifk is odd. This already shows that, ifk

is odd,

lim
N→∞

E[µ̂N(q)] = 0. (5.4.4)

If k is even, recall also that if wt(wj ) = k
2 +1, thenGwj is a tree (see an explana-

tion below Definition 2.1.10) and (by the cited definition)wj is a Wigner word.
This means that each (unoriented) edge ofGwj is traversed exactly once in each
direction by the walkj1 · · · jk j1. Hence,T̄ j will be a product of covariances of
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the entries, and therefore vanishes if these covariances involve two independent
matrices. Also, whenc2 ≤ 1, T̄ j will be bounded above by one and therefore
limsupN→∞ |E[µ̂N(q)]| is bounded above by|Wk,k/2+1| ≤ 2k, where, as in Def-
inition 2.1.10,Wk,k/2+1 denotes a set of representatives for equivalence classes
of Wigner words of lengthk+ 1, and (hence)|Wk,k/2+1| is equal to the Catalan

number 1
k/2+1

(
k

k/2

)
. This will prove Remark 5.4.3.

We next introduce a refinement of Definition 2.1.8 needed to handle the more
complicated combinatorics of monomials in several independent Wigner matrices.
(Throughout, we consider the setS = {1, . . . ,N} and omit it from the notation.)

Definition 5.4.4 Let q = q({Xi}1≤i≤p) = Xi1 · · ·Xik ∈ C〈Xi |1 ≤ i ≤ p〉 be given,
wherek is even. Letw = s1 · · ·sksk+1, sk+1 = s1 be any Wigner word of length
k+ 1 and letGw be the tree associated withw. We say thatw is q-colorableif,
for j, ℓ = 1, . . . ,k, equality of edges{sj ,sj+1} = {sℓ,sℓ+1} of the treeGw implies
equality of indices (“colors”)i j = iℓ. With, as above,Wk,k/2+1 denoting a set of
representatives for the equivalence classes of Wigner words of lengthk+ 1, let
W q

k,k/2+1 denote the subset ofq-colorable such.

By the previous considerations, each indexj contributing to the leading or-
der in the evaluation ofE[µ̂N(q)] corresponds to a treeGwj , each edge of which
is traversed exactly once in each direction by the walkj1 · · · jk j1. Further, since
E[XN

iℓ
(1,2)XN

iℓ′
(2,1)] = 1ℓ=ℓ′, an index j contributes to the leading order of

E[µ̂N(q)] if and only if it the associated Wigner wordwj is q-colorable, and hence
equivalent to an element ofW q

k,k/2+1. Therefore, for evenk,

lim
N→∞

E[µ̂N(q)] = |W q
k,k/2+1| . (5.4.5)

Moreover, trivially,

|W q
k,k/2+1| ≤ |W Xk

1
k,k/2+1| = |Wk,k/2+1| . (5.4.6)

Recall thatWk,k/2+1 is canonically in bijection with the setNC2(k) of non-crossing
pair partitions ofKk = {1, . . . ,k} (see Proposition 2.1.11 and its proof). Similarly,
for q = Xi1 · · ·Xik, the setW q

k,k/2+1 is canonically in bijection with the subset of

NC2(k) consisting of non-crossing pair partitionsπ of Kk such that for every
block{b,b′} ∈ π one hasib = ib′ . Thus, we can also write

lim
N→∞

E[µ̂N(q)] = ∑
π∈NC2(k)

∏
(b,b′)∈π

1ib=ib′ ,

where the product runs over all blocks{b,b′} of the pair partitionπ . Recalling
that kn(ai) = 1n=2 for semicircular variables by Example 5.3.26 and (5.3.7), we
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can rephrase the above as

lim
N→∞

E[µ̂N(q)] = ∑
π∈NC(k)

kπ(ai1, . . . ,aik) ,

with kπ = 0 if π is not a pair partition andk2(ai ,a j) = 1i= j . The right side corre-
sponds to the definition of the moments of free semicircular variables according
to Theorem 5.3.15 and Example 5.3.26. This proves the convergence ofE[µ̂N] to
the law ofm free semicircular variables.

We now prove the almost sure convergence. Continuing to adapt the ideas of
the (first) proof of Theorem 2.1.1, we follow the proof of Lemma 2.1.7 closely.
(Recall that we proved in Lemma 2.1.7 that the variance of〈LN,xk〉 is of or-
der N−2. As in Exercise 2.1.16, this was enough, using Chebyshev’s inequal-
ity and the Borel–Cantelli Lemma, to conclude the almost sure convergence in
Wigner’s Theorem, Theorem 2.1.1.) Here, we study the variance of µ̂N(q) for
q(X1, . . . ,Xp) = Xi1 · · ·Xik which is given by

Var(µ̂N(q)) = E[|µ̂N(q)−E[µ̂N(q)]|2] =
1

Nk+2 ∑
j ,j ′

Tj ,j ′ (5.4.7)

with

Tj ,j ′ = E[Xi1( j1, j2) · · ·Xik( jk, j1)Xik( j ′1, j ′2) · · ·Xi1( j ′k, j ′1)]

−E[Xi1( j1, j2) · · ·Xik( jk, j1)]E[Xik( j ′1, j ′2) · · ·Xi1( j ′k, j ′1)] ,

where we observed that̂µN(q) = µ̂N(q∗). We consider the sentence
wj ,j ′ = ( j1 · · · jk j1, j ′1 j ′2 · · · j ′1) and its associated graphGwj ,j ′ = (Vwj ,j ′ ,Ewj ,j ′ ). As
in the proof of Lemma 2.1.7,Tj ,j ′ vanishes unless each edge inEwj ,j ′ appears at
least twice and the graphGwj ,j ′ is connected. This implies that the number of dis-
tinct elements inVwj ,j ′ is not more thank+1, and it was further shown in the proof
of Lemma 2.1.7 that the case where it is equal tok+ 1 never happens. Hence,
there are at mostk different vertices and so at mostNk possible choices for them.
Thus, sinceTj ,j ′ is uniformly bounded by 2c2k, we conclude that there exists a
finite constantc(k) such that

Var(µ̂N(q)) ≤ c(k)
N2 .

By Chebyshev’s inequality we therefore find that

P(|µ̂N(Xi1 · · ·Xik)−E[µ̂N(Xi1 · · ·Xik)]| ≥ δ ) ≤ c(k)
δ 2N2 .

The Borel–Cantelli Lemma then yields that

lim
N→∞

|µ̂N(Xi1 · · ·Xik)−E[µ̂N(Xi1 · · ·Xik)]| = 0, a.s. ⊓⊔
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We next show that Theorem 5.4.2 generalizes to the case of polynomials that
may include some deterministic matrices.

Theorem 5.4.5Let β = 1 or 2 and let (Ω,B,P) be a probability space. Let
DN = {DN

i }1≤i≤p be a sequence of Hermitian deterministic matrices and letXN =

{XN
i }1≤i≤p, XN

i : Ω → H
(β )

N , 1≤ i ≤ p, be matrices satisfying the hypotheses of
Theorem 5.4.2. Assume that

D := sup
k∈N

max
1≤i≤p

sup
N

1
N

tr(|DN
i |k)

1
k < ∞ , (5.4.8)

and that the law ofDN in the noncommutative probability space(MatN(C), ∗,
1
N tr) converges to a noncommutative lawµ . Then we have the following.

(i) The noncommutative variables1√
N

XN andDN in the noncommutative prob-

ability space(MatN(C),∗,E[ 1
N tr]) are asymptotically free.

(ii) The noncommutative variables1√
N

XN andDN in the noncommutative prob-

ability space(MatN(C),∗, 1
N tr) are almost surely asymptotically free.

In particular, the empirical distribution of{ 1√
N

XN,DN} converges almost surely

and in expectation to the law of{X,D}, X andD being free,D with law µ andX
being p free semicircular variables.

To avoid repetition, we follow a different route than that used in the proof of
Theorem 5.4.2 (even though similar arguments could be developed). We de-
note byC〈Di ,Xi |1 ≤ i ≤ p〉 the set of polynomials in{Di,Xi}1≤i≤p, by µ̂N (re-
spectively,µ̄N) the quenched (respectively, annealed) empirical distribution of
{DN,N− 1

2 XN} = {DN
i ,N− 1

2 XN
i }1≤i≤p given, forq∈ C〈Di ,Xi |1≤ i ≤ p〉, by

µ̂N(q) :=
1
N

tr

(
q(

XN
√

N
,DN)

)
, µ̄N(q) := E[µ̂N(q)] .

To prove the convergence of{µ̄N}N∈N we first show that this sequence is tight
(see Lemma 5.4.6), and then show that any limit point satisfies the so-called
Schwinger–Dyson, or master loop, equation which has a unique solution (see
Lemma 5.4.7).

Lemma 5.4.6For R,d ∈ N, we denote byC〈Xi ,Di |1≤ i ≤ p〉R,d the set of mono-
mials in X := {Xi}1≤i≤p and D := {Di}1≤i≤p with total degree in the variables
X (respectively,D) less than R (respectively, d). Under the hypotheses of The-
orem 5.4.5, except that instead of E[|XN

i (m, l)|2] = 1 we only require that it is
bounded by1, assuming without loss of generality that D≥ 1, we have that, for
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any R,d ∈ N,

sup
q∈C〈Xi ,Di |1≤i≤p〉R,d

limsup
N→∞

|µ̄N(q)| ≤ Dd2R. (5.4.9)

As a consequence,{µ̂N(q),q∈ C〈Xi ,Di |1≤ i ≤ p〉R,d}N∈N is tight as aCC(R,d)-
valued sequence, with C(R,d) denoting the number of monomials inC〈Xi ,Di |1≤
i ≤ p〉R,d.

We next characterize the limit points of{µ̂N(q),q∈ C〈Xi ,Di |1≤ i ≤ p〉R,d}N∈N.
To this end, let∂i be the noncommutative derivative with respect to the variable
Xi which is defined as the linear map fromC〈Xi ,Di |1≤ i ≤ p〉 to C〈Xi ,Di |1≤ i ≤
p〉⊗2 which satisfies the Leibniz rule

∂iPQ= ∂iP× (1⊗Q)+ (P⊗1)× ∂iQ (5.4.10)

and∂iXj = 1i= j1⊗1,∂iD j = 0⊗0. (Here,A⊗B×C⊗D = AC⊗BD). If q is a
monomial, we have

∂iq = ∑
q=q1Xiq2

q1⊗q2 ,

where the sum runs over all possible decompositions ofq asq1Xiq2.

Lemma 5.4.7For any R,d ∈ N, the following hold under the hypotheses of Theo-
rem 5.4.5.

(i) Any limit pointτ of {µ̂N(q),q ∈ C〈Xi ,Di |1 ≤ i ≤ p〉R,d}N∈N satisfies the
boundary and tracial conditions

τ|C〈Di |1≤i≤p〉0,d
= µ |C〈Di |1≤i≤p〉0,d

, τ(PQ) = τ(QP) , (5.4.11)

where the second equality in(5.4.11)holds for all monomials P,Q such
that PQ∈ C〈Xi ,Di |1≤ i ≤ p〉R,d. Moreover, for all i∈ {1, . . . ,m} and all
q∈ C〈Xi ,Di |1≤ i ≤ m〉R−1,d, we have

τ(Xiq) = τ ⊗ τ(∂iq) . (5.4.12)

(ii) There exists a unique solution{τR,d(q),q ∈ C〈Xi ,Di |1 ≤ i ≤ p〉R,d} to
(5.4.11)and(5.4.12).

(iii) Setτ to be the linear functional onC〈Xi ,Di |1 ≤ i ≤ p〉 so thatτ(q) =

τR,d(q) for q∈ C〈Xi ,Di |1≤ i ≤ p〉R,d, any R,d ∈ N. Thenτ is character-
ized as the unique solution of the system of equations(5.4.11)and(5.4.12)
holding for q,Q,P ∈ C〈Xi ,Di |1 ≤ i ≤ p〉. Further, τ is the law of p free
semicircular variables, free with variables{Di}1≤i≤p possessing lawµ .
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Note here thatq ∈ C〈Xi ,Di |1 ≤ i ≤ p〉R,d implies thatq1,q2 ∈ C〈Xi ,Di |1 ≤ i ≤
p〉R,d for any decomposition ofq into q1Xiq2. Therefore, equation (5.4.12), which
is given by

τ(Xiq) = ∑
q=q1Xiq2

τ(q1)τ(q2) ,

makes sense for anyq∈ C〈Xi ,Di |1≤ i ≤ p〉R−1,d if {τ(q),q ∈ C〈Xi ,Di |1 ≤ i ≤
p〉R,d} is well defined.

Remark 5.4.8The system of equations (5.4.11) and (5.4.12) is often referred to
in the physics literature as theSchwinger–Dyson, or master loop, equation.

We next show heuristically how, when{XN
i }1≤i≤p are taken from the GUE, the

Schwinger–Dyson equation can be derived using Gaussian integration by parts,
see Lemma 2.4.5. Toward this end, we introduce the derivative∂z = (∂ℜz− i∂ℑz)/2
with respect to the complex variablez= ℜz+ iℑz, so that∂zz = 1 but ∂zz̄ = 0.
Using this definition for the complex variableXN

i (ℓ, r) whenℓ 6= r (and otherwise
the usual definition for the real variableXN

i (ℓ,ℓ)), note that we have

∂XN
i (ℓ,r)X

N
i′ (ℓ′, r ′) = δi,i′δℓ,ℓ′δr,r ′ . (5.4.13)

Lemma 2.4.5 can be extended to standard complex Gaussian variables, as intro-
duced in (4.1.2), by

∫
∂z f (z, z̄)e−|z|2dz=

∫
z̄ f(z, z̄)e−|z|2dz. (5.4.14)

Here,dz is the Lebesgue measure onC, dz= dℜzdℑz. Applying (5.4.14) with
z= XN

i (m, ℓ) for m 6= ℓ and f (XN) a smooth function of{XN
i }1≤i≤p of polynomial

growth along with its derivatives, we have

E
[
XN

i (ℓ,m) f (XN)
]
= E

[
∂XN

i (m,ℓ) f (XN)
]

. (5.4.15)

Using Lemma 2.4.5 directly, one verifies that (5.4.15) stillholds form= ℓ. (One
could just as well take (5.4.15) as the definition of∂XN

i (m,ℓ).) Now let us consider

(5.4.15) with the special choice off = P( XN√
N
,DN)( j,k), whereP∈ C〈Xi ,Di |1≤

i ≤ p〉 and j,k ∈ {1, . . . ,N}. Some algebra reveals that, using the notation(A⊗
B)( j,m, ℓ,k) = A( j,m)B(ℓ,k),

∂XN
i (m,ℓ)

(
P(XN,DN)

)
( j,k) =

(
∂iP(XN,DN)

)
( j,m, ℓ,k) . (5.4.16)

Together with (5.4.15), and after summation overj = mandℓ = k, this shows that

E [µ̂N(XiP)− µ̂N⊗ µ̂N(∂iP)] = 0.



382 5. FREE PROBABILITY

We have thus seen that, as a consequence of Gaussian integration by parts,µ̂N

satisfies the master loop equation in expectation. In order to prove thatµ̄N satis-
fies asymptotically the master loop equation, that is, part (i) of Lemma 5.4.7, it is
therefore enough to show thatµ̂N self-averages (that is, it is close to its expecta-
tion). The latter point is the content of the following technical lemma, which is
stated in the generality of Theorem 5.4.5. The proof of the lemma is postponed
until after we derive Theorem 5.4.5 from the lemma.

Lemma 5.4.9Let q be a monomial inC〈Xi ,Di |1≤ i ≤ p〉. Under the hypotheses
of Theorem 5.4.5, except that instead of E[|XN

i (m, l)|2] =≤ 1, we only require that
it is bounded by1, we have the following for anyε > 0.
(i) For any positive integer k,

limsup
N→∞

N−ε max
1≤i≤ j≤N

E[|q(
XN
√

N
,DN)(i, j)|k] = 0. (5.4.17)

(ii) There exists a finite constant C(q) such that, for all positive integers N,

E[|µ̂N(q)− µ̄N(q)|2] ≤ C(q)

N2−ε . (5.4.18)

We next give the proof of Theorem 5.4.5, with Lemmas 5.4.6, 5.4.7 and 5.4.9
granted.

Proof of Theorem 5.4.5By Lemmas 5.4.6 and 5.4.7,{µ̄N(q),q ∈ C〈Xi ,Di |1 ≤
i ≤ p〉R,d} is tight and converges to the unique solution{τR,d(q),q∈ C〈Xi ,Di |1≤
i ≤ p〉R,d} of the system of equations (5.4.11) and (5.4.12). As a consequence,
τR,d(q) = τR′,d′(q) for q∈ C〈Xi ,Di |1≤ i ≤ p〉R′,d′ , R≥ R′ andd ≥ d′, and we can
defineτ(q) = τR,d(q) for q∈ C〈Xi ,Di |1≤ i ≤ p〉R,d. This completes the proof of
the first point of Theorem 5.4.5 sinceτ is the law ofp free semicircular variables,
free with{Di}1≤i≤p with law µ by part (iii) of Lemma 5.4.7.

The almost sure convergence asserted in the second part of the theorem is a
direct consequence of (5.4.18), the Borel–Cantelli Lemma and the previous con-
vergence in expectation. ⊓⊔

We now prove Lemmas 5.4.6, 5.4.7 and 5.4.9.

Proof of Lemma 5.4.6We prove by induction overR a slightly stronger result,
namely that for allR,d ∈ N, with |q| = √

qq∗,

sup
r≥0

sup
q∈C〈Xi ,Di |1≤i≤p〉R,d

limsup
N→∞

|µ̄N(|q|r)| 1
r ≤ Dd2R. (5.4.19)
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If R= 0, this is obvious by (5.4.8). WhenR= 1, by using (G.10) twice, for any
q∈ C〈Xi ,Di |1≤ i ≤ p〉1,d,

|µ̄N(|q|r)| 1
r ≤ Dd max

1≤i≤p
|µ̄N(|Xi |r)|

1
r ,

which yields (5.4.19) since by Remark 5.4.3, ifr ≤ 2p for somep∈ N,

limsup
N→∞

|µ̄N(|Xi |r)|
1
r ≤ limsup

N→∞
|µ̄N((Xi)

2p)|
1

2p ≤ 2.

We next proceed by induction and assume that (5.4.19) is trueup to R= K −1.
We writeq = q′Xj p(D) with p a monomial of degreeℓ andq′ ∈ C〈Xi ,Di |1≤ i ≤
p〉K−1,d−ℓ. By (G.10) and the induction hypothesis, we have, for allr ≥ 0,

limsup
N→∞

|µ̄N(|q|r)| 1
r ≤ Dℓ|µ̄N(|Xj |2r)| 1

2r |µ̄N(|q′|2r)| 1
2r ≤ 2Dℓ2K−1Dd−ℓ ,

which proves (5.4.19) forK = R, and thus completes the proof of the induction
step. Equation (5.4.9) follows. ⊓⊔
Proof of Lemma 5.4.9Without loss of generality, we assume in what follows that
D ≥ 1. If q is a monomial inC〈Xi ,Di |1≤ i ≤ p〉R,d, and if λmax(X) denotes the
spectral radius of a matrixX andei the canonical orthonormal basis ofCN,

|q(
XN
√

N
,DN)(i, j)| = |〈ei ,q(

XN
√

N
,DN)ej〉| ≤ D∑p

i=1 di ∏
1≤i≤p

λmax(
XN

i√
N

)γi ,

whereγi (respectively,di) is the degree ofqi in the variableXi (respectively,Di)
(in particular∑γi ≤ R and∑di ≤ d). As a consequence, we obtain the following
bound, for any even positive integerk and anys≥ 1,

E[|q(
XN
√

N
,DN)(i, j)|k] ≤ Dkd ∏

1≤i≤p

E[λmax(
XN

i√
N

)kγi ]

≤ Dkd
p

∏
i=1

E

{
tr((

XN
1√
N

)ksγi )

} 1
s

≤ DkdN
p
s E
{

µ̂N((XN
1 )ksR)

} 1
s
,

where the last term is bounded uniformly inN by Lemma 2.1.6 (see Exercise
2.1.17 in the case where the variances of the entries are bounded by one rather than
equal to one, and recall thatD ≥ 1) or Remark 5.4.3. Choosings large enough so
that p

s < ε completes the proof of (5.4.17). Note that this control holds uniformly
on all Wigner matrices with normalized entries possessingksRmoments bounded
above by some value.

To prove (5.4.18) we consider a lexicographical order(Xr ,1 ≤ r ≤ pN(N +

1)/2) of the (independent) entries(XN
k (i, j),1≤ i ≤ j ≤ N,1≤ k≤ p) and denote
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by Σk = σ{Xr , r ≤ k} the associated sigma-algebra. By convention we denote by
Σ0 the trivial algebra. Then we have the decomposition

δN := E[|µ̂N(q)− µ̄N(q)|2] =
pN(N+1)/2

∑
r=1

Θr , (5.4.20)

with

Θr := E[|E[µ̂N(q)|Σr ]−E[µ̂N(q)|Σr−1]|2] .

By the properties of conditional expectation and the independence of theXr , we
can writeΘr = E[|ϑr |2] with

ϑr := E[µ̂N(q)|Σr ](X̃
r ,Xr−1, . . . ,X1)−E[µ̂N(q)|Σr ](X

r ,Xr−1, . . . ,X1)

and(X̃r ,Xr) identically distributed and independent of each other and of Xr ′ , r ′ 6=
r. If Xr = XN

s (i, j) for somes∈ {1, . . . , p} andi, j ∈ {1, . . . ,N}2, we denote byXr
γ

the interpolation

Xr
γ := (1− γ)Xr + γX̃r .

Taylor’s formula then gives

ϑr =

∫ 1

0
∂γE[µ̂N(q)|Σr ](X

r
γ ,Xr−1, . . . ,X1)dγ

=
1

N3/2

∫ 1

0
∂γXr

γ ∑
q=q1Xsq2

E[(q2q1)( j, i)|Σr ](X
r
γ ,Xr−1, . . . ,X1)dγ

+
1

N3/2

∫ 1

0
∂γ X̄r

γ ∑
q=q1Xsq2

E[(q2q1)(i, j)|Σr ](X
r
γ ,Xr−1, . . . ,X1)dγ ,

where the sum runs over all decompositions ofq into q1Xsq2. Hence we obtain
that there exists a finite constantC̄(q) such that

Θr ≤ C̄(q)

N3 ∑
q=q1Xsq2

(k,ℓ)=(i, j) or ( j,i)

∫ 1

0
E[|YN

s (k, ℓ)|2|(q2q1)(
XN

γ,r√
N

,DN)(ℓ,k)|2]dγ ,

with XN
γ,r the p-tuple of matrices where the(i, j) and( j, i) entries of the matrixs

were replaced by the interpolationXr
γ and its conjugate andYN

s (i, j) = XN
s (i, j)−

X̃N
s (i, j). We interpolate again with thep-tuple XN

r where the entries(i, j) and
( j, i) of the matrixs vanishes to obtain by the Cauchy–Schwarz inequality and
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independence ofXN
r with YN

s (i, j) that, for some finite constants̄C(q)1,C̄(q)2,

Θr ≤ C̄(q)1

N3 ∑
q=q1Xsq2

(k,ℓ)=(i, j) or ( j,i)

(
E[|(q2q1)(

XN
r√
N

,DN)(k, ℓ)|2]

+
∫ 1

0
E[|(q2q1)(

XN
r√
N

,DN)(k, ℓ)− (q2q1)(
XN

γ,r√
N

,DN)(k, ℓ)|4] 1
2 dγ

)

≤ C̄(q)2

N3 ∑
q=q1Xsq2

(k,ℓ)=(i, j) or ( j,i)

(
E[|(q2q1)(

XN
√

N
,DN)(k, ℓ)|2]

+E[|(q2q1)(
XN
√

N
,DN)(k, ℓ)− (q2q1)(

XN
r√
N

,DN)(k, ℓ)|2]

+

∫ 1

0
E[|(q2q1)(

XN
r√
N

,DN)(i, j)− (q2q1)(
XN

γ,r√
N

,DN)(k, ℓ)|4] 1
2 dγ

)
. (5.4.21)

To control the last two terms, consider twop-tuples of matricesX̃N and XN

that differ only at the entries(i, j) and ( j, i) of the matrixs and putYN
s (i, j) =

X̃N
s (i, j) − XN

s (i, j). Let q be a monomial and 1≤ k, ℓ ≤ N. Then, if we set
XN

γ = (1− γ)XN + γX̃N, we have

∆q(k, ℓ) := q(
X̃N
√

N
,DN)(k, ℓ)−q(

XN
√

N
,DN)(k, ℓ)

= − ∑
(m,n)=(i, j)

or ( j,i)

YN
s (m,n)√

N

∫ 1

0
∑

q=p1Xsp2

p1(
XN

γ√
N

,DN)(k,m)p2(
XN

γ√
N

,DN)(n, ℓ)dγ .

Using (5.4.17), we deduce, that for allε, r > 0,

lim
N→∞

N
r
2 N−ε max

1≤i, j≤N
max

1≤k,ℓ≤N
E[|∆q(k, ℓ)|r ] = 0. (5.4.22)

As a consequence, the two last terms in (5.4.21) are at most oforderN−1+ε and
summing (5.4.21) overr, we deduce that there exist finite constantsC̄(q)3,C̄(q)4

so that

δN ≤ C̄(q)3

N3

p

∑
s=1

∑
q=q1Xsq2

(
E[ ∑

1≤i, j≤N

|(q2q1)(
XN
√

N
,DN)(i, j)|2]+N1+ε

)

=
C̄(q)3

N2

p

∑
s=1

∑
q=q1Xsq2

µ̄N(q2q1q∗1q∗2)+
C̄(q)4

N2−ε .

Using (5.4.17) again, we conclude thatδN ≤C(q)/N2−ε . ⊓⊔
Proof of Lemma 5.4.7To derive the equations satisfied by a limiting pointτR,d of
µ̄N, note that the first equality of (5.4.11) holds since we assumed that the law of
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{DN
i }1≤i≤p converges toµ , whereas the second equality is verified byµ̄N for each

N, and therefore by all its limit points. To check thatτR,d also satisfies (5.4.12),
we write

µ̄N(Xiq) =
1

N3/2

N

∑
j1, j2=1

E[XN
i ( j1, j2)q(

XN
√

N
,DN)( j2, j1)] = ∑

ℓ1,ℓ2

Iℓ1,ℓ2 , (5.4.23)

where ℓ1 (respectively,ℓ2) denotes the number of occurrences of the entry
XN

i ( j1, j2) (respectively,XN
i ( j2, j1)) in the expansion ofq in terms of the entries

of XN. I0,0 in the right side of (5.4.23) vanishes by independence and centering.
To show that the equation (5.4.15) leading to the master loopequation is approxi-
mately true, we will prove that∑(ℓ1,ℓ2) 6=(0,1) Iℓ1,ℓ2 is negligible.

We evaluate separately the different terms in the right sideof (5.4.23). Con-
cerningI0,1, we have

I0,1 =
1

N2 ∑
j1, j2

∑
q=q1Xiq2

E[q1(
X̃N
√

N
,D)( j1, j1)q2(

X̃N
√

N
,DN)( j2, j2)] ,

whereX̃N is thep-tuple of matrices whose entries are the same asXN, except that
X̃N

i ( j1, j2) = X̃N
i ( j2, j1) = 0. By (5.4.22), we can replace the matricesX̃N by XN

up to an error of orderN
1
2 −ε for anyε > 0, and therefore

I0,1 = ∑
q=q1Xiq2

E[µ̂N(q1)µ̂N(q2)]+o(1)

= ∑
q=q1Xiq2

E[µ̂N(q1)]E[µ̂N(q2)]+o(1) , (5.4.24)

where we used (5.4.18) in the second equality.

We similarly find that

I1,0 =
1

N2

N

∑
j1, j2=1

∑
q=q1Xiq2

E[q1(
X̃N
√

N
,D)( j2, j1)q2(

X̃N
√

N
,D)( j2, j1)]

so that replacing̃XN by XN as above shows that

I1,0 =
1
N

µ̄N(q1q∗2)+o(1)→N→∞ 0, (5.4.25)

where (5.4.9) was used in the limit, and we used that(zXi1 · · ·Xip)
∗ = z̄Xip · · ·Xi1.

Finally, with (ℓ1, ℓ2) 6= (1,0)or(0,1), we find that

Iℓ1,ℓ2 =
1

N2+
ℓ1+ℓ2−1

2
∑

q=q1Xiq2···Xiqk+1

∑
j1, j2

∑
σ

I( j1, j2,σ)
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with

I( j1, j2,σ) := E[q1(
X̃N
√

N
)(σ(1),σ(2)) · · ·qk+1(

X̃N
√

N
)(σ(k+1),σ(1))] ,

where we sum over all possible mapsσ : {1, . . . ,k+ 1}→{ j1, j2} correspond-
ing to ℓ1 (respectively,ℓ2) occurrences of the oriented edge( j1, j2) (respectively,
( j2, j1)). Using Hölder’s inequality and (5.4.17) we find that the above is at most

of orderN− ℓ1+ℓ2−1
2 +ε for anyε > 0. Combined with (5.4.24) and (5.4.25), we have

proved that

lim
N→∞

(
µ̄N(Xiq)− ∑

q=q1Xiq2

µ̄N(q1)µ̄N(q2)

)
= 0. (5.4.26)

Since ifq∈ C〈Xi ,Di |1≤ i ≤ p〉R−1,d, anyq1,q2 such thatq = q1Xiq2 also belong
to this set, we conclude that any limit pointτR,d of µ̄{ 1√

N
XN

i ,DN
i }1≤i≤p

restricted to

C〈Xi ,Di |1≤ i ≤ p〉R,d satisfies (5.4.12).

Since (5.4.12) together with (5.4.11) definesτ(P) uniquely for any P ∈
C〈Xi ,Di |1≤ i ≤ p〉R,d by induction over the degree ofP in theXi , it follows that
µ̄N converges asN goes to infinity towards a lawτ which coincides withτR,d on
C〈Xi ,Di |1≤ i ≤ p〉R,d for all R,d ≥ 0. Thus, to complete the proof of part (i) of
Theorem 5.4.5, it only remains to check thatτ is the law of free variables. This
task is achieved by induction: we verify that the trace of

Q(X,D) = q1(X)p1(D)q2(X)p2(D) · · · pk(D) (5.4.27)

vanishes for all polynomialsqi, pi such thatτ(pi(D)) = τ(q j(X)) = 0, i ≥ 1, j ≥ 2.
By linearity, we can restrict attention to the case whereqi , pi are monomials.

Let degX(Q) denote the degree ofQ in X. We need only consider degX(Q) ≥ 1.
If degX(Q) = 1 (and thusQ= p1(D)Xi p2(D)) we haveτ(Q) = τ(Xi p2p1(D)) = 0
by (5.4.12). We continue by induction: assume thatτ(Q)= 0 whenever degX(Q)<

K and τ(pi(D)) = τ(q j(X)) = 0, i ≥ 1, j ≥ 2. Consider nowQ of the form
(5.4.27) with degX(Q) = K and τ(q j(X)) = 0, j ≥ 2, τ(pi) = 0, i ≥ 1. Using
traciality, we can writeτ(Q) = τ(Xiq) with degX(q) = K − 1 andq satisfies all
assumptions in the induction hypothesis. Applying (5.4.12), we find thatτ(Q) =

∑q=q1Xiq2
τ(q1)τ(q2), whereq1 (respectively,q2) is a product of centered polyno-

mials except possibly for the first or last polynomials in theXi . The induction hy-
pothesis now yields thatτ(Xiq) = ∑q=q1Xiq2

τ(q1)τ(q2) = 0, completing the proof
of the claimed asymptotic freeness. The marginal distribution of the{Xi}1≤i≤p is
given by Theorem 5.4.2. ⊓⊔
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We now consider conjugation by unitary matrices following the Haar measure
ρU(N) on the setU(N) of N×N unitary matrices (see Theorem F.13 for a defini-
tion).

Theorem 5.4.10Let DN = {DN
i }1≤i≤p be a sequence of Hermitian (possibly ran-

dom) N×N matrices. Assume that their empirical distribution converges to a
noncommutative lawµ . Assume also that there exists a deterministic D< ∞ such
that, for all k∈ N and all N∈ N,

1
N

tr((DN
i )2k) ≤ D2k, a.s.

Let UN = {UN
i }1≤i≤p be independent unitary matrices with Haar lawρU(N), in-

dependent from{DN
i }1≤i≤p. Then the subalgebrasU N

i generated by the matrices
{UN

i ,(UN
i )∗}1≤i≤p, and the subalgebraDN generated by the matrices{DN

i }1≤i≤p,
in the noncommutative probability space(MatN(C),∗,E[ 1

N tr]) (respectively,
(MatN(C),∗, 1

N tr)) are asymptotically free (respectively, almost surely asymptot-
ically free). For all i∈ {1, . . . , p}, the limit law of{UN

i ,(UN
i )∗} is given as the

element ofMC〈U,U∗〉,‖·‖1,∗ such that

τ((UU∗−1)2) = 0, τ(Un) = τ((U∗)n) = 1n=0 .

We have the following corollary.

Corollary 5.4.11 Let {DN
i }1≤i≤p be a sequence of uniformly bounded real di-

agonal matrices with empirical measure of diagonal elements converging toµi ,
i = 1, . . . , p respectively. Let{UN

i }1≤i≤p be independent unitary matrices follow-
ing the Haar measure, independent from{DN

i }1≤i≤p .

(i) The noncommutative variables{UN
i DN

i (UN
i )∗}1≤i≤p in the noncommuta-

tive probability space(MatN(C),∗,E[ 1
N tr]) (respectively,

(MatN(C),∗, 1
N tr)) are asymptotically free (respectively, almost surely

asymptotically free), the law of the marginals being given by theµi .
(ii) The empirical measure of eigenvalues of of DN

1 +UNDN
2U∗

N converges weakly
almost surely toµ1 ⊞ µ2 as N goes to infinity.

(iii) Assume that DN1 is nonnegative. Then, the empirical measure of eigenval-
ues of

(DN
1 )

1
2UNDN

2 U∗
N(DN

1 )
1
2

converges weakly almost surely toµ1 ⊠ µ2 as N goes to infinity.

Corollary 5.4.11 provides a comparison between independence (respectively,
standard convolution) and freeness (respectively, free convolution) in terms of
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random matrices. IfDN
1 andDN

2 are two diagonal matrices whose eigenvalues
are independent and equidistributed, the spectral measureof DN

1 + DN
2 converges

to a standard convolution. At the other extreme, if the eigenvectors of a matrix
AN

1 are “very independent” from those of a matrixAN
2 in the sense that the joint

distribution of the matrices can be written as the distribution of (AN
1 ,UNAN

2 (UN)∗),
then free convolution will describe the limit law.

Proof of Theorem 5.4.10We denote bŷµN := µ{DN
i ,UN

i ,(UN
i )∗}1≤i≤p

the joint em-

pirical distribution of{DN
i ,UN

i ,(UN
i )∗}1≤i≤p, considered as an element of the al-

gebraic dual ofC〈Xi ,1≤ i ≤ n〉 with n = 3p, equipped with the involution such
that(λXi1 · · ·Xin)

∗ = λ̄X∗
in · · ·X∗

i1
if

X∗
3i−2 = X3i−2, 1≤ i ≤ p, X∗

3i−1 = X3i , 1≤ i ≤ p.

The norm is the operator norm on matrices. We may and will assume thatD ≥ 1,
and then our variables are bounded uniformly byD. Hence,µ̂N is a state on the
universalC∗-algebraA (D,{1, · · · ,3n}) as defined in Proposition 5.2.14 by an
appropriate separation/completion construction ofC〈Xi ,1≤ i ≤ n〉. The sequence
{E[µ̂N]}N∈N is tight for the weak*-topology according to Lemma 5.2.18. Hence,
we can take converging subsequences and consider their limit points. The strategy
of the proof will be to show, as in the proof of Theorem 5.4.5, that these limit
points satisfy a Schwinger–Dyson equation. Of course, thisSchwinger–Dyson
equation will be slightly different from the equation obtained in Lemma 5.4.7 in
the context of Gaussian random matrices. However, it will again be a system
of equations defined by an appropriate noncommutative derivative, and will be
derived from the invariance by multiplication of the Haar measure, replacing the
integration by parts (5.4.15) (the latter could be derived from the invariance by
translation of the Lebesgue measure). We will also show thatthe Schwinger–
Dyson equation has a unique solution, implying the convergence of(E[µ̂N],N ∈
N). We will then show that this limit is exactly the law of free variables. Finally,
concentration inequalities will allow us to extend the result to the almost sure
convergence of{µ̂N}N∈N.

• Schwinger–Dyson equationWe consider a limit pointτ of {E[µ̂N]}N∈N. Be-
cause we havêµN((Ui(Ui)

∗ − 1)2) = 0 and µ̂N(PQ) = µ̂N(QP) for any P,Q ∈
C〈Di ,Ui ,U∗

i |1≤ i ≤ p〉, almost surely, we know by taking the largeN limit that

τ(PQ) = τ(QP) , τ((UiU
∗
i −1)2) = 0, 1≤ i ≤ p. (5.4.28)

Sinceτ is a tracial state by Proposition 5.2.16, the second equality in (5.4.28)
implies that, in theC∗-algebra(C〈Di ,Ui ,U∗

i |1≤ i ≤ p〉,∗,‖ · ‖τ), UiU∗
i = 1 (note

that this algebra was obtained by taking the quotient with{P : τ(PP∗) = 0}).
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By definition, the Haar measureρU(N) is invariant under multiplication by a
unitary matrix. In particular, ifP∈ C〈Di ,Ui ,U∗

i |1≤ i ≤ p〉, we have for allk, l ∈
{1, . . . ,N},

∂t

∫ (
P(Di ,Uie

tBi ,e−tBiU∗
i )
)
(k, l)dρU(N)(U1) · · ·dρU(N)(Up) = 0

for any anti-Hermitian matricesBi (B∗
i = −Bi), 1 ≤ i ≤ p, sinceetBi ∈ U(N).

TakingBi = 0 except fori = i0 andBi0 = 0 except at the entries(q, r) and(r,q),
we find that

∫
(∂i0P)({Di ,Ui ,U

∗
i }1≤i≤p)(k, r,q, l)dρU(N)(U1) · · ·dρU(N)(Up) = 0

with ∂i the derivative which obeys the Leibnitz rules

∂i(PQ) = ∂iP×1⊗Q+P⊗1× ∂iQ,

∂iU j = 1 j=iU j ⊗1,∂iU
∗
j = −1 j=i1⊗U∗

j ,

where we used the notation(A⊗B)(k, r,q, l) := A(k, r)B(q, l). Takingk = r and
q = l and summing overr,q gives

E [µ̂N ⊗ µ̂N(∂iP)] = 0. (5.4.29)

Using Corollary 4.4.31 inductively (on the numberp of independent unitary ma-
trices), we find that, for any polynomialP∈ C〈Di ,Ui ,U∗

i |1≤ i ≤ p〉, there exists
a positive constantc(P) such that

ρ⊗p
U(N)

(
|trP({DN

i ,UN
i ,(UN

i )∗}1≤i≤p)−EtrP| > δ
)
≤ 2e−c(P)δ 2

,

and therefore

E[|trP−EtrP|2] ≤ 2
c(P)

.

Writing ∂iP = ∑M
j=1Pj ⊗Q j for appropriate integerM and polynomialsPj ,Q j ∈

C〈Di ,Ui ,U∗
i |1≤ i ≤ p〉, we deduce by the Cauchy–Schwarz inequality that

|E [(µ̂N −E[µ̂N])⊗ (µ̂N−E[µ̂N])(∂iP)]|

≤
∣∣∣∣∣

M

∑
j=1

E [(µ̂N −E[µ̂N])(Pj)(µ̂N −E[µ̂N])(Q j)]

∣∣∣∣∣

≤ 2M
N2 max

1≤ j≤p
max{ 1

c(Pj)
,

1
c(Q j)

}→N→∞ 0.

We thus deduce from (5.4.29) that

lim
N→∞

E [µ̂N]⊗E [µ̂N] (∂iP) = 0.
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Therefore, the limit pointτ satisfies the Schwinger–Dyson equation

τ ⊗ τ(∂iP) = 0, (5.4.30)

for all i ∈ {1, . . . , p} andP∈ C〈Di ,Ui ,U∗
i |1≤ i ≤ p〉.

• Uniqueness of the solution to(5.4.30) Letτ be a solution to (5.4.28) and
(5.4.30), and letP be a monomial inC〈Di ,Ui ,U∗

i |1≤ i ≤ p〉. We show by induc-
tion over the total degreen of P in the variablesUi andU∗

i thatτ(P) is uniquely
determined by (5.4.28) and (5.4.30). Note that ifP ∈ C〈Di |1≤ i ≤ p〉, τ(P) =

µ(P) is uniquely determined. IfP ∈ C〈Di ,Ui ,U∗
i |1≤ i ≤ p〉\C〈Di |1≤ i ≤ p〉 is

a monomial, we can always writeτ(P) = τ(QUi) or τ(P) = τ(U∗
i Q) for some

monomialQ by the tracial property (5.4.28). We study the first case, thesecond
being similar. Ifτ(P) = τ(QUi),

∂i(QUi) = ∂iQ×1⊗Ui +(QUi)⊗1,

and so (5.4.30) gives

τ(QUi) = −τ ⊗ τ(∂iQ×1⊗Ui)

= − ∑
Q=Q1UiQ2

τ(Q1Ui)τ(Q2Ui)+ ∑
Q=Q1U∗

i Q2

τ(Q1)τ(Q2) ,

where we used the fact thatτ(U∗
i Q2Ui) = τ(Q2) by (5.4.28). Each term in the

right side is the trace underτ of a polynomial of degree strictly smaller inUi and
U∗

i thanQUi . Hence, this relation definesτ uniquely by induction. In particular,
takingP = Un

i we get, for alln≥ 1,

n

∑
k=1

τ(Uk
i )τ(Un−k

i ) = 0,

from which we deduce by induction thatτ(Un
i ) = 0 for all n ≥ 1 sinceτ(U0

i ) =

τ(1) = 1. Moreover, asτ is a state,τ((U∗
i )n) = τ(((Ui)

n)∗) = τ(Un
i ) = 0 for n≥ 1.

• The solution is the law of free variablesIt is enough to show by the previous
point that the joint lawµ of the two freep-tuples{Ui ,U∗

i }1≤i≤p and{Di}1≤i≤p

satisfies (5.4.30). So takeP = Un1
i1

B1 · · ·Unp
ip Bp with someBks in the algebra gen-

erated by{Di}1≤i≤p andni ∈ Z\{0} (where we observed thatU∗
i = U−1

i ). We
wish to show that, for alli ∈ {1, . . . , p},

µ ⊗ µ(∂iP) = 0. (5.4.31)
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Note that, by linearity, it is enough to prove this equality whenµ(B j) = 0 for all
j. Now, by definition, we have

∂iP = ∑
k:ik=i,nk>0

nk

∑
l=1

Un1
i1

B1 · · ·Bk−1U
l
i ⊗Unk−l

i Bk · · ·Unp
ip

Bp

− ∑
k:ik=i,nk<0

nk−1

∑
l=0

Un1
i1

B1 · · ·Bk−1U
−l
i ⊗Unk+l

i Bk · · ·Unp
ip Bp .

Taking the expectation on both sides, sinceµ(U i
j) = 0 andµ(B j) = 0 for all i 6= 0

and j, we see that freeness implies that the trace of the right sidevanishes (recall
here that, in the definition of freeness, two consecutive elements have to be in
free algebras but the first and the last element can be in the same algebra). Thus,
µ ⊗ µ(∂iP) = 0, which proves the claim. ⊓⊔
Proof of Corollary 5.4.11The only point to prove is the first. By Theorem 5.4.10,
we know that the normalized trace of any polynomialP in {UN

i DN
i (UN

i )∗}1≤i≤p

converges toτ(P({UiDiUi}1≤i≤p)) with the subalgebras generated by{Di}1≤i≤p

and{Ui,U∗
i }1≤i≤p free. Thus, if

P({Xi}1≤i≤p) = Q1(Xi1) · · ·Qk(Xik) , with iℓ+1 6= iℓ, 1≤ ℓ ≤ k−1

andτ(Qℓ(Xiℓ)) = τ(Qℓ(Diℓ)) = 0, then

τ(P({UiDiUi}1≤i≤p)) = τ(Ui1Q1(Di1)U
∗
i1 · · ·UikQk(Dik)U

∗
ik) = 0,

sinceτ(Qℓ(Diℓ)) = 0 andτ(Ui) = τ(U∗
i ) = 0. ⊓⊔

Exercise 5.4.12Extend Theorem 5.4.2 to the self-dual random matrices con-
structed in Exercise 2.2.4.

Exercise 5.4.13In the case where theDi are diagonal matrices, generalize the
arguments of Theorem 5.4.2 to prove Theorem 5.4.5.

Exercise 5.4.14TakeDN(i j ) = 1i= j1i≤[αN] the projection on the first[αN] indices
andXN be anN×N matrix satisfying the hypotheses of Theorem 5.4.5. WithIn
the identity matrix, set

ZN = DNXN(IN −DN)+ (IN−DN)XNDN

=

(
0 XN−[αN],[αN]

(XN−[αN],[αN])∗ 0

)

with XN−[αN],[αN] the corner(XN)1≤i≤[αN],[αN]+1≤ j≤N of the matrixXN. Show
that (ZN)2 has the same eigenvalues as those of the Wishart matrixWN,α :=
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XN−[αN],[αN](XN−[αN],[αN])∗ with multiplicity 2, plus N− 2[αN] zero eigenval-
ues (ifα ≥ 1/2 so thatN− [αN] ≤ [αN] ). Prove the almost sure convergence of
the spectral measure of the Wishart matrixWN,α by using Theorem 5.4.5.

Exercise 5.4.15Continuing in the setup of Exercise 5.4.14, takeTN ∈ Mat[αN] to
be a self-adjoint matrix with converging spectral distribution. Prove the almost
sure convergence of the spectral measure of the Wishart matrix

XN−[αN],[αN]TNT∗
N(XN−[αN],[αN])∗.

Exercise 5.4.16Take(σ(p,q))0≤p,q≤k−1 ∈ Mk(C) and put

σi j (N) = σ(p,q)1 [pN/k]≤i<[(p+1)N/k]
[qN/k]≤ j<[(q+1)N/k]

for 0≤ p,q≤ k−1.

TakeXN to be anN×N matrix satisfying the hypotheses of Theorem 5.4.5 and
putYN

i j = N− 1
2 σi j (N)XN

i j . LetAN be a deterministic matrix in the noncommutative
probability spaceMN(C) andDN be the diagonal matrix diag(1/N,2/N, . . . ,1).
Assume that(AN,(AN)∗,DN) converge in law towardsτ, while the spectral radius
of AN stays uniformly bounded. Prove that(YN + AN)(YN + AN)∗ converges in
law almost surely and in expectation.
Hint: Show thatYN = ∑1≤i≤k2 aiΣN

i XNΣ̃N
i , with {ΣN

i , Σ̃N
i }1≤i≤k2 appropriate pro-

jection matrices. Show the convergence in law of{(ΣN
i , Σ̃N

i )1≤i≤k2, AN, (AN)∗} by
approximating the projectionsΣN

i by functions ofDN. Conclude by using Theo-
rem 5.4.5.

Exercise 5.4.17Another proof of Theorem 5.4.10 can be based on Theorem 5.4.2
and the polar decompositionUN

j = GN
j (GN

j (GN
j )∗)−

1
2 with GN

j a complex Gaussian
matrix which can be written, in terms of independent self-adjoint Gaussian Wigner
matrices, asGN

j = XN
j + iX̃N

j .
(i) Show thatUN

j follows the Haar measure.

(ii) ApproximatingGN
j (GN

j (GN
j )∗)−

1
2 by a polynomial in(XN

j , X̃N
j )1≤ j≤p, prove

Theorem 5.4.10 by using Theorem 5.4.5.

Exercise 5.4.18State and prove the analog of Theorem 5.4.10 when theUN
i fol-

low the Haar measure on the orthogonal groupO(N) instead of the unitary group
U(N).
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5.5 Convergence of the operator norm of polynomials of independent GUE
matrices

The goal of this section is to show that not only do the traces of polynomials in
Gaussian Wigner matrices converge to the traces of polynomials in free semicir-
cular variables, as shown in Theorem 5.4.2, but that this convergence extends to
the operator norm, thus generalizing Theorem 2.1.22 and Exercise 2.1.27 to any
polynomial in independent Gaussian Wigner matrices.

The main result of this section is the following.

Theorem 5.5.1Let (XN
1 , . . . ,XN

m) be a collection of independent matrices from
the GUE. Let(S1, . . . ,Sm) be a collection of free semicircular variables in a C∗-
probability space(S ,σ) equipped with a faithful tracial state. For any noncom-
mutative polynomial P∈ C〈X1, . . . ,Xm〉, we have

lim
N→∞

‖P(
XN

1√
N

, . . . ,
XN

m√
N

)‖ = ‖P(S1, . . . ,Sm)‖ a.s.

On the left, we consider the operator norm (largest singularvalue) of theN×N

random matrixP(
XN

1√
N
, . . . ,

XN
m√
N
), whereas, on the right, we consider the norm of

P(S1, . . . ,Sm) in the C∗-algebraS . The theorem asserts a correspondence be-
tween random matrices and free probability going considerably beyond moment
computations.

Remark 5.5.2If (A ,τ) is aC∗-probability space equipped with a faithful tracial
state, then the norm of a noncommutative random variablea∈A can be recovered
by the limit formula

‖a‖ = lim
k→∞

τ((aa∗)k)
1
2k . (5.5.1)

However, (5.5.1) fails in general, because the spectrum ofaa∗ can be strictly larger
than the support of the law ofaa∗. We assume faithfulness and traciality in Theo-
rem 5.5.1 precisely so that we can use (5.5.1).

We pause to introduce some notation. LetX = (X1, . . . ,Xm). We often abbrevi-
ate using this notation. For example, we abbreviate the statementQ(X1, . . . ,Xm) ∈
C〈X1, . . . ,Xm〉 to Q(X) ∈C〈X〉. Analogous “boldface” notation will often be used
below.

Theorem 5.5.1 will follow easily from the next proposition.The proof of the
proposition will take up most of this section. Recall thatC〈X〉 is equipped with
the unique involution such thatX∗

i = Xi for i = 1, . . . ,m. Recall also that thedegree
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of Q = Q(X) ∈ C〈X〉 is defined to be the maximum of the lengths of the words in
the variablesXi appearing inQ.

Proposition 5.5.3LetXN := (XN
1 , . . . ,XN

m) be a collection of independent matrices
from the GUE. LetS := (S1, . . . ,Sm) be a collection of free semicircular variables
in a C∗-probability space(S ,σ). Fix an integer d≥ 2 and let P= P(X) ∈ C〈X〉
be a self-adjoint noncommutative polynomial of degree≤ d. Then, for anyε > 0,
P( XN√

N
), for all N large enough, has no eigenvalue at distance largerthanε from

the spectrum of P(S), almost surely.

We mention the stateσ and degree boundd in the statement of the proposition
because, even though they do not appear in the conclusion, they figure prominently
in many formulas and estimates below. We remark that since formula (5.5.1) is
not needed to prove Proposition 5.5.3, we do not assume faithfulness and traciality
of σ . Note thescale invarianceof the proposition: for any constantγ > 0, the
conclusion of the proposition holds forP if and only if it holds forγP.

Proof of Theorem 5.5.1(Proposition 5.5.3 granted). We may assume thatP is
self-adjoint. By Proposition 5.5.3, usingP(S)∗ = P(S),

limsup
N→∞

‖P(
XN
√

N
)‖ ≤ (spectral radius ofP(S))+ ε = ‖P(S)‖+ ε , a.s. ,

for any positiveε. Using Theorem 5.4.2, we obtain the bound

σ(P(S)ℓ) = lim
N→∞

1
N

tr(P(
XN
√

N
)ℓ) ≤ lim inf

N→∞
‖P(

XN
√

N
)‖ℓ , a.s.

By (5.5.1), and our assumption thatσ is faithful and tracial,

liminf
N→∞

‖P(
XN
√

N
)‖ ≥ sup

ℓ≥0
σ(P(S)2ℓ)

1
2ℓ = ‖P(S)‖ , a.s. ,

which gives the complementary bound. ⊓⊔
We pause for more notation. Recall that, given a complex numberz, ℜzandℑz

denote the real and imaginary parts ofz, respectively. In general, we let 1A denote
the unit of a unital complex algebraA . (But we letIn denote the unit of Matn(C).)
Note that, for any self-adjoint elementa of aC∗-algebraA , andλ ∈ C such that
ℑλ > 0, we have thata− λ1A is invertible and

∥∥(a−λ1A )−1
∥∥ ≤ 1/ℑλ . The

latter observation is used repeatedly below.

Forλ ∈C such thatℑλ > 0, withP∈C〈X〉 self-adjoint, as in Proposition 5.5.3,
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let

g(λ ) = gP(λ ) = σ((P(S)−λ1S )−1) , (5.5.2)

gN(λ ) = gP
N(λ ) = E

1
N

tr

(
(P(

XN
√

N
)−λ IN)−1

)
. (5.5.3)

Bothg(λ ) andgN(λ ) are analytic in the upper half-plane{ℑλ > 0}. Further,g(λ )

is the Stieltjes transform of the law of the noncommutative random variableP(S)

underσ , andgN(λ ) is the expected value of the Stieltjes transform of the empirical

distribution of the eigenvalues of the random matrixP( XN√
N
). The uniform bounds

|g(λ )| ≤ 1
ℑλ

, |gN(λ )| ≤ 1
ℑλ

(5.5.4)

are clear.

We now break the proof of Proposition 5.5.3 into three lemmas.

Lemma 5.5.4For any choice of constants c0,c′0 > 0, there exist constants N0,c1,

c2,c3 > 0 (depending only on P, c0 and c′0) such that the following holds.

For all integers N and complex numbersλ , if

N ≥ max(N0,(c
′
0)

−1/c1) , |ℜλ | ≤ c0 , and N−c1 ≤ ℑλ ≤ c′0 , (5.5.5)

then

|gP(λ )−gP
N(λ )| ≤ c2

N2(ℑλ )c3
. (5.5.6)

Now for anyγ > 0 we haveγgγP(γλ ) = gP(λ ) and γgγP
N (γλ ) = gP

N(λ ). Thus,
crucially, this lemma, just like Proposition 5.5.3, is scale invariant: for anyγ > 0,
the lemma holds forP if and only if it holds forγP.

Lemma 5.5.5For each smooth compactly supported functionφ : R→R vanishing
on the spectrum of P(S), there exists a constant c depending only onφ and P such
that |E 1

N trφ(P(XN))| ≤ c
N2 for all N.

Lemma 5.5.6With φ and P as above,limN→∞ N
4
3 · 1

N trφ(P( XN√
N
)) = 0, almost

surely.

The heart of the matter, and the hardest to prove, is Lemma 5.5.4. The main
idea of its proof is thelinearization trick, which has a strong algebraic flavor. But
before commencing the proof of that lemma, we will present (in reverse order) the
chain of implications leading from Lemma 5.5.4 to Proposition 5.5.3.
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Proof of Proposition 5.5.3(Lemma 5.5.6 granted) LetD = sp(P(S)), and write
Dε = {y∈ R : d(y,D) < ε}. Denote byµ̂N the empirical measure of the eigenval-

ues of the matrixP( XN√
N
). By Exercise 2.1.27, the spectral radii of the matrices

XN
i√
N

for i = 1, . . . ,m converge almost surely towards 2 and therefore there existsa fi-
nite constantM such that limsupN→∞ µ̂N([−M,M]c) = 0 almost surely. Consider a
smooth compactly supported functionφ : R→R equal to one on(Dε)c∩ [−M,M]

and vanishing onDε/2∪ [−2M,2M]c. We now see that almost surely for largeN,
no eigenvalue can belong to(Dε)c, since otherwise

1
N

trφ(P(
XN
√

N
)) =

∫
φ(x)dµ̂N(x) ≥ N−1 ≫ N− 4

3 ,

in contradiction to Lemma 5.5.6. ⊓⊔

Proof of Lemma 5.5.6(Lemma 5.5.5 granted) As before, letµ̂N denote the em-
pirical distribution of the eigenvalues ofP( XN√

N
). Let ∂i be the noncommutative

derivative defined in (5.4.10). Let∂XN
i (ℓ,k) be the derivative as it appears in (5.4.13)

and (5.4.15). The quantity
∫

φ(x)dµ̂N(x) is a bounded smooth function ofXN sat-
isfying

∂XN
i (ℓ,k)

∫
φ(x)dµ̂N(x) =

1

N
3
2

((∂iP)(
XN
√

N
)♯̃φ ′(P(

XN
√

N
)))k,ℓ (5.5.7)

where we letA⊗B♯̃C = BCA. Formula (5.5.7) can be checked for polynomial
φ , and then extended to general smoothφ by approximations. As a consequence,
with d bounding the degree ofP as in the statement of Proposition 5.5.3, we find
that

‖∇
∫

φ(x)dµ̂N(x)‖2
2 ≤ C

N2

m

∑
i=1

(‖ XN
i√
N
‖2d−2+1)

1
N

tr

(
|φ ′(P(

XN
√

N
))|2
)

for some finite constantC = C(P). Now the Gaussian Poincaré inequality

Var( f (XN)) ≤ cE ∑
i,ℓ,r

|∂XN
i (ℓ,r) f (XN)|2 (5.5.8)

must hold with a constantc independent ofN and f since all matrix entries
XN

i (ℓ, r) are standard Gaussian, see Exercise 4.4.6. Consequently, for every suffi-
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ciently smallε > 0, we have

Var(
∫

φ(x)dµ̂N(x)) ≤ cE(‖∇
∫

φ(x)dµ̂N(x)‖2
2)

≤ 2cCmNε

N2 E(
∫

φ ′(x)2dµ̂N(x))

+c‖φ ′‖2E(
C
N2

m

∑
i=1

‖ XN
i√
N
‖2d−21

‖ XN
i√
N
‖2d−2≥Nε

)

≤ 2cCm
N2−ε E(

∫
φ ′(x)2dµ̂N(x))+‖φ ′‖2 C′

N4 (5.5.9)

for a constantC′ = C′(ε), where we use the fact that

∀1≤ p < ∞ , sup
N

E

∥∥∥∥
XN

i√
N

∥∥∥∥
p

< ∞ (5.5.10)

by Lemma 2.6.7. But Lemma 5.5.5 implies thatE[
∫

φ ′(x)2dµ̂N(x)] is at most of
orderN−2 sinceφ ′ vanishes on the spectrum ofP(S). Thus the right side of (5.5.9)
is of orderN−4+ε at most whenφ vanishes on the spectrum ofP(S). Applying
Chebyshev’s inequality, we deduce that

P(|
∫

φ(x)dµ̂N(x)−E(

∫
φ(x)dµ̂N(x))| ≥ 1

N
4
3

) ≤C′′N
8
3−4+ε

for a finite constantC′′ = C′′(P,ε,φ). Thus, by the Borel–Cantelli Lemma and

Lemma 5.5.5,
∫

φ(x)dµ̂N(x) is almost surely of orderN− 4
3 at most. ⊓⊔

Proof of Lemma 5.5.5(Lemma 5.5.4 granted) We first briefly review a method for
reconstructing a measure from its Stieltjes transform. LetΨ : R2 →C be a smooth
compactly supported function. Put∂̄Ψ(x,y) = π−1(∂x + i∂y)Ψ(x,y). Assume that
ℑΨ(x,0) ≡ 0 and∂̄ Ψ(x,0) ≡ 0. Note that by Taylor’s Theorem̄∂Ψ(x,y)/|y| is
bounded for|y| 6= 0. Let µ be a probability measure on the real line. Then we
have the following formula for reconstructingµ from its Stieltjes transform:

ℜ
∫ ∞

0
dy
∫ +∞

−∞
dx

(∫ ∂̄Ψ(x,y)
t −x− iy

µ(dt)

)
=

∫
Ψ(t,0)µ(dt) . (5.5.11)

This can be verified in two steps. One first reduces to the caseµ = δ0, using
Fubini’s Theorem, compact support ofΨ(x,y) and the hypothesis that

|∂̄Ψ(x,y)|/|t −x− iy| ≤ |∂̄Ψ(x,y)|/|y|

is bounded fory> 0. Then, letting|(x,y)|=
√

x2 +y2, one uses Green’s Theorem
on the domain{0< ε ≤ |(x,y)| ≤ R, y≥ 0} with Rso large thatΨ is supported in
the disc{|(x,y)| ≤ R/2}, and withε ↓ 0.

Now let φ be as specified in Lemma 5.5.5. LetM be a large positive integer,
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later to be chosen appropriately. Choose the arbitrary constantc0 in Lemma 5.5.4
so thatφ is supported in the interval[−c0,c0]. Choosec′0 > 0 arbitrarily. We
claim that there exists a smooth functionΨ : R2 → C supported in the rectangle
[−c0,c0]× [−c′0,c

′
0] such thatΨ(t,0) = φ(t) and ∂̄Ψ(x,y)/|y|M is bounded for

|y| 6= 0. To prove the claim, pick a smooth functionψ : R → [0,1] identically
equal to 1 near the origin, and supported in the interval[−c′0,c

′
0]. One verifies

immediately thatΨ(x,y) = ∑M
ℓ=0

iℓ
ℓ! φ

(ℓ)(x)ψ(y)yℓ has the desired properties. The
claim is proved.

As before, letµ̂N be the empirical distribution of the eigenvalues ofP( XN√
N
).

Let µ be the law of the noncommutative random variableP(S). By hypothesisφ
vanishes on the spectrum ofP(S) and hence also vanishes on the support ofµ . By
(5.5.11) and using the uniform bound

∥∥∥∥(P(
XN
√

N
)−λ IN)−1

∥∥∥∥≤ 1/ℑλ ,

we have

E
∫

φdµ̂N = E
∫

φdµ̂N −
∫

φ(t)µ(dt)

= ℜ
∫ ∞

0

∫ +∞

−∞
(∂̄ Ψ(x,y))(gN(x+ iy)−g(x+ iy))dz.

Let c4 = c4(M) > 0 be a constant such that

sup
(x,y)∈[−c0,c0]×(0,c′0]

|∂̄Ψ(x,y)|/|y|M < c4 .

Then, with constantsN0, c1, c2 andc3 coming from the conclusion of Lemma
5.5.4, for allN ≥ N0,

|E
∫

φdµ̂N| ≤ 2c4

∫ c0

−c0

∫ N−c1

0
yM−1dxdy+

c4c2

N2

∫ c0

−c0

∫ c′0

0
yM−c3dxdy,

where the first error term is justified by the uniform bound (5.5.4). WithM large
enough, the right side is of orderN−2 at most. ⊓⊔

We turn finally to the task of proving Lemma 5.5.4. We need firstto introduce
suitable notation and conventions for handling block-decomposed matrices with
entries in unital algebras.

Let A be any unital algebra over the complex numbers. Let Matk,k′(A ) denote
the space ofk-by-k′ matrices with entries inA , and write Matk(A ) = Matk,k(A ).
Elements of Matk,k′(A ) can and will be identified with elements of the tensor
product Matk,k′(C)⊗A . In the case thatA itself is a matrix algebra, say Matn(B),
we identify Matk,k′(Matn(B)) with Matkn,k′n(B) by viewing each element of the
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latter space as ak-by-k′ array of blocks each of which is ann-by-n matrix. Re-
call that the unit ofA is denoted by 1A , but that the unit of Matn(C) is usually
denoted byIn. Thus, the unit in Matn(A ) is denoted byIn⊗1A .

Suppose thatA is an algebra equipped with an involution. Then, given a ma-
trix a ∈ Matk×ℓ(A ), we definea∗ ∈ Matℓ×k(A ) to be the matrix with entries
(a∗)i, j = a∗j ,i . Suppose further thatA is a C∗-algebra. Then we use the GNS
construction to equip Matk×ℓ(A ) with a norm by first identifyingA with a C∗-
subalgebra ofB(H) for some Hilbert spaceH, and then identifying Matk×ℓ(A )

in compatible fashion with a subspace ofB(Hℓ,Hk). In particular, the rules enun-
ciated above equip Matn(A ) with the structure of aC∗-algebra. That structure is
unique because aC∗-algebra cannot be renormed without destroying the property
‖aa∗‖ = ‖a‖2.

We define thedegreeof Q∈Matk×ℓ(C〈X〉) to be the maximum of the lengths of
the words in the variablesXi appearing in the entries ofQ. Also, given a collection
x = (x1, . . . ,xm) of elements in a unital complex algebraA , we defineQ(x) ∈
Matk×ℓ(A ) to be the result of making the substitutionX = x in every entry ofQ.

Given fori = 1,2 a linear mapTi :Vi →Wi , the tensor productT1⊗T2 :V1⊗V2→
W1⊗W2 of the maps is defined by the formula

(T1⊗T2)(A1⊗A2) = T1(A1)⊗T2(A2) , Ai ∈Vi .

For example, givenA ∈ Matk(A ) = Matk(C)⊗MatN(C), one evaluates(idk ⊗
1
N tr)(A) ∈ Matk(C) by viewing A as ak-by-k array ofN-by-N blocks and then
replacing each block by its normalized trace.

We now present the linearization trick. It consists of two parts summarized in
Lemmas 5.5.7 and 5.5.8. The first part is the core idea: it describes the spectral
properties of a certain sort of patterned matrix with entries in aC∗-algebra. The
second part is a relatively simple statement concerning factorization of a noncom-
mutative polynomial into matrices of degree≤ 1.

To set up for Lemma 5.5.7, fix an integerd ≥ 2 and letk1, . . . ,kd+1 be positive
integers such thatk1 = kd+1 = 1. Putk = k1 + · · ·+kd. For i = 1, . . . ,d, let

Ki =

{
1+ ∑

α<i
kα , . . . , ∑

α≤i
kα

}
⊂ {1, . . . ,k} (5.5.12)

and putKd+1 = K1. Note that{1, . . . ,k} is the disjoint union ofK1, . . . ,Kd. LetA
be aC∗-algebra and fori = 1, . . . ,d, let ti ∈ Matki×ki+1(A ) be given. Consider the
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block-decomposed matrix

T =




t1
. . .

td−1

td


 ∈ Matk(A ) , (5.5.13)

where fori = 1, . . . ,d, the matrixti is placed in the block with rows (resp., columns)
indexed byKi (resp.,Ki+1), and all other entries ofT equal 0∈A . We remark that
the GNS-based procedure we used to equip each matrix space Matp,q(A ) with a
norm implies that

‖T‖ ≥ d
max
i=1

‖ti‖ . (5.5.14)

Let λ ∈ C be given and putΛ =

[
λ 0
0 Ik−1

]
∈ Matk(C). Below, we writeΛ =

Λ⊗ 1A , λ = λ1A and more generallyζ = ζ ⊗ 1A for any ζ ∈ Matk(C). This
will not cause confusion, and is needed to compress notation.

Lemma 5.5.7Assume that t1 · · · td −λ ∈ A is invertible and let c be a constant
such that

c≥ (1+d‖T‖)2d−2(1+
∥∥(t1 · · · td −λ )−1

∥∥) .

Then the following hold.

(i) T −Λ is invertible, the entry of(T−Λ)−1 in the upper left equals(t1 · · · td−
λ )−1, and

∥∥(T −Λ)−1
∥∥≤ c.

(ii) For all ζ ∈ Matk(C), if 2c‖ζ‖ < 1, then T− Λ − ζ is invertible and∥∥(T −Λ− ζ )−1− (T −Λ)−1
∥∥≤ 2c2‖ζ‖ < c.

Proof Putt≥i = ti · · · td. The following matrix identity is easy to verify.



λ −t1
1 −t2

. . .
. . .

1 −td−1

−td 1







1
t≥2 1
...

...

t≥d−1 1
t≥d 1




=




1 −t1
1 −t2

. . .
. . .

1 −td−1

1







λ − t1 · · · td
1

...

1
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Here we have abbreviated notation even further by writing 1= Iki ⊗1A . The first
matrix above isΛ−T. Call the next two matricesA andB, respectively, and the
lastD. The matricesA andB are invertible sinceA− Ik is strictly lower triangular
andB− Ik is strictly upper triangular. The diagonal matrixD is invertible by the
hypothesis thatt1 · · · td − λ is invertible. ThusΛ −T is invertible with inverse
(Λ−T)−1 = AD−1B−1. This proves the first of the three claims made in point (i).
For i, j = 1, . . . ,d let B−1(i, j) denote theKi ×K j block of B−1. It is not difficult
to check thatB−1(i, j) = 0 for i > j, B−1(i, i) = Iki , andB−1(i, j) = ti · · · t j−1 for
i < j. The second claim of point (i) can now be verified by direct calculation,
and the third by using (5.5.14) to bound‖A‖ and

∥∥B−1
∥∥. Point (ii) follows by

consideration of the Neumann series expansion for(Ik− (T −Λ)−1ζ )−1. ⊓⊔
The second part of the linearization trick is the following.

Lemma 5.5.8Let P∈ C〈X〉 be given, and let d≥ 2 be an integer bounding the
degree of P. Then there exists an integer n≥ 1 and matrices

V1 ∈ Mat1×n(C〈X〉), V2, . . . ,Vd−1 ∈ Matn(C〈X〉), Vd ∈ Matn×1(C〈X〉)

of degree≤ 1 such that P= V1 · · ·Vd.

Proof We have

P =
d

∑
r=0

m

∑
i1=1

· · ·
m

∑
ir=1

cr
i1,...,ir Xi1 · · ·Xir

for some complex constantscr
i1,...,ir

. Let {Pν}n
ν=1 be an enumeration of the terms

on the right. Lete(k,ℓ)
i, j ∈ Matk×ℓ(C) denote the elementary matrix with entry 1 in

position(i, j) and 0 elsewhere. Then we have a factorization

Pν = (e(1,n)
1,ν ⊗Vν

1 )(e(n,n)
ν,ν ⊗Vν

2 ) · · · (e(n,n)
ν,ν ⊗Vν

d−1)(e
(n,1)
ν,1 ⊗Vν

d )

for suitably chosenVν
i ∈ C〈X〉 of degree≤ 1. TakeV1 = ∑ν e(1,n)

1,ν ⊗Vν
1 , Vℓ =

∑ν e(n,n)
ν,ν ⊗Vν

ℓ for ℓ = 2, . . . ,d−1, andVd = ∑ν e(n,1)
ν,1 ⊗Vν

d . ThenV1, . . . ,Vd have
all the desired properties. ⊓⊔

We continue to prepare for the proof of Lemma 5.5.4. For the rest of this section
we fix a self-adjoint noncommutative polynomialP ∈ C〈X〉 and also, as in the
statement of Proposition 5.5.3, an integerd ≥ 2 bounding the degree ofP. For
i = 1, . . . ,d, fix Vi ∈ Matki×ki+1(C〈X〉) of degree≤ 1, for suitably chosen positive
integersk1, . . . ,kd+1, such thatP = V1 · · ·Vd. This is possible by Lemma 5.5.8.
Any such factorization serves our purposes. Putk = k1 + · · ·+kd and letKi be as
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defined in (5.5.12). Consider the matrix

L =




V1
. . .

Vd−1

Vd


 ∈ Matk(C〈X〉) , (5.5.15)

where, fori = 1, . . . ,d, the matrixVi occupies the block with rows (resp., columns)
indexed by the setKi (resp.,Ki+1), and all other entries ofL equal 0∈ C〈X〉. It is
convenient to write

L = a0⊗1C〈X〉 +
m

∑
i=1

ai ⊗Xi , (5.5.16)

for uniquely determined matricesai ∈ Matk(C). As we will see, Lemma 5.5.7

allows us to use the matricesL( XN√
N
) andL(S) to “code” the spectral properties of

P( XN√
N
) andP(S), respectively. We will exploit this coding to prove Lemma 5.5.4.

We will say that any matrix of the formL arising fromP by the factorization
procedure above is ad-linearizationof P. Of courseP has manyd-linearizations.
However, the linearization construction is scale invariant in the sense that, for any
constantγ > 0, if L is ad-linearization ofP, thenγ1/dL is ad-linearization ofγP.

Put

α1 =
∞

sup
N=1

E(1+d

∥∥∥∥L(
XN
√

N
)

∥∥∥∥)
8d−8 , (5.5.17)

α2 = ‖a0‖+
m

∑
i=1

‖ai‖2 , (5.5.18)

α3 = (1+d‖L(S)‖)2d−2 . (5.5.19)

Note thatα1 < ∞ by (5.5.10). We will take care to make all our estimates below
explicit in terms of the constantsαi (and the constantc appearing in (5.5.8)), in an-
ticipation of exploiting the scale invariance of Lemma 5.5.4 and thed-linearization
construction.

We next present the “linearized” versions of the definitions(5.5.2) and (5.5.3).

For λ ∈ C such thatℑλ > 0, letΛ =

[
λ 0
0 Ik−1

]
∈ Matk(C). We define

G(λ ) = (idk⊗σ)((L(S)−Λ⊗1S )−1) , (5.5.20)

GN(λ ) = E(idk⊗
1
N

tr)((L(
XN
√

N
)−Λ⊗ IN)−1) , (5.5.21)

which are matrices in Matk(C).
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The next two lemmas, which are roughly parallel in form, givethe basic prop-
erties ofGN(λ ) andG(λ ), respectively, and in particular show that these matrices
are well defined.

Lemma 5.5.9(i) For λ ∈ C such thatℑλ > 0, GN(λ ) is well defined, depends
analytically onλ , and satisfies the bound

‖GN(λ )‖ ≤ α1(1+
1

ℑλ
) . (5.5.22)

(ii) The upper left entry of GN(λ ) equals gN(λ ).
(iii) We have
∥∥∥∥∥Ik +(Λ−a0)GN(λ )+

m

∑
i=1

aiGN(λ )aiGN(λ )

∥∥∥∥∥≤
cα1α2

2

N2 (1+
1

ℑλ
)4 , (5.5.23)

where c is the constant appearing in(5.5.8).

We call (5.5.23) theSchwinger–Dyson approximation. Indeed, asN goes to infin-
ity, the left hand side of (5.5.23) must go to zero, yielding asystem of equations
which is closely related to (5.4.12). We remark also that theproof of (5.5.23) fol-
lows roughly the same plan as was used in Section 2.4.1 to giveProof #2 of the
semicircle law.

Proof As before, leteℓ,r = eN,N
ℓ,r ∈ MatN(C) denote the elementary matrix with

entry 1 in position(ℓ, r), and 0 elsewhere. GivenA∈ Matkn(C), let

A[ℓ, r] = (idk⊗ trN)((Ik⊗er,ℓ)A) ∈ Matk(C) ,

so thatA = ∑ℓ,r A[ℓ, r]⊗eℓ,r . (Thus, within this proof, we viewA as anN-by-N
array ofk-by-k blocksA[ℓ, r].)

Sinceλ is fixed throughout the proof, we drop it from the notation to the extent
possible. To abbreviate, we write

RN = (L(
XN
√

N
)−Λ⊗ IN)−1, HN = (idk⊗

1
N

tr)RN =
1
N

N

∑
i=1

RN[i, i].

From Lemma 5.5.7(i) we get an estimate

‖RN‖ ≤ (1+d

∥∥∥∥L(
XN
√

N
)

∥∥∥∥)
2d−2(1+

1
ℑλ

) (5.5.24)

which, combined with (5.5.17), yields assertion (i). From Lemma 5.5.7(i) we also
get assertion (ii).

Assertion (iii) will follow from an integration by parts as in (5.4.15). Recall
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that ∂XN
i (ℓ,r)X

N
i′ (ℓ′, r ′) = δi,i′δℓ,ℓ′δr,r ′ . We have, fori ∈ {1, . . . ,m} andℓ, r, ℓ′, r ′ ∈

{1, . . . ,N},

∂XN
i (r,ℓ)RN[r ′, ℓ′] = − 1√

N
RN[r ′, r]aiRN[ℓ,ℓ′] . (5.5.25)

Recall thatE∂XN
i (r,ℓ) f (XN) = EXN

i (ℓ, r) f (XN). We obtain

− 1√
N

ERN(λ )[r ′, r]aiRN(λ )[ℓ,ℓ′] = EXN
i (ℓ, r)RN(λ )[r ′, ℓ′] . (5.5.26)

Now left-multiply both sides of (5.5.26) byai
N3/2 , and sum oni, ℓ = ℓ′, andr = r ′,

thus obtaining the first equality below.

−
m

∑
i=1

E(aiHNaiHN) = E(idk⊗
1
N

tr)((L(
XN
√

N
)−a0⊗ IN)RN)

= E(idk⊗
1
N

tr)(Ik⊗ IN +((Λ−a0)⊗ IN)RN)

= Ik +(Λ−a0)GN(λ ) .

The last two steps are simple algebra. Thus the left side of (5.5.23) is bounded by
the quantity

∆N =

∥∥∥∥∥E[
m

∑
i=1

ai(HN −EHN)ai(HN −EHN)]

∥∥∥∥∥

≤ (∑
i
‖ai‖2)E‖HN −EHN‖2

2 ≤ c(∑
i
‖ai‖2)E ∑

i,ℓ,r

∥∥∥∂XN
i (r,ℓ)HN

∥∥∥
2

2
,

where at the last step we use once again the Gaussian Poincar´e inequality in the
form (5.5.8). For the quantity at the extreme right under theexpectation, we have
by (5.5.25) an estimate

1
N3 ∑

i,r,ℓ,r ′,ℓ′
tr
(
RN[ℓ′, r]aiRN[ℓ,ℓ′]RN[ℓ, r ′]∗a∗i RN[r ′, r]∗

)
≤ 1

N2 (∑
i
‖ai‖2)‖RN‖4 .

The latter, combined with (5.5.17), (5.5.18) and (5.5.24),finishes the proof of
(5.5.23). ⊓⊔

We will need a generalization ofG(λ ). For any Λ ∈ Matk(C) such that
L(S)−Λ⊗1S is invertible, we define

G̃(Λ) = (idk⊗σ)((L(S)−Λ⊗1S )−1) .

Now for λ ∈ C such thatG(λ ) is defined,G̃(Λ) is also defined and

G̃

([
λ 0
0 Ik−1

])
= G(λ ) . (5.5.27)
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Thus, the functionG̃(Λ) should be regarded as an extension ofG(λ ). Let O be
the connected open subset of Matk(C) consisting of all sums of the form

[
λ 0
0 Ik−1

]
+ ζ ,

where

λ ∈ C , ζ ∈ Matk(C) , ℑλ > 0, 2α3‖ζ‖(1+
1

ℑλ
) < 1. (5.5.28)

Recall that the constantα3 is specified in (5.5.19).

Lemma 5.5.10(i) For λ ∈ C such thatℑλ > 0, G(λ ) is well defined, depends
analytically onλ , and satisfies the bound

‖G(λ )‖ ≤ k2α3(1+
1

ℑλ
) . (5.5.29)

(ii) The upper left entry of G(λ ) equals g(λ ).
(iii) More generally,G̃(Λ) is well defined and analytic forΛ ∈O, and satisfies the
bound
∥∥∥∥G̃

([
λ 0
0 Ik−1

]
+ ζ
)
−G(λ )

∥∥∥∥≤ 2k2α2
3(1+

1
ℑλ

)2‖ζ‖ < k2α3(1+
1

ℑλ
)

(5.5.30)
for λ andζ as in(5.5.28).
(iv) If there existsΛ ∈ O such thatΛ−a0 is invertible and the operator

(L(S)−a0⊗1S )((Λ−a0)
−1⊗1S ) ∈ Matk(S ) (5.5.31)

has norm< 1, then

Ik +(Λ−a0)G̃(Λ)+
m

∑
i=1

aiG̃(Λ)aiG̃(Λ) = 0 (5.5.32)

for all Λ ∈ O.

In particular,G̃(Λ) is by (5.5.32) invertible for allΛ ∈ O. As we will see in
the course of the proof, equation (5.5.32) is essentially a reformulation of the
Schwinger–Dyson equation (5.4.12).

Proof Let us specialize Lemma 5.5.7 by takingti =Vi(S) for i = 1, . . . ,d and hence
T = L(S). Then we may takeα3(1+ 1/ℑλ )−1 as the constant in Lemma 5.5.7.
We note also the crude bound‖(idk⊗σ)(M)‖ ≤ k2‖M‖ for M ∈ Matk(S ). By
Lemma 5.5.7(i) the operatorL(S)−Λ⊗1S is invertible, with inverse bounded in
norm byα3(1+1/ℑλ )−1 and possessing(P(S)−λ1S )−1 as its upper left entry.
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Points (i) and (ii) of Lemma 5.5.10 follow. In view of the relationship (5.5.27) be-
tweenG̃(Λ) andG(λ ), point (iii) of Lemma 5.5.10 follows from Lemma 5.5.7(ii).

It remains only to prove assertion (iv). Since the open setO is connected, and
G̃(Λ) is analytic onO, it is necessary only to show that (5.5.32) holds for allΛ in
the nonempty open subset ofO consisting ofΛ for which the operator (5.5.31) is
defined and has norm< 1. Fix suchΛ now, and letM denote the corresponding
operator (5.5.31). Put

bi = ai(Λ−a0)
−1 ∈ Matk(C)

for i = 1, . . . ,m. By developing

(L(S)−Λ⊗1S )−1 = −((Λ−a0)
−1⊗1S )(Ik⊗1S −M)−1 ,

as a power series inM, we arrive at the identity

Ik +(Λ−a0)G̃(Λ) = −
∞

∑
ℓ=0

(idk⊗σ)(Mℓ+1) .

According to the Schwinger–Dyson equation (5.4.12),

bi(idk⊗σ)(SiM
ℓ) = bi

ℓ

∑
p=1

(idk⊗σ)(Mp−1)bi(idk⊗σ)(Mℓ−p) ,

whence, after summation, we get (5.5.32). ⊓⊔

Remark 5.5.11In Exercise 5.5.15 we indicate a purely operator-theoreticway to
prove (5.5.32), using a special choice ofC∗-probability space.

Lemma 5.5.12Fix λ ∈ C and a positive integer N such thatℑλ > 0 and the

right side of (5.5.23)is < 1/2. PutΛ =

[
λ 0
0 Ik−1

]
∈ Matk(C). Then GN(λ ) is

invertible and the matrix

ΛN(λ ) = −GN(λ )−1 +a0−
m

∑
i=1

aiGN(λ )ai (5.5.33)

satisfies

‖ΛN(λ )−Λ‖ ≤ 2cα1α2
2

N2 (1+
1

ℑλ
)4(|λ |+1+ α2+ α1α2 +

α1α2

ℑλ
) , (5.5.34)

where c is the constant appearing in(5.5.8).

Proof Let us write

Ik +(Λ−a0)GN(λ )+
m

∑
i=1

aiGN(λ )aiGN(λ ) = εN(λ ) .
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By hypothesis‖εN(λ )‖ < 1/2, henceIk − εN(λ ) is invertible, henceGN(λ ) is
invertible, and we have an algebraic identity

ΛN(λ )−Λ = (Ik− εN(λ ))−1εN(λ )(Λ−a0+
m

∑
i=1

aiGN(λ )ai) .

We now arrive at estimate (5.5.34) by our hypothesis‖εN(λ )‖ < 1/2, along with
(5.5.23) to bound‖εN(λ )‖ more strictly, and finally (5.5.18) and (5.5.22). ⊓⊔

We record the last trick.

Lemma 5.5.13Let z,w∈ Matk(C) be invertible. If

z−1 +
m

∑
i=1

aizai = w−1 +
m

∑
i=1

aiwai , and ‖z‖‖w‖
m

∑
i=1

‖ai‖2 < 1,

then z= w.

Proof Suppose thatz 6= w. We havew− z= ∑m
i=1zai(w− z)aiw after some alge-

braic manipulation, whence a contradiction. ⊓⊔

Completion of the proof of Lemma 5.5.4By the scale invariance of Lemma
5.5.4 and of thed-linearization construction, for any constantγ > 0, we are free to
replaceP by γP, and hence to replace the linearizationL by γ1/dL. Thus, without
loss of generality, we may assume that

α1 < 2, α2 <
1
18

, α3 < 2. (5.5.35)

The hypothesis of Lemma 5.5.10(iv) is then fulfilled. More precisely, withΛ =[
i 0
0 Ik−1

]
, the matrixΛ−a0 is invertible, and the operator (5.5.31) has norm

< 1. Consequently, we may take the Schwinger–Dyson equation (5.5.32) for
granted.

Now fix c0,c′0 > 0 arbitrarily. We are free to increasec′0, so we may assume
that

c′0 > 3. (5.5.36)

We then pickN0 andc1 so that:

If (5.5.5) holds, then the right side of (5.5.23) is< 1/2 and

the right side of (5.5.34) is< 1
2α3

(1+ 1
ℑλ )−1 .

Suppose now thatN andλ satisfy (5.5.5). ThenΛN(λ ) is well defined by formula
(5.5.33) becauseGN(λ ) is invertible, and moreover belongs toO. We claim that

G̃(ΛN(λ )) = GN(λ ) . (5.5.37)
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To prove (5.5.37), which is an equality of analytic functions ofλ , we may assume
in view of (5.5.36) that

ℑλ > 2. (5.5.38)

Putz= GN(λ ) andw = G̃(ΛN(λ )). Now

‖z‖ < 3

by (5.5.22), (5.5.35) and (5.5.38), whereas

‖w‖ < 6

by (5.5.29), (5.5.30), (5.5.35) and (5.5.38). Applying theSchwinger–Dyson equa-
tion (5.5.32) along with (5.5.35), we see that the hypotheses of Lemma 5.5.13 are
fulfilled. Thusz= w, which completes the proof of the claim (5.5.37). The claim
granted, for suitably chosenc2 andc3, the bound (5.5.6) in Lemma 5.5.4 holds by
(5.5.30) and (5.5.34), along with Lemma 5.5.9(ii) and Lemma5.5.10(ii). In turn,
the proofs of Proposition 5.5.3 and Theorem 5.5.1 are complete. ⊓⊔

In the next two exercises we sketch an operator-theoretic approach to the
Schwinger–Dyson equation (5.5.32) based on the study of Boltzmann–Fock space
(see Example 5.3.3).

Exercise 5.5.14Let T,π andS be bounded linear operators on a Hilbert space.
Assume thatT is invertible. Assume thatπ is a projector and letπ⊥ = 1−π be
the complementary projector. Assume that

π⊥Sπ⊥ = S and π⊥Tπ⊥ = π⊥Tπ⊥S= π⊥ .

Then we have

π = πT−1π(T −TST)π = π(T −TST)πT−1π . (5.5.39)

Hint: Use the block matrix factorization
[

a b
c d

]
=

[
1 bd−1

0 1

][
a−bd−1c 0

0 d

][
1 0

d−1c 1

]

in the Hilbert space setting.

Exercise 5.5.15Let V be a finite-dimensional Hilbert space with orthonormal
basis{ei}m

i=1. Let H =
⊕∞

i=0V⊗i be the corresponding Boltzmann–Fock space, as
in Example 5.3.3. Letv ∈ V⊗0 ⊂ H be the vacuum state. EquipB(H) with the
stateφ = (a 7→ 〈av,v〉). For i = 1, . . . ,m, let ℓi = ei ⊗· ∈ B(H) be theleft creation
operator previously considered. We will also consider theright creation operator
r i = ·⊗ei ∈ B(H). For i = 1, . . . ,m put si = ℓi + ℓ∗i and recall thats1, . . . ,sm are
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free semicircular elements inB(H). Puts= (s1, . . . ,sm).
(i) For α = 1, . . . ,m, show thatr∗α rα = 1B(H) andπα = rα r∗α is the orthogonal
projection ofH onto the closed linear span of all wordsei1 ⊗·· ·⊗eir with terminal
lettereir equal toeα .
(ii) Let π0 ∈B(H) be the orthogonal projection ofH ontoV⊗0. Show that we have
an orthogonal direct sum decompositionH =

⊕m
α=0 παH.

(iii) Verify the relations

παsiπβ = δαβ rαsi r
∗
β , π0sirα = δiα π0 = r∗αsiπ0 (5.5.40)

holding for i,α,β = 1, . . . ,m.
(iv) Identify Matk(B(H)) with B(Hk). Let L = a0+∑m

i=1ai ⊗Xi ∈ Matk(C〈X〉) be
of degree 1. FixΛ ∈ Matk(C) such thatT = L(s)−Λ⊗1B(H) ∈ B(Hk) is invert-
ible. Putπ = Ik ⊗ π0 ∈ B(Hk) andS= ∑m

i=1(Ik ⊗ r i)T−1(Ik ⊗ r∗i ) ∈ B(Hk). Put
G̃(Λ) = (idk⊗φ)(T−1). Use (5.5.39) and (5.5.40) to verify (5.5.32).

5.6 Bibliographical notes

For basics in free probability and operator algebras, we relied on Voiculescu’s
St. Flour course [Voi00b] and on [VoDN92]. A more combinatorial approach is
presented in [Spe98]. For notions of operator algebras which are summarized in
Appendix G, we used [Rud91], [DuS58], [Mur90], [Li92], [Ped79] and [Dix69].
For affiliated operators, we relied on [BeV93] and [DuS58], and on the paper
[Nel74]. (In particular, the remark following Definition 5.2.28 clarifies that the
notion of affiliated operators in these references coincide.) Section 5.3.2 follows
closely [Spe03]. Many refinements of the relation between free cumulants and
freeness can be found in the work of Speicher, Nica and co-workers, see the mem-
oir [Spe98] and the recent book [NiS06] with its bibliography. A theory of cumu-
lants for finite dimensional random matrices was initiated in [CaC06]. Subjects
related to free probability are also discussed in the collection of papers [Voi97].

Free additive convolutions were first studied in [Voi86] and[BeV92] for boun-
ded operators, then generalized to operators with finite variance in [Maa92] and
finally to the general setting presented here in [BeV93]. A detailed study of free
convolution by the semicircle law was done by Biane [Bia97b]. Freeness for
rectangular matrices and related free convolution were studied in [BeG09]. The
Markovian structure of free convolution (see [Voi00a] for abasic derivation) was
shown in [Voi93] and [Bia98a, Theorem 3.1] to imply the existence of a unique
subordination function F: C→C such that

• for all z∈ C\R, Ga+b(z) = Ga(F(z)),
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• F(C+) ⊂ C+, F̄(z) = F(z̄), ℑ(F(z)) ≥ ℑ(z) for z∈ C+ andF(iy)/iy→1 asy
goes to infinity while staying inR.

Note that, according to [BeV93, Proposition 5.2], the second set of conditions on
F is equivalent to the existence of a probability measureν onR so thatF = Fν is
the reciprocal of a Cauchy transform. Such a point of view canactually serve as
a definition of free convolution, see [ChG08] or [BeB07].

Lemma 5.3.40 is a particularly simple example of infinite divisibility. The as-
sumption of finite variance in the lemma can be removed by observing that the
solution of (5.3.26) is infinitely divisible, and then using[BeV93, Theorem 7.5].
The theory of free infinite divisibility parallels the classical one, and in particular,
a Lévy–Khitchine formula does exist to characterize infinitely divisible laws, see
[BeP00] and [BaNT04]. The former paper introduces the Bercovici–Pata bijec-
tion between the classical and free infinitely divisible laws (see also the Boolean
Bercovici–Pata bijection in [BN08]). Matrix approximations to free infinitely di-
visible laws are constructed in [BeG05].

The generalization of multiplicative free convolution to affiliated operators is
done in [BeV93], see also [NiS97].

The relation between random matrices and asymptotic freeness was first estab-
lished in the seminal article of Voiculescu [Voi91]. In [Voi91, Theorem 2.2], he
proved Theorem 5.4.5 in the case of Wigner Gaussian (Hermitian) random matri-
ces and diagonal matrices{DN

i }1≤i≤p, whereas in [Voi91, Theorem 3.8], he gen-
eralized this result to independent unitary matrices. In [Voi98b], he removed the
former hypothesis on the matrices{DN

i }1≤i≤p to obtain Theorem 5.4.5 for Gaus-
sian matrices and Theorem 5.4.10 in full generality (following the same ideas as in
Exercise 5.4.17). An elegant proof of Theorem 5.4.2 for Gaussian matrices which
avoid combinatorial arguments appears in [CaC04]. Theorem5.4.2 was extended
to non-Gaussian entries in [Dyk93b]. The proof of Theorem 5.4.10 we presented
follows the characterization of the law of free unitary variables by a Schwinger–
Dyson equation given in [Voi99, Proposition 5.17] and the ideas of [CoMG06].
Other proofs were given in terms of Weingarten functions in [Col03] and with a
more combinatorial approach in [Xu97]. For uses of master loop (or Schwinger–
Dyson) equations in the physics literature, see e.g. [EyB99] and [Eyn03].

Asymptotic freeness can be extended to other models such as joint distribu-
tion of random matrices with correlated entries [ScS05] or to deterministic mod-
els such as permutation matrices [Bia95]. Biane [Bia98b] (see also [́Sni06] and
[Bia01]) showed that the asymptotic behavior of rescaled Young diagrams and as-
sociated representations and characters of the symmetric groups can be expressed
in terms of free cumulants.
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The study of the correction (central limit theorem) to Theorem 5.4.2 for Gaus-
sian entries was performed in [Cab01], [MiS06]. The generalization to non-
Gaussian entries, as done in [AnZ05], is still open in the general noncommutative
framework. A systematic study and analysis of the limiting covariance was un-
dertaken in [MiN04]. The failure of the central limit theorem for a matrix model
whose potential has two deep wells was shown in [Pas06].

We have not mentioned the notion of freeness with amalgamation, which is a
freeness property where the scalar-valued state is replaced by an operator-valued
conditional expectation with properties analogous to conditional expectation from
classical probability theory. This notion is particularlynatural when consider-
ing the algebra generated by two subalgebras. For instance,the free algebras
{Xi}1≤i≤p as in Theorem 5.4.5 are free with amalgamation with respect to the al-
gebra generated by the{Di}1≤i≤p . We refer to [Voi00b] for definitions and to
[Shl98] for a nice application to the study the asymptotics of the spectral measure
of band matrices. The central limit theorem for the trace of mixed moments of
band matrices and deterministic matrices was done in [Gui02].

The convergence of the operator norm of polynomials in independent GUE ma-
trices discussed in Section 5.5 was first proved in [HaT05]. (The norms of the lim-
iting object, namely free operators with matrix coefficients, were already studied
in [Leh99].) This result was generalized to independent matrices from the GOE
and the GSE in [Sch05], see also [HaST06], and to Wigner or Wishart matrices
with entries satisfying the Poincaré inequality in [CaD07]. It was also shown in
[GuS08] to hold with matrices whose laws are absolutely continuous with respect
to the Lebesgue measure and possess a strictly log-concave density. The norm of
long words in free noncommutative variables is discussed in[Kar07a]. We note
that a by-product of the proof of Theorem 5.5.1 is that the Stieltjes transform of
the law of any self-adjoint polynomial in free semicircularrandom variables is
an algebraic function, as one sees by applying the algebraicity criterion [AnZ08b,
Theorem 6.1], to the Schwinger–Dyson equation as expressedin the form (5.5.32).
Proposition 5.5.3 is analogous to a result for sample covariance matrices proved
earlier in [BaS98a].

Many topics related to free probability have been left out inour discussion. In
particular, we have not mentioned free Brownian motion as defined in [Spe90],
which appears as the limit of the Hermitian Brownian motion with size going
to infinity [Bia97a]. We refer to [BiS98b] for a study of the related stochastic
calculus, to [Bia98a] for the introduction of a wide class ofprocesses with free
increments and for the study of their Markov properties, to [Ans02] for the intro-
duction of stochastic integrals with respect to processes with free increments, and
to [BaNT02] for a thorough discussion of Lévy processes andLévy laws. Such
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a stochastic calculus was used to prove a central limit theorem in [Cab01], large
deviation principles, see the survey [Gui04], and the convergence of the empirical
distribution of interacting matrices [GuS08]. In such a noncommutative stochastic
calculus framework, inequalities such as the Burkholder–Davis–Gundy inequality
[BiS98b] or the Burkholder–Rosenthal inequalities [JuX03] hold.

Another important topic we did not discuss is the notion of free entropy. We re-
fer the interested readers to the reviews [Voi02] and [HiP00b]. Voiculescu defined
several concepts for an entropy in the noncommutative setup. First, the so-called
microstates entropy was defined in [Voi94], analogously to the
Boltzmann–Shannon entropy, as the volume of the collectionof random matri-
ces whose empirical distribution approximates a given tracial state. Second, in
[Voi98a], the microstates-free free entropy was defined by following an infinitesi-
mal approach based on the free Fisher information. Voiculescu showed in [Voi93]
that, in the case of one variable, both entropies are equal. Following a large de-
viations and stochastic processes approach, bounds between these two entropies
could be given in the general setting, see [CaG01] and [BiCG03], providing strong
evidence toward the conjecture that they are equal in full generality. Besides its
connections with large deviations questions, free entropies were used to define
in [Voi94] another important concept, namely the free entropy dimension. This
dimension is related withL2-Betti numbers [CoS05], [MiS05] and is analogous
to a fractal dimension in the classical setting [GuS07]. A long standing conjec-
ture is that the entropy dimension is an invariant of the von Neumann algebra,
which would settle the well known problem of the isomorphismbetween free
group factors [Voi02, section 2.6]. Free entropy theory hasalready been used to
settle some important questions in von Neumann algebras, see [Voi96], [Ge97],
[Ge98] or [Voi02, section 2.5]. In another direction, random matrices can be an
efficient way to tackle questions concerningC∗-algebras or von Neumman alge-
bras, see e.g. [Voi90], [Dyk93a], [Răd94], [HaT99], [Haa02], [PoS03], [HaT05],
[HaST06], [GuJS07] and [HaS09].

The free probability concepts developed in this chapter, and in particular free
cumulants, can also be used in more applied subjects such as telecommunications,
see [LiTV01] and [TuV04].
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A Linear algebra preliminaries

This appendix recalls some basic results from linear algebra. We refer the reader
to [HoJ85] for further details and proofs.

A.1 Identities and bounds

The following identities are repeatedly used. Throughout,A,B,C,D denote arbi-
trary matrices of appropriate dimensions. We then have

1detA6=0det

[
A B
C D

]
= det

([
A 0
C D−CA−1B

] [
1 A−1B
0 1

])

= detA ·det[D−CA−1B] , (A.1)

where the right side of (A.1) is set to 0 ifA is not invertible.

The following lemma, proved by multiplying on the right by(X − zI) and on
the left by(X−A−zI), is very useful.

Lemma A.1 (Matrix inversion) For matrices X,A and scalar z, the following
identity holds if all matrices involved are invertible:

(X−A−zI)−1− (X−zI)−1 = (X−A−zI)−1A(X−zI)−1 .

Many manipulations of matrices involve their minors. Thus,let I = {i1, . . . , i|I |}
⊂ {1, . . . ,m}, J = { j1, . . . , j|J|} ⊂ {1, . . . ,n}, and for anm-by-n matrix A, let AI ,J

be the|I |-by-|J| matrix obtained by erasing all entries that do not belong to arow
with index fromI and a column with index fromJ. That is,

AI ,J(l ,k) = A(i l , jk) , l = 1, . . . , |I |, k = 1, . . . , |J| .

414
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TheI ,J minor ofA is then defined as detAI ,J. We have the following.

Theorem A.2 (Cauchy–Binet Theorem)Suppose A is an m-by-k matrix, B a
k-by-n matrix, C= AB, and, with r≤min{m,k,n}, set I= {i1, . . . , ir}⊂ {1, . . . ,m},
J = { j1, . . . , jr} ⊂ {1, . . . ,n}. Then, lettingKr,k denote all subsets of{1, . . . ,k} of
cardinality r,

detCI ,J = ∑
K∈Kr,k

detAI ,K detBK,J . (A.2)

We next provide a fundamental bound on determinants.

Theorem A.3 (Hadamard’s inequality) For any column vectors v1, . . . ,vn of
length n with complex entries, it holds that

det[v1 . . .vn] ≤
n

∏
i=1

√
v̄i

Tvi ≤ nn/2
n

∏
i=1

|vi |∞ .

A.2 Perturbations for normal and Hermitian matrices

We recall that a normal matrixA satisfies the relationAA∗ = A∗A. In particular,

all matrices inH (β )
N , β = 1,2, are normal.

In what follows, we let‖A‖2 :=
√

∑i, j |A(i, j)|2 denote theFrobeniusnorm of

the matrixA. The following lemma is a corollary of Gersgorin’s circle theorem.

Lemma A.4 (Perturbations of normal matrices) Let A be an N by N normal
matrix with eigenvaluesλi , i = 1, . . . ,N, and let E be an arbitrary N by N matrix.
Let λ̂ be any eigenvalues of A+ E. Then there is an i∈ {1, . . . ,N} such that
|λ̂ −λi| ≤ ‖E‖2.

For Hermitian matrices, more can be said. Recall that, for a Hermitian matrixA,
we letλ1(A)≤ λ2(A)≤ ·· · ≤ λN(A) denote the ordered eigenvalues ofA. We first
recall the

Theorem A.5 (Weyl’s inequalities)Let A,B∈H
(2)

N . Then, for each k∈{1, . . . ,N},
we have

λk(A)+ λ1(B) ≤ λk(A+B)≤ λk(A)+ λN(B) . (A.3)

The following is a useful corollary of Weyl’s inequalities.
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Corollary A.6 (Lipschitz continuity) Let A,E ∈ H
(2)

N . Then

|λk(A+E)−λk(A)| ≤ ‖E‖2 . (A.4)

Corollary A.6 is weaker than Lemma 2.1.19, which in its Hermitian formulation,
see Remark 2.1.20, actually implies that, under the same assumptions,

∑
k

|λk(A+E)−λk(A)|2 ≤ ‖E‖2
2 . (A.5)

We finally note the following comparison, whose proof is based on the
Courant–Fischer representation of the eigenvalues of Hermitian matrices.

Theorem A.7Let A∈ H
(2)

N and z∈ CN. Then, for1≤ k≤ N−2,

λk(A±zz∗) ≤ λk+1(A) ≤ λk+2(A±zz∗) . (A.6)

A.3 Noncommutative matrixLp-norms

GivenX ∈Matk×ℓ(C) with singular valuesµ1 ≥ ·· · ≥ µr ≥ 0, wherer = min(k, ℓ),
and a constant 1≤ p ≤ ∞, one defines thenoncommutative Lp-norm of X by

‖X‖p =
(
∑r

i=1 µ p
i

)1/p
if p < ∞ and‖X‖∞ = limp→∞ ‖X‖p = µ1.

Theorem A.8The noncommutative Lp norms satisfy the following.

‖X‖p = ‖X∗‖p =
∥∥XT

∥∥
p . (A.7)

‖UX‖p = ‖X‖p for unitary matrices U∈ Matk(C) . (A.8)

tr(XX∗) = ‖X‖2
2 . (A.9)

‖X‖p ≥
(

r

∑
i=1

|Xi,i |p
)1/p

for 1≤ p≤ ∞ . (A.10)

‖·‖p is a norm on the complex vector spaceMatk×ℓ(C) . (A.11)

Properties (A.7), (A.8) and (A.9) are immediate consequences of the definition. A
proof of (A.10) and (A.11) can be found in [Sim05b, Prop. 2.6 &Thm. 2.7]. It
follows from (A.10) that ifX is a square matrix then

‖X‖1 ≥ | tr(X)| . (A.12)

For matricesX andY with complex entries which can be multiplied, and expo-
nents 1≤ p,q, r ≤ ∞ satisfying 1

p + 1
q = 1

r , we have thenoncommutative Ḧolder
inequality

‖XY‖r ≤ ‖X‖p‖Y‖q . (A.13)



A. L INEAR ALGEBRA PRELIMINARIES 417

(See [Sim05b, Thm. 2.8].)

A.4 Brief review of resultants and discriminants

Definition A.9 Let

P = P(t) =
m

∑
i=0

ait
i = am

m

∏
i=1

(t −αi), Q = Q(t) =
n

∑
j=0

b j t
j = bn

n

∏
j=1

(t −β j),

be two polynomials where theas, bs, αs andβs are complex numbers, the lead
coefficientsam andbn are nonzero, andt is a variable. Theresultantof P andQ is
defined as

R(P,Q) = an
mbm

n

m

∏
i=1

n

∏
j=1

(αi −β j) = an
m

m

∏
i=1

Q(αi) = (−1)mnbm
n

n

∏
j=1

P(β j).

The resultantR(P,Q) can be expressed as the determinant of the(m+n)-by-(m+

n) Sylvester matrix



am . . . a0
. . .

. . .
. . .

. . .
am . . . a0

bn . . . . . . . . . b0

. . .
. . .

bn . . . . . . . . . b0




.

Here there aren rows ofas andm rows ofbs. In particular, the resultantR(P,Q) is
a polynomial (with integer coefficients) in theas andbs. HenceR(P,Q) depends
only on theas andbs and does so continuously.

Definition A.10 Given a polynomialP as in Definition A.9, thediscriminantof P
is defined as

D(P) = (−1)m(m−1)/2R(P,P′) = (−1)m(m−1)/2
m

∏
i=1

P′(αi)

= a2m−1
m ∏

1≤i< j≤n

(αi −α j)
2 . (A.14)

We emphasize thatD(P) depends only on theas and does so continuously.
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B Topological preliminaries

The material in Appendices B and C is classical. These appendices are adapted
from [DeZ98].

B.1 Generalities

A family τ of subsets of a setX is a topologyif /0 ∈ τ, if X ∈ τ, if any union
of sets ofτ belongs toτ, and if any finite intersection of elements ofτ belongs
to τ. A topological space is denoted(X ,τ), and this notation is abbreviated to
X if the topology is obvious from the context. Sets that belongto τ are called
open sets. Complements of open sets areclosed sets. An open set containing a
point x ∈ X is a neighborhoodof x. Likewise, an open set containing a subset
A⊂ X is a neighborhood ofA. The interior of a subsetA ⊂ X , denotedAo, is
the union of the open subsets ofA. Theclosureof A, denotedĀ, is the intersection
of all closed sets containingA. A point p is called anaccumulation pointof a set
A⊂ X if every neighborhood ofp contains at least one point inA. The closure
of A is the union of its accumulation points.

A basefor the topologyτ is a collection of setsA ⊂ τ such that any set from
τ is the union of sets inA . If τ1 andτ2 are two topologies onX , τ1 is called
stronger (or finer) thanτ2, andτ2 is called weaker (or coarser) thanτ1 if τ2 ⊂ τ1.

A topological space isHausdorffif single points are closed and every two dis-
tinct pointsx,y ∈ X have disjoint neighborhoods. It isregular if, in addition,
any closed setF ⊂ X and any pointx /∈ F possess disjoint neighborhoods. It is
normal if, in addition, any two disjoint closed setsF1,F2 possess disjoint neigh-
borhoods.

If (X ,τ1) and (Y ,τ2) are topological spaces, a functionf : X → Y is a
bijectionif it is one-to-one and onto. It iscontinuousif f−1(A)∈ τ1 for anyA∈ τ2.
This implies also that the inverse image of a closed set is closed. Continuity is
preserved under compositions, i.e., iff : X →Y andg : Y →Z are continuous,
theng◦ f : X → Z is continuous. If bothf and f−1 are continuous, thenf is
a homeomorphism, and spacesX ,Y are called homeomorphic if there exists a
homeomorphismf : X → Y .

A function f : X → R is lower semicontinuous(upper semicontinuous) if its
level sets{x ∈ X : f (x) ≤ α} (respectively,{x ∈ X : f (x) ≥ α} ) are closed
sets. Clearly, every continuous function is lower (upper) semicontinuous and the
pointwise supremum of a family of lower semicontinuous functions is lower semi-
continuous.
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A Hausdorff topological space iscompletely regularif for any closed setF ⊂
X and any pointx /∈ F , there exists a continuous functionf : X → [0,1] such
that f (x) = 1 and f (y) = 0 for all y∈ F.

A coverof a setA⊂ X is a collection of open sets whose union containsA. A
set iscompactif every cover of it has a finite subset that is also a cover. A contin-
uous image of a compact set is compact. A continuous bijection between compact
spaces is a homeomorphism. Every compact subset of a Hausdorff topological
space is closed. A set ispre-compactif its closure is compact. A topological
space islocally compactif every point possesses a neighborhood that is compact.

Theorem B.1A lower (upper) semicontinuous function f achieves its minimum
(respectively, maximum) over any compact set K.

Let (X ,τ) be a topological space, and letA ⊂ X . The relative (or induced)
topology onA is the collection of setsA

⋂
τ. The Hausdorff, normality and regu-

larity properties are preserved under the relative topology. Furthermore, the com-
pactness is preserved, i.e.,B⊂ A is compact in the relative topology iff it is com-
pact in the original topologyτ. Note, however, that the “closedness” property is
notpreserved.

A nonnegative real functiond : X ×X →R is called ametricif d(x,y) = 0⇔
x= y, d(x,y) = d(y,x), andd(x,y)≤ d(x,z)+d(z,y). The last property is referred
to as thetriangle inequality. The setBx,δ = {y : d(x,y) < δ} is called theball of
centerx and radiusδ . The metric topology ofX is the weakest topology which
contains all balls. The setX equipped with the metric topology is ametricspace
(X ,d). A topological space whose topology is the same as some metric topology
is calledmetrizable. Every metrizable space is normal. Every regular space that
possesses a countable base is metrizable.

A sequencexn ∈ X convergesto x ∈ X (denotedxn → x) if every neighbor-
hood ofx contains all but a finite number of elements of the sequence{xn}. If
X ,Y are metric spaces, thenf : X → Y is continuous ifff (xn) → f (x) for any
convergent sequencexn → x. A subsetA⊂ X of a topological space issequen-
tially compactif every sequence of points inA has a subsequence converging to a
point inX .

Theorem B.2A subset of a metric space is compact iff it is closed and sequentially
compact.

A setA⊂ X is denseif its closure isX . A topological space isseparableif it
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contains a countable dense set. Any topological space that possesses a countable
base is separable, whereas any separable metric space possesses a countable base.

Even if a space is not metric, the notion of convergence on a sequence may be
extended to convergence onfilters, or nets, such that compactness, “closedness”,
etc. may be checked by convergence. The interested reader isreferred to [DuS58]
or [Bou87] for details.

Let J be an arbitrary set. LetX be the Cartesian product of topological spaces
X j , i.e.,X = ∏ j X j . Theproduct topologyon X is the topology generated by
the base∏ j U j , whereU j are open and equal toX j except for a finite number
of values of j. This topology is the weakest one which makes all projections
p j : X → X j continuous. The Hausdorff property is preserved under products,
and any countable product of metric spaces (with metricdn(·, ·)) is metrizable,
with the metric onX given by

d(x,y) =
∞

∑
n=1

1
2n

dn(pnx, pny)
1+dn(pnx, pny)

.

Theorem B.3 (Tychonoff)A product of compact spaces is compact.

B.2 Topological vector spaces and weak topologies

A vector spaceover the reals is a setX that is closed under the operations of
addition and multiplication by scalars, i.e., ifx,y∈ X , thenx+y∈ X andαx∈
X for all α ∈ R. All vector spaces in this book are over the reals. Atopological
vector spaceis a vector space equipped with a Hausdorff topology that makes the
vector space operations continuous. Theconvex hullof a setA, denoted co(A), is
the intersection of all convex sets containingA. The closure of co(A) is denoted
co(A). co({x1, . . . ,xN}) is compact, and, ifKi are compact, convex sets, then the
set co(

⋃N
i=1Ki) is closed. Alocally convextopological vector space is a vector

space that possesses a convex base for its topology.

Theorem B.4Every (Hausdorff) topological vector space is regular.

A linear functionalon the vector spaceX is a functionf : X → R that satisfies
f (αx+ βy) = α f (x) + β f (y) for any scalarsα,β ∈ R and anyx,y ∈ X . The
algebraic dualof X , denotedX ′, is the collection of all linear functionals on
X . Thetopological dualof X , denotedX ∗, is the collection of all continuous
linear functionals on thetopologicalvector spaceX . Both the algebraic dual
and the topological dual are vector spaces. Note that, whereas the algebraic dual
may be defined for any vector space, the topological dual may be defined only
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for a topological vector space. The product of two topological vector spaces is
a topological vector space, and is locally convex if each of the coordinate spaces
is locally convex. The topological dual of the product spaceis the product of the
topological duals of the coordinate spaces. A setH ⊂ X ′ is calledseparatingif
for any pointx∈X , x 6= 0, one may find anh∈ H such thath(x) 6= 0. It follows
from its definition thatX ′ is separating.

Theorem B.5 (Hahn–Banach)Suppose A and B are two disjoint, nonempty,
closed, convex sets in the locally convex topological vector spaceX . If A is
compact, then there exists an f∈ X ∗ and scalarsα,β ∈ R such that, for all
x∈ A, y∈ B,

f (x) < α < β < f (y) . (B.1)

It follows in particular that ifX is locally convex, thenX ∗ is separating. Now
let H be a separating family of linear functionals onX . TheH -topologyof
X is the weakest (coarsest) one that makes all elements ofH continuous. Two
particular cases are of interest.
(a) If H = X ∗, then theX ∗-topology onX obtained in this way is called the
weak topologyof X . It is weaker (coarser) than the original topology onX .
(b) Let X be a topological vector space (not necessarily locally convex). Every
x∈ X defines a linear functionalsfx onX ∗ by the formulafx(x∗) = x∗(x). The
set of all such functionals is separating inX ∗. TheX -topology ofX ∗ obtained
in this way is referred to as theweak∗ topologyof X ∗.

Theorem B.6SupposeX is a vector space andY ⊂ X ′ is a separating vector
space. Then theY -topology makesX into a locally convex topological vector
space withX ∗ = Y .

It follows in particular that there may be different topological vector spaces with
the same topological dual. Such examples arise when the original topology onX
is strictly finer than the weak topology.

Theorem B.7 Let X be a locally convex topological vector space. A convex
subset ofX is weakly closed iff it is originally closed.

Theorem B.8 (Banach–Alaoglu)Let V be a neighborhood of0 in the topological
vector spaceX . Let K = {x∗ ∈ X ∗ : |x∗(x)| ≤ 1 , ∀x ∈ V}. Then K is weak∗

compact.
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B.3 Banach and Polish spaces

A norm || · || on a vector spaceX is a metricd(x,y) = ||x− y|| that satisfies
the scaling property||α(x− y)|| = α||x− y|| for all α > 0. The metric topology
then yields a topological vector space structure onX , which is referred to as a
normedspace. The standard norm on the topological dual of a normed spaceX

is ||x∗||X ∗ = sup||x||≤1 |x∗(x)|, and then||x|| = sup||x∗||X ∗≤1 x∗(x), for all x∈ X .

A Cauchy sequencein a metric spaceX is a sequencexn ∈ X such that,
for everyε > 0, there exists anN(ε) such thatd(xn,xm) < ε for any n > N(ε)

andm> N(ε). If every Cauchy sequence inX converges to a point inX , the
metric in X is calledcomplete. Note that completeness is not preserved under
homeomorphism. A complete separable metric space is calleda Polishspace. In
particular, a compact metric space is Polish, and an open subset of a Polish space
(equipped with the induced topology) is homeomorphic to a Polish space.

A complete normed space is called aBanachspace. The natural topology on a
Banach space is the topology defined by its norm.

A setB in a topological vector spaceX is boundedif, given any neighborhood
V of the origin inX , there exists anε > 0 such that{αx : x ∈ B, |α| ≤ ε} ⊂ V.
In particular, a setB in a normed space is bounded iff supx∈B ||x|| < ∞. A setB in
a metric spaceX is totally boundedif, for everyδ > 0, it is possible to coverB
by a finite number of balls of radiusδ centered inB. A totally bounded subset of
a complete metric space is pre-compact.

Unlike in the Euclidean setup, balls need not be convex in a metric space. How-
ever, in normed spaces, all balls are convex. Actually, the following partial con-
verse holds.

Theorem B.9 A topological vector space is normable, i.e., a norm may be de-
fined on it that is compatible with its topology, iff its origin has a convex bounded
neighborhood.

Weak topologies may be defined on Banach spaces and their topological duals. A
striking property of the weak topology of Banach spaces is the fact that compact-
ness, apart from closure, may be checked using sequences.

Theorem B.10 (Eberlein–̌Smulian) Let X be a Banach space. In the weak
topology ofX , a set is sequentially compact iff it is pre-compact.
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B.4 Some elements of analysis

We collect below some basic results tying measures and functions on locally com-
pact Hausdorff spaces. In most of our applications, the underlying space will be
R. A good reference that contains this material is [Rud87].

Theorem B.11 (Riesz representation theorem)Let X be a locally compact Haus-
dorff space, and letΛ be a positive linear functional on Cc(X). Then there exists
a σ -algebraM in X which contains all Borel sets in X, and there exists a unique
positive measureµ onM which representsΛ in the sense that

Λ f =

∫

X
f dµ for every f∈Cc(X).

We next discuss the approximation of measurable functions by “nice” functions.
Recall that a functions is said to be simple if there are measurable setsAi and real
constants(αi)1≤i≤n such thats= ∑n

i=1 αi1Ai .

Theorem B.12Let X be a measure space, and let f: X → [0,∞] be measurable.
Then there exist simple functions(sp)p≥0 on X such that0≤ s1 ≤ s2 · · · ≤ sk ≤ f
and sk(x) converges to f(x) for all x ∈ X.

The approximation of measurable functions by continuous ones is often achieved
using the following.

Theorem B.13 (Lusin)Suppose X is a locally compact Hausdorff space andµ
is a positive Borel measure on X. Let A⊂ X be measurable withµ(A) < ∞, and
suppose f is a complex measurable function on X, with f(x) = 0 if x 6∈ A. Then,
for anyε > 0 there exists a g∈Cc(X) such that

µ({x : f (x) 6= g(x)}) < ε.

Furthermore, g can be taken such thatsupx∈X |g(x)| ≤ supx∈X | f (x)|.

C Probability measures on Polish spaces

C.1 Generalities

The following indicates why Polish spaces are convenient when handling measur-
ability issues. Throughout, unless explicitly stated otherwise, Polish spaces are
equipped with their Borelσ -fields.
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Theorem C.1 (Kuratowski) Let Σ1,Σ2 be Polish spaces, and let f: Σ1 → Σ2 be
a measurable, one-to-one map. Let E1 ⊂ Σ1 be a Borel set. Then f(E1) is a Borel
set inΣ2.

A probability measureon the Borelσ -field BΣ of a Hausdorff topological space
Σ is a countably additive, positive set functionµ with µ(Σ) = 1. The space of
(Borel) probability measures onΣ is denotedM1(Σ). WhenΣ is separable, the
structure ofM1(Σ) becomes simpler, and conditioning becomes easier to handle;
namely, letΣ,Σ1 be two separable Hausdorff spaces, and letµ be a probability
measure on(Σ,BΣ). Let π : Σ → Σ1 be measurable, and letν = µ ◦π−1 be the
measure onBΣ1 defined byν(E1) = µ(π−1(E1)).

Definition C.2 A regular conditional probability distribution givenπ (referred to
as r.c.p.d.) is a mappingσ1 ∈ Σ1 7→ µσ1 ∈ M1(Σ) such that:
(a) there exists a setN ∈ BΣ1 with ν(N) = 0 and, for eachσ1 ∈ Σ1\N,

µσ1({σ : π(σ) 6= σ1}) = 0;

(b) for any setE ∈ BΣ, the mapσ1 7→ µσ1(E) is BΣ1 measurable and

µ(E) =

∫

Σ1

µσ1(E)ν(dσ1) .

It is property (b) that allows for the decomposition of measures. In Polish spaces,
the existence of an r.c.p.d. follows from:

Theorem C.3LetΣ,Σ1 be Polish spaces,µ ∈M1(Σ), andπ : Σ→ Σ1 a measurable
map. Then there exists an r.c.p.d.µσ1. Moreover, it is unique in the sense that any
other r.c.p.d.µσ1 satisfies

ν({σ1 : µσ1 6= µσ1}) = 0.

Another useful property of separable spaces is their behavior under products.

Theorem C.4Let N be either finite or N= ∞.
(a) ∏N

i=1BΣ ⊂ B∏N
i=1 Σ.

(b) If Σ is separable, then∏N
i=1BΣ = B∏N

i=1Σ.

We now turn our attention to the particular case whereΣ is metric (and, when-
ever needed, Polish).

Theorem C.5Let Σ be a metric space. Then anyµ ∈ M1(Σ) is regular.
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Theorem C.6 Let Σ be Polish, and letµ ∈ M1(Σ). Then there exists a unique
closed set Cµ such thatµ(Cµ) = 1 and, if D is any other closed set withµ(D) = 1,
then Cµ ⊆ D. Finally,

Cµ = {σ ∈ Σ : σ ∈Uo ⇒ µ(Uo) > 0 } .

The setCµ of Theorem C.6 is called thesupportof µ .

A probability measureµ on the metric spaceΣ is tight if, for each η > 0,
there exists a compact setKη ⊂ Σ such thatµ(Kc

η) < η . A family of probability
measures{µα} on the metric spaceΣ is called atight family if the setKη may be
chosen independently ofα.

Theorem C.7Each probability measure on a Polish spaceΣ is tight.

C.2 Weak topology

WheneverΣ is Polish, a topology may be defined onM1(Σ) that possesses nice
properties; namely, define theweak topologyonM1(Σ) as the topology generated
by the sets

Uφ ,x,δ = {ν ∈ M1(Σ) : |
∫

Σ
φdν −x| < δ} ,

whereφ ∈Cb(Σ), δ > 0 andx∈ R. If one takes only functionsφ ∈Cb(Σ) that are
of compact support, the resulting topology is thevague topology.

Hereafter,M1(Σ) always denotesM1(Σ) equipped with the weak topology. The
following are some basic properties of this topological space.

Theorem C.8Let Σ be Polish.

(i) M1(Σ) is Polish.
(ii) A metric compatible with the weak topology is the Lévy metric:

d(µ ,ν) = inf{δ : µ(F) ≤ ν(Fδ )+ δ ∀F ⊂ Σ closed} .

(iii) M1(Σ) is compact iffΣ is compact.
(iv) Let E ⊂ Σ be a dense countable subset ofΣ. The set of all probability

measures whose supports are finite subsets of E is dense in M1(Σ).
(v) Another metric compatible with the weak topology is the Lipschitz bound-

ed metric:

dLU(µ ,ν) = sup
f∈FLU

|
∫

Σ
f dν −

∫

Σ
f dµ | , (C.1)
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whereFLU is the class of Lipschitz continuous functions f: Σ → R, with
Lipschitz constant at most1 and uniform bound1.

The spaceM1(Σ) possesses a useful criterion for compactness.

Theorem C.9 (Prohorov)LetΣ be Polish, and letΓ ⊂ M1(Σ). ThenΓ is compact
iff Γ is tight.

SinceM1(Σ) is Polish, convergence may be decided by sequences. The following
lists some useful properties of converging sequences inM1(Σ).

Theorem C.10 (Portmanteau theorem)Let Σ be Polish. The following state-
ments are equivalent.

(i) µn → µ as n→ ∞.

(ii) ∀g bounded and uniformly continuous,lim
n→∞

∫

Σ
gdµn =

∫

Σ
gdµ .

(iii) ∀F ⊂ Σ closed, limsup
n→∞

µn(F) ≤ µ(F).

(iv) ∀G⊂ Σ open, lim inf
n→∞

µn(G) ≥ µ(G).

(v) ∀A ∈ BΣ, which is a continuity set, i.e., such thatµ(A\Ao) = 0, limn→∞
µn(A) = µ(A).

A collection of functionsG ⊂ B(Σ) is calledconvergence determiningfor M1(Σ)

if

lim
n→∞

∫

Σ
gdµn =

∫

Σ
gdµ , ∀g∈ G ⇒ µn →n→∞ µ .

ForΣ Polish, there exists a countable convergence determining collection of func-
tions forM1(Σ) and the collection{ f (x)g(y)} f ,g∈Cb(Σ) is convergence determining
for M1(Σ2).

Theorem C.11Let Σ be Polish. If K is a set of continuous, uniformly bounded
functions onΣ that are equicontinuous on compact subsets ofΣ, thenµn → µ
implies that

limsup
n→∞

sup
φ∈K

{
|
∫

Σ
φdµn−

∫

Σ
φdµ |

}
= 0.

The following theorem is the analog of Fatou’s Lemma for measures. It is proved
from Fatou’s Lemma either directly or by using the Skorohod representation the-
orem.
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Theorem C.12Let Σ be Polish. Let f: Σ → [0,∞] be a lower semicontinuous
function, and assumeµn → µ . Then

lim inf
n→∞

∫

Σ
f dµn ≥

∫

Σ
f dµ .

D Basic notions of large deviations

This appendix recalls basic definitions and main results of large deviation theory.
We refer the reader to [DeS89] and [DeZ98] for a full treatment.

In what follows,X will be assumed to be a Polish space (that is a complete sep-
arable metric space). We recall that a functionf : X → R is lower semicontinuous
if the level sets{x : f (x) ≤C} are closed for any constantC.

Definition D.1 A sequence(µN)N∈N of probability measures onX satisfies alarge
deviation principlewith speedaN (going to infinity withN) and rate functionI iff

I : X→[0,∞] is lower semicontinuous. (D.1)

For any open setO⊂ X, lim inf
N→∞

1
aN

logµN(O) ≥− inf
O

I . (D.2)

For any closed setF ⊂ X, limsup
N→∞

1
aN

logµN(F) ≤− inf
F

I . (D.3)

When it is clear from the context, we omit the reference to thespeed or rate func-
tion and simply say that the sequence{µN} satisfies the LDP. Also, ifxN are
X-valued random variables distributed according toµN, we say that the sequence
{xN} satisfies the LDP if the sequence{µN} satisfies the LDP.

Definition D.2 A sequence(µN)N∈N of probability measures onX satisfies aweak
large deviation principleif (D.1) and (D.2) hold, and in addition (D.3) holds for
all compact setsF ⊂ X.

The proof of a large deviation principle often proceeds firstby the proof of a weak
large deviation principle, in conjuction with the so-called exponential tightness
property.

Definition D.3 (a) A sequence(µN)N∈N of probability measures onX is exponen-
tially tight iff there exists a sequence(KL)L∈N of compact sets such that

limsup
L→∞

limsup
N→∞

1
aN

logµN(Kc
L) = −∞.
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(b) A rate functionI is goodif the level sets{x∈ X : I(x) ≤ M} are compact for
all M ≥ 0.

The interest in these concepts lies in the following.

Theorem D.4 (a) ([DeZ98, Lemma 1.2.18])If {µN} satisfies the weak LDP and
it is exponentially tight, then it satisfies the full LDP, andthe rate function I is
good.
(b) ([DeZ98, Exercise 4.1.10])If {µN} satisfies the upper bound (D.3) with a good
rate function I, then it is exponentially tight.

A weak large deviation principle is itself equivalent to theestimation of the prob-
ability of deviations towards small balls.

Theorem D.5LetA be a base of the topology of X. For every A∈ A , define

ΛA = − lim inf
N→∞

1
aN

logµN(A)

and

I(x) = sup
A∈A :x∈A

ΛA.

Suppose that, for all x∈ X,

I(x) = sup
A∈A :x∈A

{
− limsup

N→∞

1
aN

logµN(A)

}
.

ThenµN satisfies a weak large deviation principle with rate function I.

Let d be the metric inX, and setB(x,δ ) = {y∈ X : d(y,x) < δ}.

Corollary D.6 Assume that, for all x∈ X,

−I(x) = limsup
δ→0

limsup
N→∞

1
aN

logµN(B(x,δ )) = lim inf
δ→0

lim inf
N→∞

1
aN

logµN(B(x,δ )) .

ThenµN satisfies a weak large deviation principle with rate function I.

From a given large deviation principle one can deduce a largedeviation principle
for other sequences of probability measures by using eitherthe so-called contrac-
tion principle or Laplace’s method.

Theorem D.7 (Contraction principle) Assume that the sequence of probability
measures(µN)N∈N on X satisfies a large deviation principle with good rate func-
tion I. Then, for any function F: X→Y with values in a Polish space Y which is
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continuous, the image(F♯µN)N∈N ∈ M1(Y)N defined as F♯µN(A) = µ ◦F−1(A)

also satisfies a large deviation principle with the same speed and rate function
given for any y∈Y by

J(y) = inf{I(x) : F(x) = y}.

Theorem D.8 (Varadhan’s Lemma)Assume that(µN)N∈N satisfies a large devi-
ation principle with good rate function I. Let F: X→R be a bounded continuous
function. Then

lim
N→∞

1
aN

log
∫

eaNF(x)dµN(x) = sup
x∈X

{F(x)− I(x)}.

Moreover, the sequence

νN(dx) =
1∫

eaNF(y)dµN(y)
eaNF(x)dµN(x) ∈ M1(X)

satisfies a large deviation principle with good rate function

J(x) = I(x)−F(x)−sup
y∈X

{F(y)− I(y)}.

Laplace’s method for the asymptotic evaluation of integrals, which is discussed
in Section 3.5.1, can be viewed as a (refined) precursor to Theorem D.8 in a nar-
rower context. In developing it, we make use of the followingelementary result.

Lemma D.9 (Asymptotics for Laplace transforms)Let f : R+ →C posses poly-
nomial growth at infinity. Suppose that for some exponentα > −1 and complex
constant B,

f (t) = Atα +O(tα+1) as t↓ 0.

Consider the Laplace transform

F(x) =

∫ ∞

0
f (t)e−txdt

which is defined (at least) for all real x> 0. Then,

F(x) =
BΓ(α +1)

xα+1 +O

(
1

xα+2

)
as x↑ ∞.

Proof In the special casef (t) = Btα we haveF(x) = BΓ(α+1)
xα+1 , and hence the

claim holds. To handle the general case we may assume thatB = 0. Then we
have

∫ 1
0 e−tx f (t)dt = O(

∫ ∞
0 tα+1e−txdt) and

∫ ∞
1 e−tx f (t)dt decays exponentially

fast, which proves the lemma. ⊓⊔
Note that if f (t) has an expansion in powerstα , tα+1, tα+2 and so on, then
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iterated application of the claim yields an asymptotic expansion of the Laplace
transformF(x) at infinity in powersx−α−1, x−α−2, x−α−3 and so on.

E The skew fieldH of quaternions and matrix theory over F

Whereas the reader is undoubtedly familiar with the fieldsR andC, the skew
field H of quaternions invented by Hamilton may be less familiar. Wegive a brief
account of its most important features here. Then, withF denoting any of the
(skew) fieldsR, C or H, we recount (without proof) the elements of matrix theory
overF, culminating in the spectral theorem (Theorem E.11) and itscorollaries. We
also prove a couple of specialized results (one concerning projectors and another
concerning Lie algebras of unitary groups) which are well known in principle but
for which references “uniform inF” are not known to us.

Definition E.1 The field H is the associative (but not commutative)R-algebra
with unit for which 1,i, j , k form a basis overR, and in which multiplication is
dictated by the rules

i2 = j2 = k2 = ijk = −1. (E.1)

Elements ofH are calledquaternions. Multiplication in H is not commutative.
However, every nonzero element ofH is invertible. Indeed, we have(a+ bi +
cj + dk)−1 = (a− bi − cj − dk)/(a2 + b2 + c2 + d2) for all a,b,c,d ∈ R not all
vanishing. ThusH is a skew field: that is, an algebraic system satisfying all the
axioms of a field except for commutativity of multiplication.

Remark E.2 Here is a concrete model for the quaternions in terms of matrices.
Note that the matrices

[
i 0
0 −i

]
,

[
0 1

−1 0

]
,

[
0 i
i 0

]

with complex number entries satisfy the rules (E.1). It follows that the map

a+bi +cj +dk 7→
[

a+bi c+di
−c+di a−bi

]
(a,b,c,d ∈ R)

is an isomorphism ofH onto a subring of the ring of 2-by-2 matrices with entries
in C. The quaternions often appear in the literature identified with 2-by-2 matrices
in this way. We do not use this identification in this book.

For every

x = a+bi +cj +dk ∈ H (a,b,c,d ∈ R)
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we define

‖x‖ =
√

a2 +b2+c2+d2, x∗ = a−bi −cj −dk, ℜx = a.

We then have

‖x‖2 = xx∗, ‖xy‖ = ‖x‖‖y‖, (xy)∗ = y∗x∗ , ℜx =
x+x∗

2
, ℜxy= ℜyx

for all x,y∈ H. In particular, we havex−1 = x∗/‖x‖2 for nonzerox∈ H.

The space of all real multiples of 1∈ H is a copy ofR and the space of all real
linear combinations of 1 andi is a copy ofC. ThusR andC can be and will be
identified with subfields ofH, and in particular both i andi will be used to denote
the imaginary unit of the complex numbers. In short, we thinkof R, C andH as
forming a “tower”

R ⊂ C ⊂ H.

If x∈ C, then‖x‖ (resp.,x∗, ℜx) is the absolute value (resp., complex conjugate,
real part) ofx in the usual sense. Further,jx = x∗j for all x ∈ C. Finally, for all
nonrealx∈ C, we have{y∈ H | xy= yx} = C.

E.1 Matrix terminology overF and factorization theorems

Let Matp×q(F) denote the space ofp-by-q matrices with entries inF. Given
X ∈ Matp×q(F), let Xi j ∈ F denote the entry ofX in row i and columnj. Let
Matp×q = Matp×q(R) and Matn(F) = Matn×n(F). Let 0p×q denote thep-by-q
zero matrix, and let 0p = 0p×p. Let In denote then-by-n identity matrix. Given
X ∈ Matp×q(F), let X∗ ∈ Matq×p(F) be the matrix obtained by transposingX and
then applying “asterisk” to every entry. The operationX 7→ X∗ is R-linear and,
furthermore,(XY)∗ =Y∗X∗ for all X ∈ Matp×q(F) andY ∈ Matq×r(F). Similarly,
we have(xX)∗ = X∗x∗ for any matrixX ∈ Matp×q(F) and scalarx ∈ F. Given
X ∈ Matn(F), we define trX ∈ F to be the sum of the diagonal entries ofX. Given
X,Y ∈ Matp×q(F), we setX ·Y = ℜ trX∗Y, thus equipping Matp×q(F) with the
structure of finite-dimensional real Hilbert space (Euclidean space). Given ma-
tricesXi ∈ Matni (F) for i = 1, . . . , ℓ, let diag(X1, . . . ,Xℓ) ∈ Matn1+···+nℓ

(F) be the
block-diagonal matrix obtained by stringing the given matricesXi along the diag-
onal.

Definition E.3 The matrixei j = e(p,q)
i j ∈ Matp×q with entry 1 in rowi and column

j and 0s elsewhere is called anelementary matrix.
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The set

{uei j | u∈ F∩{1, i, j ,k}, ei j ∈ Matp×q}

is an orthonormal basis for Matp×q(F).

Definition E.4 (i) Let X ∈ Matn(F) be a matrix. It isinvertible if there exists
Y ∈ Matn(F) such thatYX = In = XY. It is normal if X∗X = XX∗. It is unitary
if X∗X = In = XX∗. It is self-adjoint(resp.,anti-self-adjoint) if X∗ = X (resp.,
X∗ = −X). It is upper triangular(resp.,lower triangular) if Xi j = 0 unlessi ≤ j
(resp.,i ≥ j).
(ii) A matrix X ∈ Matn(F) is monomialif there is exactly one nonzero entry in
every row and in every column; if, moreover, every entry ofX is either 0 or 1, we
call X a permutation matrix.
(iii) A self-adjoint X ∈ Matn(F) is positive definiteif v∗Xv > 0 for all nonzero
v∈ Matn×1(F).
(iv) A matrix X ∈ Matn(F) is aprojector if it is both self-adjoint and idempotent,
that is, ifX∗ = X = X2.
(v) A matrixX ∈Matp×q(F) is diagonalif Xi j = 0 unlessi = j. The set of positions
(i, i) for i = 1, . . . ,min(p,q) is called the(main) diagonalof X.

The group of invertible elements of Matn(F) is denoted GLn(F), while the sub-
group of GLn(F) consisting of unitary matrices is denoted Un(F). Permutation
matrices in Matn belong to Un(F).

We next present several factorization theorems. The first isobtained by the
Gaussian elimination method.

Theorem E.5 (Gaussian elimination)Let X∈ Matp×q(F) have the property that
for all v∈Matq×1(F), if Xv= 0, then v= 0. Then p≥ q. Furthermore, there exists
a permutation matrix P∈ Matp(F) and an upper triangular matrix T∈ Matq(F)

with every diagonal entry equal to1 such that PXT vanishes above the main
diagonal but vanishes nowhere on the main diagonal.

In particular, for squareA,B∈ Matp(F), if AB= Ip, thenBA= Ip. It follows also
that GLn(F) is an open subset of Matn(F).

The Gram–Schmidt process gives more information whenp = q.

Theorem E.6 (Triangular factorization) Let Q∈ Matn(F) be self-adjoint and
positive definite. Then there exists a unique upper triangular matrix T∈ Matn(F)

with every diagonal entry equal to1 such that T∗QT is diagonal. Further, T
depends smoothly (that is, infinitely differentiably) on the entries of Q.
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Corollary E.7 (UT factorization) Every X∈ GLn(F) has a unique factorization
X =UT where T∈ GLn(F) is upper triangular with every diagonal entry positive
and U∈ Un(F).

Corollary E.8 (Unitary extension) If V ∈ Matn×k(F) satisfies V∗V = Ik, then
n≥ k and there exists U∈ Un(F) agreeing with V in the first k columns.

Corollary E.9 (Construction of projectors) Let p and q be positive integers. Fix
Y ∈ Matp×q(F). Put n= p+ q. Write T∗(Ip +YY∗)T = Ip for some (unique)
upper triangular matrix T∈ Matp(F) with positive diagonal entries. ThenΠ =

Π(Y) =

[
TT∗ TT∗Y

Y∗TT∗ Y∗TT∗Y

]
∈Matn(F) is a projector. Further, every projector

Π ∈ Matn(F) such thattr Π = p and the p× p block in upper left is invertible is
of the formΠ = Π(Y) for unique Y∈ Matp×q(F).

E.2 The spectral theorem and key corollaries

A reference for the proof of the spectral theorem in the unfamiliar caseF = H is
[FaP03].

Definition E.10 (Standard blocks)A C-standard blockis any element of Mat1(C)

= C. An H-standard blockis any element of Mat1(C) = C with nonnegative
imaginary part. AnR-standard blockis either an element of Mat1 = R, or a

matrix

[
a b

−b a

]
∈ Mat2 with b > 0. Finally, X ∈ Matn(F) is F-reducedif

X = diag(B1, . . . ,Bℓ) for someF-standard blocksBi .

Theorem E.11 (Spectral theorem)Let X∈ Matn(F) be normal.
(i) There exists U∈ Un(F) such that U∗XU isF-reduced.
(ii) Fix U ∈ Un(F) and F-standard blocks B1, . . . ,Bℓ such thatdiag(B1, . . . ,Bℓ)

= U∗XU. Up to order, the Bi depend only on X, not on U.

Corollary E.12 (Eigenvalues)Fix a self-adjoint X∈ Matn(F).
(i) There exist U∈ Un(F) and a diagonal matrix D∈ Matn such that D= U∗XU.
(ii) For any such D and U, the sequence of diagonal entries of D arranged in
nondecreasing order is the same.

We call the entries ofD the eigenvaluesof the self-adjoint matrixX. (When
F = R,C this is the standard notion of eigenvalue.)
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Corollary E.13 (Singular values)Fix X ∈ Matp×q(F).
(i) There exist U∈ Up(F), V ∈ Uq(F) and diagonal D∈ Matp×q such that D=

UXV.
(ii) For any such U, V and D, the sequence of absolute values of diagonal entries
of D arranged in nondecreasing order is the same.
(iii) Now assume that p≤ q, and that X is diagonal with nonzero diagonal entries
the absolute values of which are distinct. Then, for any U, V and D as in (i),
U is monomial and V= diag(V ′,V ′′), where V′ ∈ Up(F) and V′′ ∈ Uq−p(F). (We
simply putV=V ′ if p = q.) Furthermore, the productUV′ is diagonal and squares
to the identity.

We call the absolute values of the entries ofD thesingular valuesof the rectangu-
lar matrixX. (WhenF = R,C this is the standard notion of singular value.) The
squares of the singular values ofX are the eigenvalues ofX∗X or XX∗, whichever
has min(p,q) rows and columns.

E.3 A specialized result on projectors

We present a factorization result for projectors which is used in the discussion of
the Jacobi ensemble in Section 4.1. The caseF = C of the result is well known.
But for lack of a suitable reference treating the factorization uniformly in F, we
give a proof here.

Proposition E.14Let 0 < p≤ q be integers and put n= p+q. LetΠ ∈ Matn(F)

be a projector. Then there exists U∈Un(F) commuting withdiag(Ip,0q) such that

U∗ΠU =

[
a b
bT d

]
, where a∈ Matp, 2b∈ Matp×q and d∈ Matq are diagonal

with entries in the closed unit interval[0,1].

Proof Write Π =

[
a β

β ∗ d

]
with a∈Matp(F), β ∈Matp×q(F) andd∈Matq(F).

Since every element of Un(F) commuting with diag(Ip,0q) is of the form diag(v,w)

for v∈ Up(F) andw∈ Uq(F), we may by Corollary E.13 assume thata andd are
diagonal and real. Necessarily the diagonal entries ofa andd belong to the closed
unit interval[0,1]. For brevity, writeai = aii andd j = d j j . We may assume that
the diagonal entries ofa are ordered so thatai(1−ai) is nonincreasing as a func-
tion of i, and similarlyd j(1−d j) is nonincreasing as a function ofj. We may
further assume that wheneverai(1−ai) = ai+1(1−ai+1) we haveai ≤ ai+1, but
that wheneverd j(1−d j) = d j+1(1−d j+1) we haved j ≥ d j+1.
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From the equationΠ2 = Π we deduce thata(Ip− a) = β β ∗ andd(Iq −d) =

β ∗β . Let b∈ Matp be the unique diagonal matrix with nonnegative entries such
thatb2 = β β ∗. Note that the diagonal entries ofb appear in nonincreasing order,
and in particular all nonvanishing diagonal entries are grouped together in the
upper left. Furthermore, all entries ofb belong to the closed interval[0,1/2].

By Corollary E.13 there existv∈Up(F) andw∈Uq(F) such thatv[b0p×(q−p)]w
= β . From the equationb2 = β β ∗ we deduce thatv commutes withb2 and hence
also withb. After replacingw by diag(v, Iq−p)w, we may assume without loss of
generality thatβ = [b 0p×(q−p)]w. From the equation

w∗diag(b2,0q−p)w = β ∗β = d(Iq−d) ,

we deduce thatw commutes with diag(b,0q−p).

Let 0≤ r ≤ p be the number of nonzero diagonal entries ofb. Write b =

diag(b̃,0p−r), whereb̃∈ GLr(R). Sincew commutes with diag(b̃,0q−r), we can
write w = diag(w̃,w′), wherew̃ ∈ Ur(F) andw′ ∈ Uq−r(F). Then we haveβ =

[diag(b̃w̃,0p−r) 0p×(q−p)] and, further, ˜w commutes with̃b.

Now write a = diag(ã,a′) with ã ∈ Matr and a′ ∈ Matp−r . Similarly, write
d = diag(d̃,d′) with d̃ ∈ Matr andd′ ∈ Matq−r . Both ã andd̃ are diagonal with
diagonal entries in(0,1). Both a′ andd′ are diagonal with diagonal entries in
{0,1}. We have a block decomposition

Π =




ã 0 b̃w̃ 0
0 a′ 0 0

w̃∗b̃ 0 d̃ 0
0 0 0 d′


 .

From the equationΠ2 = Π we deduce that̃bãw̃ = ãb̃w̃ = b̃w̃(Ir − d̃), hence ˜aw̃ =

w̃(Ir − d̃), hence ˜a andIr − d̃ have the same eigenvalues, and hence (on account of
the care we took in ordering the diagonal entries ofa andd), we have ˜a = Ir − d̃.
Finally, sinced̃ and w̃ commute, withU = diag(Ip,w̃, Iq−r), we haveU∗ΠU =[

a b
bT d

]
. ⊓⊔

E.4 Algebra for curvature computations

We present an identity needed to compute the Ricci curvatureof the special or-
thogonal and special unitary groups, see Lemma F.27 and the discussion immedi-
ately following. The identity is well known in Lie algebra theory, but the effort
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needed to decode a typical statement in the literature is about equal to the effort
needed to prove it from scratch. So we give a proof here.

Let sun(F) be the set of anti-self-adjoint matricesX ∈ Matn(F) such that, if
F = C, then trX = 0. We equip the real vector spacesun(F) with the inner product
inherited from Matn(F), namelyX ·Y = ℜ trXY∗. Let [X,Y] = XY−YX for X,Y∈
Matn(F), noting thatsun(F) is closed under the bracket operation. Letβ = 1,2,4
according asF = R,C,H.

Proposition E.15For all X ∈ sun(F) and orthonormal bases{Lα} for sun(F), we
have

−1
4 ∑

α
[[X,Lα ],Lα ] =

(
β (n+2)

4
−1

)
X . (E.2)

Proof We havesu1(R) = su1(C) = 0, and the casesu1(H) can be checked by
direct calculation withi, j , k. Therefore we assume thatn≥ 2 for the rest of the
proof.

Now for fixed X ∈ sun(F), the expression[[X,L],M] for L,M ∈ sun(F) is an
R-bilinear form onsun(F). It follows that the left side of (E.2) is independent of
the choice of orthonormal basis{Lα}. We are therefore free to choose{Lα} at
our convenience, and we do so as follows. Letei j ∈ Matn for i, j = 1, . . . ,n be the
elementary matrices. For 1≤ k < n andu∈ {i, j ,k}, let

Du
k =

u√
k+k2

(
−kek+1,k+1+

k

∑
i=1

eii

)
, Dk = Di

k , Du
n =

u√
n

n

∑
i=1

eii .

For 1≤ i < j ≤ n andu∈ {1, i, j ,k}, let

Fu
i j =

uei j −u∗eji√
2

, Ei j = F1
i j , Fi j = F i

i j .

Then

{Ei j : 1≤ i < j ≤ n},
{Dk : 1≤ k < n}∪{Ei j ,Fi j : 1≤ i < j ≤ n},
{Du

k : 1≤ k≤ n, u∈ {i, j ,k}}∪{Fu
i j : 1≤ i < j ≤ n, u∈ {1, i, j ,k}}

are orthonormal bases forsun(R), sun(C) andsun(H), respectively.

We next want to show that, in proving (E.2), it is enough to consider just one
X, namelyX = E12. We achieve that goal by proving the following two claims.

(I) Given{Lα} andX for which (E.2) holds and anyU ∈ Un(F), again (E.2)
holds for{ULαU∗} andUXU∗.
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(II) The set{UE12U∗ |U ∈ Un(F)} spanssun(F) overR.

Claim (I) holds because the operationX 7→UXU∗ stabilizessun(F), preserves the
bracket[X,Y], and preserves the inner productX ·Y. We turn to the proof of claim
(II). By considering conjugations that involve appropriate 2-by-2 blocks, one can
generate any element of the collection{Fu

12,D
u
1} from E12. Further, using conju-

gation by permutation matrices and taking linear combinations, one can generate
{Fu

i j ,D
u
k}. Finally, to obtainDu

n, it is enough to show that diag(i, i,0, . . . ,0) can be
generated, and this follows from the identity

diag(1, j)diag(i,−i)diag(1, j)−1 = diag(i, i).

Thus claim (II) is proved.

We are ready to conclude. The following facts may be verified by straightfor-
ward calculations:

• E12 commutes withDu
k for k > 1 andu∈ {i, j ,k};

• E12 commutes withFu
i j for 2 < i < j ≤ n andu∈ {1, i, j ,k};

• [[E12,Fu
i j ],F

u
i j ] = − 1

2E12 for 1 ≤ i < j < n such that #{i, j}∩ {1,2} = 1 and
u∈ {1, i, j ,k}; and

• [[E12,Fu
12],F

u
12] = [[E12,Du

1],D
u
1] = −2E12 for u∈ {i, j ,k}.

It follows that the left side of (E.2) withX = E12 and{Lα} specially chosen as
above equalscE12, where the constantc is equal to

1
4

(
1
2
·2β (n−2)+2 ·2(β −1)

)
=

β (n+2)

4
−1.

Since (E.2) holds withX = E12 and specially chosen{Lα}, by the previous steps
it holds in general. The proof of the lemma is finished. ⊓⊔

F Manifolds

We have adopted in Section 4.1 a framework in which all groupsof matrices we
used were embedded as submanifolds of Euclidean space. Thishad the advantage
that the structure of the tangent space was easy to identify.For completeness, we
present in this appendix all notions employed, and provide in Subsection F.2 the
proof of the coarea formula, Theorem 4.1.8. An inspiration for our treatment is
[Mil97]. At the end of the appendix, in Subsection F.3, we introduce the language
of connections, Laplace–Beltrami operators, and Hessians, used in Section 4.4.
For the latter we follow [Hel01] and [Mil63].
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F.1 Manifolds embedded in Euclidean space

Given a differentiable functionf defined on an open subset ofRn with values in
a finite-dimensional real vector space and an indexi = 1, . . . ,n, we let∂i f denote
the partial derivative off with respect to theith coordinate. Ifn= 1, then we write
f ′ = ∂1 f .

Definition F.1 A Euclidean spaceis a finite-dimensional real Hilbert spaceE,
with inner product denoted by(·, ·)E. A Euclidean setM is a nonempty locally
closed subset ofE, which we equip with the induced topology.

(A locally closed set is the intersection of a closed set withan open set.) We refer
to E as theambient spaceof M.

We considerRn as Euclidean space by adopting the standard inner product
(x,y)Rn = x·y= ∑n

i=1xiyi . Given Euclidean spacesE andF , and a mapf : U →V
from an open subset ofE to an open subset ofF, we say thatf is smoothif (after
identifying E with Rn andF with Rk as vector spaces overR in some way)f is
infinitely differentiable.

Given for i = 1,2 a Euclidean setMi with ambient spaceEi , we define the
product M1×M2 to be the subset{m1⊕m2 |m1 ∈M1, m2 ∈M2} of the orthogonal
direct sumE1⊕E2.

Let f : M → N be a map from one Euclidean set to another. We say thatf is
smoothif for every pointp∈ M there exists an open neighborhoodU of p in the
ambient space ofM such thatf |U∩M can be extended to a smooth map fromU to
the ambient space ofN. If f is smooth, thenf is continuous. We say thatf is a
diffeomorphismif f is smooth and has a smooth inverse, in which case we also
say thatM andN arediffeomorphic. Note that the definition implies that every
n-dimensional linear subspace of a Euclidean space is diffeomorphic toRn.

Definition F.2 (Manifolds) A manifold Mof dimensionn (for short:n-manifold)
is a Euclidean set such that every point ofM has an open neighborhood diffeo-
morphic to an open subset ofRn.

We calln thedimensionof M and writen= dimM. A diffeomorphismΦ : T →U
whereT ⊂ Rn is a nonempty open set andU is an open subset ofM is called a
chart of M. By definitionM is covered by the images of charts. The product of
manifolds is again a manifold. A subsetN ⊂ M is called asubmanifoldif N is a
manifold in its own right when viewed as a subset of the ambient space ofM.
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Definition F.3 Let M be ann-manifold with ambient spaceE. Let p ∈ M be a
point. A curveγ through p∈ M is by definition a smooth mapγ : I → M, where
I ⊂ R is a nonempty open interval, 0∈ I , andγ(0) = p. We define the tangent
spaceTp(M) of M at p to be the subset ofE consisting of all vectors of the form
γ ′(0) for some curveγ throughp∈ M.

The setTp(M) is a vector subspace ofE of dimensionn overR. More precisely,
for any chartΦ : T →U and pointt0 ∈T such thatΦ(t0) = p, the vectors(∂iΦ)(t0)
for i = 1, . . . ,n form a basis overR for Tp(M). We endowTp(M) with the struc-
ture of Euclidean space it inherits fromE.

Let f : M → N be a smooth map of manifolds, and letp ∈ M. There exists
a uniqueR-linear transformationTp( f ) : Tp(M) → T f (p)(N) with the follow-
ing property: for every curveγ with γ(0) = p andγ ′(0) = X ∈ Tp(M), we have
(Tp( f ))(X) = ( f ◦ γ)′(0). We callTp( f ) thederivativeof f at p. The mapTp( f )
is an isomorphism if and only iff maps some open neighborhood ofp∈M diffeo-
morphically to some open neighborhood off (p) ∈ N. If f is a diffeomorphism
andTp( f ) is an isometry of real Hilbert spaces for everyp ∈ M, we call f an
isometry.

Remark F.4 Isometries need not preserve distances in ambient Euclidean spaces.
For example,{(x,y) ∈ R2 \ {(0,0)} : x2 + y2 = 1} ⊂ R2 and{0}× (0,2π)⊂ R2

are isometric.

Definition F.5 Let M be ann-manifold, withA⊂ M. We say thatA is negligibleif
for every chartΦ : T →U of M the subsetΦ−1(A) ⊂ Rn is of Lebesgue measure
zero.

By the change of variable formula of Lebesgue integration, asubsetA ⊂ M is
negligible if and only if for everyp∈ M there exists a chartΦ : T →U such that
p∈U andΦ−1(A) ⊂ Rn is of Lebesgue measure zero.

We exploit the change of variables formula to define a volume measure on the
Borel subsets ofM. We begin with the following.

Definition F.6 Let Φ : T →U be a chart of ann-manifoldM. LetE be the ambient
space ofM.
(i) The correction factorσΦ is the smooth positive function onT defined by the
following formula, valid for allt ∈ T:

σΦ(t) =

√
n

det
i, j=1

((∂iΦ)(t),(∂ j Φ)(t))E .
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(ii) The chart measureℓT,Φ on the Borel sets ofT is the measure absolutely con-
tinuous with respect to Lebesgue measure restricted toT, ℓT , defined by

dℓT,Φ
dℓT

= σΦ .

Lemma F.7Let A be a Borel subset of an n-manifold M, and letΦ : T →U be a
chart such that A⊂U. ThenℓT,Φ(Φ−1(A)) is independent of the chartΦ.

Since a measure on a Polish space is defined by its (compatible) restrictions to
open subsets of the space, one may employ charts and Lemma F.7and define in a
unique way a measure on a manifoldM, which we call thevolume measureonM.

Proposition F.8 (Volume measure)Let M be a manifold.
(i) There exists a unique measureρM on the Borel subsets of M such that for
all Borel subsets A⊂ M and chartsΦ : T → U of M we haveρM(A∩U) =

ℓT,Φ(Φ−1(A)). The measureρM is finite on compacts.
(ii) A Borel set A⊂ M is negligible if and only ifρM(A) = 0.
(iii) For every nonempty open subset U⊂ M and Borel set A⊂ M we haveρU(A∩
U) = ρM(A∩U).
(iv) For every isometry f: M1 → M2 of manifolds we haveρM1 ◦ f−1 = ρM2.
(v) For all manifolds M1 and M2 we haveρM1×M2 = ρM1 ×ρM2.

Clearly,ρRn is Lebesgue measure on the Borel subsets ofRn.

We write ρ [M] = ρM(M) for every manifoldM. We have frequently to con-
sider such normalizing constants in the sequel. We always have ρ [M] ∈ (0,∞].
(It is possible to haveρ [M] = ∞, for exampleρ [R] = ∞; but it is impossible to
haveρ [M] = 0 because we do not allow the empty set to be a manifold.) IfM is
compact, thenρ [M] < ∞.

“Critical” vocabulary

Definition F.9 Critical and regular points Let f : M → N be a smooth map of
manifolds. Ap∈M is acritical point for f if the derivativeTp( f ) fails to be onto;
otherwisep is a regular pointfor f . We say thatq∈ N is acritical valueof f if
there exists a critical pointp∈ M for f such thatf (p) = q. Givenq∈ N, thefiber
f−1(q) is by definition the set{p ∈ M | f (p) = q}. Finally, q ∈ N is a regular
valuefor f if q is not a critical value and the fiberf−1(q) is nonempty.
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Our usage of the term “regular value” thereforedoes not conformto the traditions
of differential topology. In the latter context, a regular value is simply a point
which is not a critical value.

The following facts, which we use repeatedly, are straightforwardly deduced
from the definitions.

Proposition F.10Let f : M → N be a smooth map of manifolds. Let Mreg (resp.,
Mcrit) be the set of regular (resp., critical) points for f . Let Ncrit (resp., Nreg) be
the set of critical (resp., regular) values of f .
(i) The set Mreg (resp., Mcrit) is open (resp., closed) in M.
(ii) The sets Ncrit and Nreg, beingσ -compact, are Borel subsets of N.

Regular values are easier to handle than critical ones. Sard’s Theorem allows
one to restrict attention, when integrating, to such values.

Theorem F.11 (Sard)[Mil97, Chapter 3]The set of critical values of a smooth
map of manifolds is negligible.

Lie groups and Haar measure

Definition F.12A Lie group Gis a manifold with ambient space Matn(F) for some
n andF such thatG is a closed subgroup of GLn(F).

This ad hocdefinition is of course not as general as possible but it is simple and
suits our purposes well. For example, GLn(F) is a Lie group. By Lemma 4.1.15,
Un(F) is a Lie group.

Let G be a locally compact topological group, e.g., a Lie group. Let µ be a
measure on the Borel sets ofG. We say thatµ is left-invariantif µA= µ{ga | a∈
A} for all BorelA⊂ G andg∈ G. Right-invariance is defined analogously.

Theorem F.13Let G be a locally compact topological group.
(i) There exists a left-invariant measure on G (neither≡ 0 nor infinite on com-
pacts), calledHaar measure, which is unique up to a positive constant multiple.
(ii) If G is compact, then every Haar measure is right-invariant,and has finite
total mass. In particular, there exists a unique Haar probability measure.

We note that Lebesgue measure inRn is a Haar measure. Further, for any Lie
groupG contained in Un(F), the volume measureρG is by Proposition F.8(vi) and
Lemma 4.1.13(iii) a Haar measure.
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F.2 Proof of the coarea formula

In this subsection, we prove the coarea formula, Theorem 4.1.8. We begin by in-
troducing the notion off -adapted pairs of charts, prove a few preliminary lemmas,
and then provide the proof of the theorem. Lemmas F.18 and F.19 can be skipped
in the course of the proof of the coarea formula, but are included since they are
useful in Section 4.1.3.

Let f : M →N be a smooth map from ann-manifold to ak-manifold and assume
thatn≥ k. Let π : Rn → Rk be projection to the firstk coordinates. Recall that a
chart onM is a an open nonempty subsetS⊂ Rn together with a diffeomorphism
Ψ from S to an open subset ofM.

Definition F.14 A pair (Ψ : S→U,Φ : T →V) consisting of a chart ofM and a
chart ofN is f -adaptedif

S⊂ π−1(T) ⊂ Rn, U ⊂ f−1(V), f ◦Ψ = Φ◦π |S,

in which case we also say that the open setU ⊂ M is goodfor f .

The commuting diagram

Rn ⊃ S
Ψ−→ U ⊂ M

π ↓ π |S ↓ ↓ f |U ↓ f

Rk ⊃ T
Φ−→ V ⊂ N

summarizes the relationships among the maps in question here.

Lemma F.15Let f : M →N be a smooth map from an n-manifold to a k-manifold.
Let p∈ M be a regular point. (Since a regular point exists, necessarily n ≥ k.)
Then there exists an open neighborhood of p good for f .

Proof Without loss we may assume thatM ⊂ Rn andN ⊂ Rk are open sets. We
may also assume thatp = 0∈ Rn andq = f (p) = 0∈ Rk. Write f = ( f1, . . . , fk).
Let t1, . . . ,tn be the standard coordinates inRn. By hypothesis, for some permuta-
tion σ of {1, . . . ,n}, puttinggi = fi for i = 1, . . . ,k andgi = tσ(i) for i = k+1, . . . ,n,
the determinant detn

i, j=1∂ jgi does not vanish at the origin. By the inverse func-
tion theorem there exist open neighborhoodsU,S⊂ Rn of the origin such that
(⋆) = ( f1|U , . . . , fk|U , tσ(k+1)|U , . . . ,tσ(n)|U) mapsU diffeomorphically toS. Take
Ψ to be the inverse of(⋆). TakeΦ to be the identity map ofN to itself. Then
(Ψ,Φ) is an f -adapted pair of charts and the origin belongs to the image ofΨ.

⊓⊔
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Proposition F.16 Let f : M → N be a smooth map from an n-manifold to a k-
manifold. Let Mreg ⊂ M be the set of regular points of f . Fix q∈ N such that
f−1(q)∩Mreg is nonempty. Then:
(i) Mreg∩ f−1(q) is a manifold of dimension n−k;
(ii) for every p∈ Mreg∩ f−1(q) we haveTp(Mreg∩ f−1(q)) = ker(Tp( f )).

Proof We may assume thatMreg 6= /0 and hencen≥ k, for otherwise there is noth-
ing to prove. By Lemma F.15 we may assume thatM ⊂ Rn andN ⊂ Rk are open
sets and thatf is projection to the firstk coordinates, in which case all assertions
here are obvious. ⊓⊔

We pause to introduce some apparatus from linear algebra.

Definition F.17 Let f : E → F be a linear map between Euclidean spaces and let
f ∗ : F → E be the adjoint off . Thegeneralized determinant J( f ) is defined as
the square root of the determinant off f ∗ : F → F .

We emphasize thatJ( f ) is always nonnegative. If a linear mapf : Rn → Rk is
represented by ak-by-n matrix A with real entries, and the Euclidean structures
of source and targetf are the usual ones, thenJ( f )2 = det(AAT). In general, we
haveJ( f ) 6= 0 if and only if f is onto. Note also that, iff is an isometry, then
J( f ) = 1.

Lemma F.18 For i = 1,2 let fi : Ei → Fi be a linear map between Euclidean
spaces. Let f1⊕ f2 : E1⊕E2 → F1⊕F2 be the orthogonal direct sum of f1 and f2.
Then we have J( f ⊕ f ′) = J( f )J( f ′).

Proof This follows directly from the definitions.

Lemma F.19 Let f : E → F be a linear map between Euclidean spaces. Let
D ⊂ ker( f ) be a subspace such that D⊥ and F have the same dimension. Let
x1, . . . ,xn ∈ D⊥ be an orthonormal basis. LetΠ : E → D⊥ be the orthogonal
projection. Then:
(i) J( f )2 = detni, j=1( f xi , f x j )F ;
(ii) J( f )2 is the determinant of theR-linear operatorΠ◦ f ∗ ◦ f : D⊥ → D⊥.

Proof Since( f xi , f x j )F = (xi ,Π f ∗ f x j )F , statements (i) and (ii) are equivalent.
We have only to prove statement (i). Extendx1, . . . ,xn to an orthonormal basis
of x1, . . . ,xn+k of E. Let y1, . . . ,yn be an orthonormal basis ofF. Let A be the
n-by-n matrix with entries(yi , f x j)F , in which caseATA is then-by-n matrix with
entries( f xi , f x j)E. Now make the identificationsE = Rn+k andF = Rn such a



444 APPENDICES

way thatx1, . . . ,xn+k (resp.,y1, . . . ,yn) becomes the standard basis inRn+k (resp.,
Rn). Then f is represented by the matrix[A 0], where 0∈ Matn×k. Finally, by
definition,J( f )2 = det[A 0][A 0]T = detATA, which proves the result. ⊓⊔

Lemma F.20Let f : E → F be an onto linear map from an n-dimensional Eu-
clidean space to a k-dimensional Euclidean space. Let{xi}n

i=1 and {yi}k
i=1 be

bases (not necessarily orthonormal) for E and F, respectively, such that f(xi) = yi

for i = 1, . . . ,k and f(xi) = 0 for i = k+1, . . . ,n. Then we have

J( f )2
n

det
i, j=1

(xi ,x j)E =
n

det
i, j=k+1

(xi ,x j)E

k
det

i, j=1
(yi ,y j)F .

Proof LetA (resp.,B) be then-by-n (resp.,k-by-k) real symmetric positive definite
matrix with entriesAi j = (xi ,x j)E (resp.,Bi j = (yi ,y j)F ). LetC be the(n−k)-by-
(n− k) block of A in the lower right corner. We have to prove thatJ( f )2 detA =

detCdetB. MakeR-linear (but in general not isometric) identificationsE = Rn

andF = Rk in such a way that{xi}n
i=1 (respectively,{yi}k

i=1) is the standard basis
in Rn (respectively,Rk), and (hence)f is projection to the firstk coordinates.
Let P be thek-by-n matrix with 1s along the main diagonal and 0s elsewhere.
Then we havef x = Px for all x ∈ E. Let Q be the uniquen-by-k matrix such
that f ∗y = Qy for all y∈ F = Rk. Now the inner product onE is given in terms
of A by the formula(x,y)E = xTAy and similarly(x,y)F = xTBy. By definition
of Q we have(Px)TBy= xTA(Qy) for all x ∈ Rn andy ∈ Rk, hencePTB = AQ,
and henceQ= A−1PTB. By definition ofJ( f ) we haveJ( f )2 = det(PA−1PTB) =

det(PA−1PT)detB. Now decomposeA into blocks thus:

A =

[
a b
c d

]
, a = PAPT, d = C.

From the matrix inversion lemma, Lemma A.1, it follows that det(PA−1PT)

= detA/detC. The result follows. ⊓⊔
We need one more technical lemma. We continue in the setting of Theorem

4.1.8. For the statement of the lemma we also fix anf -adapted pair(Ψ : S→
U,Φ : T →V) of charts. (Existence of such implies thatn≥ k.) Let π : Rn → Rk

be projection to the firstk coordinates. Let̄π : Rn → Rn−k be projection to the last
n−k coordinates. Givent ∈ T such that the set

St = {x∈ Rn−k|(t,x) ∈U}

is nonempty, the map

Ψt = (x 7→ Ψ(t,x)) : St →U ∩ f−1(Φ(t))
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is chart ofMreg∩ f−1(Φ(t)), and hence the correction factorσΨt , see Definition
F.6, is defined.

Lemma F.21With notation as above, for all s∈ S we have

J(TΨ(s)( f ))σΨ(s) = σΨπ(s)
(π̄(s))σΦ(π(s)).

Proof Use Lemma F.20 to calculateJ(TΨ(s)( f )), taking{(∂iΨ)(s)}n
i=1 as the basis

for the domain ofTΨ(s)( f ) and{(∂iΦ)(π(s))}k
i=1 as the basis for the range. ⊓⊔

Proof of Theorem 4.1.8We may assume thatMreg 6= /0 and hencen≥ k, for other-
wise there is nothing to prove. Lemma F.21 expresses the function p 7→ J(Tp( f ))
locally in a fashion which makes continuity onMreg clear. Moreover,Mcrit = {p∈
M | J(Tp( f )) = 0}. Thus the function in question is indeed Borel-measurable.(In
fact it is continuous, but to prove that fact requires uglierformulas.) Thus part (i)
of the theorem is proved. We turn to the proof of parts (ii) and(iii) of the theorem.
Since on the setMcrit no contribution is made to any of the integrals under con-
sideration, we may assume thatM = Mreg. We may assume thatϕ is the indicator
of a Borel subsetA ⊂ M. By Lemma F.15 the manifoldM is covered by open
sets good forf . AccordinglyM can be expressed as a countable disjoint union of
Borel sets each of which is contained in an open set good forf , sayM =

⋃
Mα . By

monotone convergence we may replaceA by A∩Mα for some indexα, and thus
we may assume that for somef -adapted pair(Ψ : S→U,Φ : T →V) of charts we
haveA⊂U . We adopt again the notation introduced in Lemma F.21. We have

∫
AJ(Tp( f ))dρM(p) =

∫
Ψ−1(A) J(TΨ(s)( f ))dℓS,Ψ(s)

=
∫ (∫

Ψ−1
t (A) dℓSt ,Ψt (x)

)
dℓT,Φ(t)

=
∫
(
∫

A∩ f−1(q) dρ f−1(q)(p))dρN(q).

At the first and last steps we appeal to Proposition F.8(i) which characterizes the
measuresρ(·). At the crucial second step we apply Lemma F.21 and Fubini’s
Theorem. The last calculation proves both the measurability assertion (ii) and the
integral formula (iii). ⊓⊔

F.3 Metrics, connections, curvature, Hessians, and the Laplace–Beltrami
operator

We briefly review some notions of Riemannian geometry. Although in this book
we work exclusively with manifolds embedded in Euclidean space, all formulas in
this subsection can be understood in the general setting of Riemannian geometry.

Let M be a manifold of dimensionm, equipped with a Riemannian metricg, and
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let µ be the measure naturally associated withg. By definition,g is the specifica-
tion for everyp∈ M of a scalar productgp on Tp(M). In the setup of manifolds
embedded in some Euclidean space that we have adopted,Tp(M) is a subspace
of the ambient Euclidean space, the Riemannian metricgp is given by the restric-
tion of the Euclidean inner product to that subspace, and thevolume measureµ
coincides with the measureρM given in Proposition F.8.

LetC∞(M) denote the space of real-valued smooth functions onM.

Definition F.22 (i) A vector field(onM) is a smooth mapX from M to its ambient
space such that, for allp∈M, X(p)∈Tp(M). Given a vector fieldX and a smooth
function f ∈C∞(M), we define the functionX f ∈C∞(M) by the requirement that
X f(p) = d

dt f (γ(t))|t=0 for any curveγ throughp with γ ′(0) = X(p).
(ii) If X,Y are vector fields, we defineg(X,Y) ∈C∞(M) by

g(X,Y)(p) = gp(X(p),Y(p)) .

TheLie bracket[X,Y] is the unique vector field satisfying, for allf ∈C∞(M),

[X,Y] f = X(Y f)−Y(X f) .

(iii) A collection of vector fieldsL1, . . . ,Lm defined on an open setU ⊂ M is a
local frame if L1(p), . . . ,Lm(p) are a basis ofTp(M) for all p ∈ U . The local
frame{Li} is orthonormalif g(Li ,L j) = δi j .

Definition F.23 (i) For f ∈C∞(M), thegradientgrad f is the unique vector field
satisfyingg(X,grad f ) = X f for all vector fieldsX. If {Li} is any local orthonor-
mal frame, then gradf = ∑i(Li f )Li .
(ii) A connection∇ is a bilinear operation associating with vector fieldsX andY
a vector field∇XY such that, for anyf ∈C∞(M),

∇ f XY = f ∇XY , ∇X( fY) = f ∇XY+X( f )Y .

The connection∇ is torsion-freeif ∇XY−∇YX = [X,Y].
(iii) The Levi–Civitaconnection is the unique torsion-free connection satisfying
that, for all vector fieldsX,Y,Z,

Xg(Y,Z) = g(∇XY,Z)+g(Y,∇XZ) .

(iv) Given a vector fieldX, thedivergencedivX ∈ C∞(M) is the unique function
satisfying, for any orthonormal local frame{Li},

divX = ∑
i

g(Li , [Li ,X]) .
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Alternatively, for any compactly supportedf ∈C∞(M),
∫

g(grad f ,X)dµ = −
∫

f divXdµ .

(v) The Laplace–Beltramioperator∆ on C∞(M) is defined by∆ f = divgrad f .
With respect to any orthonormal local frame{Li} we have

∆ f = ∑L2
i f +∑

i, j
g(Li , [Li ,L j ])L j f .

From part (iv) of Definition F.23, we have the classical integration by parts for-
mula: for all functionsϕ ,ψ ∈ C∞(M) at least one of which is compactly sup-
ported, ∫

g(gradϕ ,gradψ)dµ = −
∫

ϕ(∆ψ)dµ . (F.1)

In our setup of manifolds embedded in a Euclidean space, the gradient gradf
introduced in Definition F.23 can be evaluated at a pointp ∈ M by extending
f , in a neighborhood ofp, to a smooth functioñf in the ambient space, taking
the standard gradient of̃f in the ambient space atp, and finally projecting it
orthogonally toTp(M). We also note (but do not use) that a connection gives
rise to the notion of parallel transport of a vector field along a curve, and in this
language the Levi–Civita connection is characterized by being torsion-free and
preserving the metricg under parallel transport.

We use in the sequel the symbol∇ to denote exclusively the Levi–Civita con-
nection. It follows from part (iv) of Definition F.23 that, for a vector fieldX and
an orthonormal local frame{Li}, divX = ∑i g(∇Li X,Li). Further, for all vector
fieldsX, Y andZ,

2g(∇XY,Z) = Xg(Y,Z)+Yg(Z,X)−Zg(X,Y) (F.2)

+g([X,Y],Z)+g([Z,X],Y)+g(X, [Z,Y]) .

Definition F.24 Given f ∈C∞(M), we define theHessianHessf to be the opera-
tion associating with two vector fieldsX andY the function

Hess( f )(X,Y) = (XY−∇XY) f = g(∇Xgrad f ,Y) = Hess( f )(Y,X) .

(The second and third equalities can be verified from the definition of the Levi–
Civita connection.)

We have Hess( f )(hX,Y)= Hess( f )(X,hY)= hHess( f )(X,Y) for all h∈C∞(M)

and hence(Hess( f )(X,Y))(p) depends onlyX(p) andY(p).
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With respect to any orthonormal local frame{Li}, we have the relations

Hess( f )(Li ,L j) = (LiL j −∇Li L j) f ,

∆ f = ∑
i
(L2

i −∇Li Li) f = ∑
i

Hess( f )(Li ,Li) . (F.3)

In this respect, the Laplace–Beltrami operator is acontractionof the Hessian.
The divergence, the Hessian and the Laplace–Beltrami operator coincide with the
usual notions of gradient, Hessian and Laplacian whenM = Rm and the tangent
spaces (all of which can be identified withRm in that case) are equipped with the
standard Euclidean metric.

We are ready to introduce theRiemannian curvature tensorand its contraction,
theRicci curvature tensor.

Definition F.25 (i) The Riemann curvature tensor R(·, ·) associates with vector
fieldsX,Y an operatorR(X,Y) on vector fields defined by the formula

R(X,Y)Z = ∇X(∇YZ)−∇Y(∇XZ)−∇[X,Y]Z .

(ii) The Ricci curvature tensorassociates with vector fieldsX andY the function
Ric(X,Y) ∈ C∞(M), which, with respect to any orthonormal local frame{Li},
satisfies Ric(X,Y) = ∑i g(R(X,Li)Li ,Y).

We haveR( f X,Y)Z = R(X, fY)Z = R(X,Y)( f Z)= f R(X,Y)Z for all f ∈C∞(M)

and hence(R(X,Y)Z)(p) ∈ Tp(M) depends only onX(p), Y(p) andZ(p). The
analogous remark holds for Ric(X,Y) since it is a contraction ofR(X,Y)Z.

Many computations are simplified by the introduction of a special type of or-
thonormal frame.

Definition F.26 Let p∈ M. An orthonormal local frame{Li} in a neighborhood
of p is said to begeodesicat p if (∇Li L j)(p) = 0.

A geodesic local frame{Li} in a neighborhoodU of p ∈ M can always be built
from a given orthonormal local frame{Ki} by settingLi = ∑ j Ai j K j with A :
U → Matn a smooth map satisfyingA(p) = Im, ATA = Im, and (KiA jk)(p) =

−g(∇Ki K j ,Kk)(p). With respect to geodesic frames{Li}, we have the simple
expressions

Hess( f )(Li ,L j)(p) = (LiL j f )(p), Ric(Li ,L j)(p) = (∑
k

LiC
j
kk−LkC

j
ik)(p) ,

(F.4)
whereCk

i j = g(∇Li L j ,Lk).
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Curvature of classical compact Lie groups

Let G be a closed subgroup and submanifold of Un(F), where the latter is as
defined in Appendix E. In this situation both left- and right-translation inG are
isometries. We specialize now to the caseM = G. We are going to compute the
Ricci curvature ofG and then apply the result to concrete examples. In particular,
we will provide the differential geometric interpretationof Proposition E.15.

The crucial observation is that, in this situation, “all computations can be done
at the identity”, as we now explain. For eachX ∈ TIn(G), choose any curveγ
throughIn such thatγ ′(0) = X and letX̃ be the vector field whose associated first
order differential operator is given by(X̃ f)(x) = d

dt f (xγ(t))|t=0 for all f ∈C∞(G)

andx ∈ G. The vector fieldX̃ does not depend on the choice ofγ. Recall that
[X,Y] = XY−YX andX ·Y = ℜ trXY∗ for X,Y ∈ Matn(F). For allX,Y ∈ TIn(G)

one verifies by straightforward calculation that

[X,Y] ∈ TIn(G), [̃X,Y] = [X̃,Ỹ], g(X̃,Ỹ) = X ·Y.

It follows in particular from dimension considerations that every orthonormal ba-
sis{Lα} for TIn(G) gives rise to a global orthonormal frame{L̃α} onG.

Lemma F.27For all X ,Y,Z,W ∈ TIn(G) we have

∇X̃Ỹ =
1
2
[̃X,Y], g(R(X̃,Ỹ)Z̃,W̃) = −1

4
[[X,Y],Z] ·W ,

and hence

Ric(X̃, X̃) = −∑
α

1
4
[[X,Lα ],Lα ] ·X, (F.5)

where the sum runs over any orthonormal basis{Lα} of TIn(G).

Proof By formula (F.2) we haveg(∇X̃Ỹ, Z̃) = 1
2[X,Y] ·Z, whence the result after

a straightforward calculation. ⊓⊔
We now consider the special casesG = {U ∈ UN(F) | detU = 1} for F = R,C.

If F = R, thenG is thespecial orthogonal group SO(N) whereas, ifF = C, then
G is the special unitary group SU(N). Using now the notation of Proposition
E.15, one can show thatTIN (G) = suN(F). Thus, from (E.2) and (F.5) one gets
for G = SO(N) or G = SU(N) that

Ric(X,X) =

(
β (N+2)

4
−1

)
g(X,X) , (F.6)

for every vector fieldX on G, whereβ = 1 for SO(N) andβ = 2 for SU(N). We
note in passing that ifG = UN(C) then Ric(X̃, X̃) = 0 for X = iIN ∈ TIN (UN(C)),
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and thus no uniform strictly positive lower bound on the Ricci tensor exists for
G = UN(C). We also note that (F.6) remains valid forG = UN(H) andβ = 4.

G Appendix on operator algebras

G.1 Basic definitions

An algebra is a vector spaceA over a fieldF equipped with a multiplication
which is associative, distributive andF-bilinear, that is, forx,y,z∈ A andα ∈ F :

• x(yz) = (xy)z,
• (x+y)z= xz+yz, x(y+z) = xy+xz,
• α(xy) = (αx)y = x(αy).

We will say thatA is unital if there exists a unit elemente∈ A such thatxe=

ex= x (e is necessarily unique because ife′ is also a unit thenee′ = e′ = e′e= e) .

A group algebra F(G) of a group(G,∗) over a fieldF is the set{∑g∈Gagg :
ag ∈ F} of linear combinations of finitely many elements ofG with coefficients
in F (above,ag = 0 except for finitely manyg). F(G) is the algebra overF with
addition and multiplication

∑
g∈G

agg+ ∑
g∈G

bgg = ∑
g∈G

(ag +bg)g,

(

∑
g∈G

agg

)(

∑
g∈G

bgg

)
= ∑

g,h∈G

agbhg∗h,

respectively, and with product by a scalarb∑g∈G agg = ∑g∈G(bag)g. The unit of
F(G) is identified with the unit ofG.

A complex algebrais an algebra over the complex fieldC. A seminormon a
complex algebraA is a map fromA into R+ such that for allx,y∈A andα ∈C,

‖αx‖ = |α|‖x‖, ‖x+y‖ ≤ ‖x‖+‖y‖, ‖xy‖ ≤ ‖x‖ · ‖y‖,

and, ifA is unital with unite, also‖e‖ = 1. A normon a complex algebraA is a
seminorm satisfying that‖x‖ = 0 impliesx= 0 in A . A normed complex algebra
is a complex algebraA equipped with a norm‖.‖.

Definition G.1 A complex normed algebra(A , ||.||) is a Banach algebraif the
norm|| · || induces a complete distance.

Definition G.2 Let A be a Banach algebra.

• An involutionon A is a map∗ from A to itself that satisfies(a+ b)∗ =

a∗+b∗, (ab)∗ = b∗a∗, (λa)∗ = λ̄a∗ (for λ ∈C), (a∗)∗ = a and‖a∗‖= ‖a‖.
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• A is aC∗-algebraif it possesses an involutiona 7→ a∗ that satisfies||a∗a||=
||a||2.

• B is a (unital) C∗-subalgebraof a (unital)C∗-algebra if it is a subalgebra
and, in addition, is closed with respect to the norm and the involution (and
contains the unit).

Hereλ̄ denotes the complex conjugate ofλ . Note that the assumption||a||= ||a∗||
ensures the continuity of the involution.

The following collects some of the fundamental properties of Banach algebras
(see [Rud91, pp. 234–235]).

Theorem G.3LetA be a unital Banach algebra and let G(A ) denote the invert-
ible elements ofA . Then G(A ) is open, and it is a group under multiplication.
Furthermore, for every a∈ A , thespectrumof a, defined as

sp(a) = {λ ∈ C : λe−x 6∈ G(A )} ,

is nonempty, compact and, defining the spectral radius

ρ(a) = sup{|λ | : λ ∈ sp(a)} ,

we have that

ρ(a) = lim
n→∞

||an||1/n = inf
n≥1

||an||1/n .

(The last equality is valid due to sub-additivity.)

An elementa of A is said to beself-adjoint(resp.,normal, unitary) if a∗ = a
(resp.,a∗a = aa∗, a∗a = e = aa∗). Note that, ifA is unital, its unite is self-
adjoint. Indeed, for allx ∈ A , we havee∗x = (x∗e)∗ = x, similarly xe∗ = x, and
hencee∗ = e by uniqueness of the unit.

A Hilbert space His a vector space equipped with an inner product〈·, ·〉 that is
complete for the topology induced by the norm‖ · ‖ :=

√
〈·, ·〉.

Let H1,H2 be two Hilbert spaces with inner products〈·, ·〉H1 and〈·, ·〉H2 respec-
tively. Thedirect sum H1⊕H2 is a Hilbert space equipped with the inner product

〈(x1,y1),(x2,y2)〉H1⊕H2 = 〈x1,x2〉H1 + 〈y1,y2〉H2. (G.1)

Thetensor product H1⊗H2 is a Hilbert space with inner product

〈x1⊗y1,x2⊗y2〉H1⊗H2 = 〈x1,x2〉H1〈y1,y2〉H2 . (G.2)

Let B(H) denote the space of bounded linear operators on the Hilbert space
H. We define the adjointT∗ of any T ∈ B(H) as the unique element ofB(H)
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satisfying

〈Tx,y〉 = 〈x,T∗y〉 ∀x,y∈ H. (G.3)

The spaceB(H), equipped with the involution∗ and the norm

‖T‖B(H) = sup{|〈Tx,y〉|,‖x‖ = ‖y‖ = 1},

has a structure ofC∗-algebra, see Definition G.2, anda fortiori that of Banach
algebra. Therefore, Theorem G.3 applies, and we denote by sp(T) the spectrum
of the operatorT ∈ B(H).

We have (see [Rud91, Theorem 12.26]) the following.

Theorem G.4Let H be a Hilbert space. A normal T∈ B(H) is

(i) self-adjoint iffsp(T) lies in the real axis,

(ii) unitary iff sp(T) lies on the unit circle.

The GNS construction (Theorem 5.2.24) discussed in the maintext can be used
to prove the following fundamental fact (see [Rud91, Theorem 12.41]).

Theorem G.5 For every C∗-algebraA there exists a Hilbert space HA and a
norm-preserving∗-homomorphismπA : A → B(HA ).

G.2 Spectral properties

We next state the spectral theorem. LetM be aσ -algebra in a setΩ. A resolution
of the identity(onM ) is a mapping

χ : M→B(H)

with the following properties.

(i) χ( /0) = 0,χ(Ω) = I .
(ii) Eachχ(ω) is a self-adjoint projection.
(iii) χ(ω ′∩ω ′′) = χ(ω ′)χ(ω ′′).
(iv) If ω ′∩ω ′′ = /0, χ(ω ′∪ω ′′) = χ(ω ′)+ χ(ω ′′).
(v) For everyx ∈ H and y ∈ H, the set functionχx,y(ω) = 〈χ(ω)x,y〉 is a

complex measure onM .

WhenM is theσ -algebra of all Borel sets on a locally compact Hausdorff space,
it is customary to add the requirement that eachχx,y is a regular Borel measure
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(this is automatically satisfied on compact metric spaces).Then we have the fol-
lowing theorem. (For bounded operators, see [Rud91, Theorem 12.23], and for
unbounded operators, see [Ber66] or references therein.)

Theorem G.6If T is a normal linear operator on a Hilbert space H with domain
dense in H, there exists a unique resolution of the identityχ on the Borel subsets
of sp(T) which satisfies

T =

∫

sp(T)
λdχ(λ ).

We callχ thespectral resolutionof T .

Note that sp(T) is a bounded set ifT ∈ B(H), ensuring thatχx,y is a compactly
supported measure for allx,y ∈ H. For any bounded measurable functionf on
sp(T), we can use the spectral theorem to definef (T) by

f (T) =

∫

sp(T)
f (λ )dχ(λ ).

We then have (see [Rud91, Section 12.24]) the following.

Theorem G.7

(i) f → f (T) is a homomorphism of the algebra of all bounded Borel func-
tions onsp(T) into B(H) which carries the function1 to I, the identity into
T and which satisfies̄f (T) = f (T)∗.

(ii) ‖ f (T)‖ ≤ sup{| f (λ )| : λ ∈ sp(T)}, with equality for continuous f .
(iii) If fn converges to f uniformly onsp(T), ‖ fn(T)− f (T)‖ goes to zero as n

goes to infinity.

The theory can be extended to unbounded operators as follows. An operator
T on H is a linear map fromH into H with domain of definitionD(T). Two
operatorsT,S are equal ifD(T) = D(S) andTx = Sx for x ∈ D(T). T is said
to beclosedif, for every sequence{xn}n∈N ∈ D(T) converging to somex ∈ H
such thatTxn converges asn goes to infinity toy, one hasx∈ D(A) andy = Tx.
Equivalently, the graph(h,Th)h∈D(A) in the direct sumH ⊕H is closed. T is
closableif the closure of its graph inH ⊕H is the graph of a (closed) operator.
The spectrum sp(T) of T is the complement of the set of all complex numbers
λ such that(λ I −T)−1 exists as an everywhere defined bounded operator. We
next define theadjointof a densely defined operatorT; if the domainD(T) of the
operatorT is dense inH, then the domainD(T∗) consists, by definition, of all
y ∈ H such that〈Tx,y〉 is continuous forx ∈ D(T). Then, by density ofD(T),
there exists a uniquey∗ ∈ H such that〈Tx,y〉 = 〈x,y∗〉 and we then setT∗y := y∗.
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A densely defined operatorT is self-adjointiff D(T∗) = D(T) andT∗ = T. We
can now state the generalization of Theorem G.6 to unboundedoperators.

Theorem G.8[DuS58, p. 1192]Let T be a densely defined self-adjoint operator.
Then its spectrum is real and there is a uniquely determined regular countably
additive self-adjoint spectral measureχT defined on the Borel sets of the real line,
vanishing on the complement of the spectrum, and related to Tby the equations

(a) D(T) = {x∈ H|
∫

sp(T)
λ 2d〈χT(λ )x,x〉 < ∞},

(b) Tx= lim
n→∞

∫ n

−n
λdχT(λ )x.

Another good property of closed and densely defined operators (not necessarily
self-adjoint) is the existence of apolar decomposition.

Theorem G.9[DuS58, p. 1249]Let T be a closed, densely defined operator. Then
T can be written uniquely as a product T= PA, where P is a partial isometry, that
is, P∗P is a projection, A is a nonnegative self-adjoint operator,the closures of the
ranges of A and T∗ coincide, and both are contained in the domain of P.

Let A be a sub-algebra ofB(H). A self-adjoint operatorT on H is affiliated
with A iff it is a densely defined self-adjoint operator such that for any bounded
Borel function f on the spectrum ofA, f (A) ∈ A . This is equivalent, by the spec-
tral theorem, to requiring that all the spectral projections{χT([n,m]),n≤ m} be-
long toA (see [Ped79, p. 164]).

G.3 States and positivity

Lemma G.10[Ped79, p. 6]An element x of a C∗-algebra A isnonnegative, x≥ 0,
iff one of the following equivalent conditions is true:

(i) x is normal and with nonnegative spectrum;
(ii) x = y2 for some self-adjoint operator y in A;
(iii) x is self-adjoint and||t1−x|| ≤ t for any t≥ ||x||;
(iv) x is self-adjoint and||t1−x|| ≤ t for some t≥ ||x||.

Lemma G.11[Ped79, Section 3.1]Let α be a linear functional on a C∗-algebra
(A ,∗, ||.||). Then the two following conditions are equivalent:

(i) α(x∗x) ≥ 0 for all x ∈ A ;
(ii) α(x) ≥ 0 for all x ≥ 0 in A .
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When one of these conditions is satisfied, we say thatα is nonnegative. Thenα is
self-adjoint, that is,α(x∗) = α(x) and ifA has a unit I,|α(x)| ≤ α(I)||x||.

Some authors use the termpositivefunctional where we use nonnegative func-
tional.

Lemma G.12 [Ped79, Theorem 3.1.3]If α is a nonnegative functional on a C∗-
algebraA , then for all x,y∈ A ,

|α(y∗x)|2 ≤ α(x∗x)α(y∗y) .

G.4 von Neumann algebras

By Theorem G.5, anyC∗-algebra can be represented as aC∗-subalgebra ofB(H),
for H a Hilbert space. So, let us fix a Hilbert spaceH. B(H) can be endowed with
different topologies. In particular, thestrong(resp.,weak) topology onB(H) is
the locally convex vector space topology associated with the family of seminorms
{x→‖xξ‖ : ξ ∈ H} (resp., the family of linear functionals{x→〈xη ,ξ 〉 : ξ ,η ∈
H}).

Theorem G.13 (von Neumann’s double commutant theorem)For a subset
S ⊂ B(H) that is closed under the involution∗, define,

S ′ := {b∈ B(H) : ba= ab, ∀a∈ S } .

Then a C∗-subalgebraA of B(H) is a W∗-algebra if and only ifA ′′ = A .

We have also the following.

Theorem G.14[Ped79, Theorem 2.2.2]Let A ⊂ B(H) be a subalgebra that is
closed under the involution∗ and contains the identity operator. Then the follow-
ing are equivalent:

(i) A ′′ = A ;
(ii) A is strongly closed;
(iii) A is weakly closed.

In particular,A ′′ is the weak closure ofA . The advantage of a von Neumann
algebra is that it allows one to construct functions of operators which are not
continuous.

A useful property of self-adjoint operators is their behavior under closures.
More precisely, we have the following. (See [Mur90, Theorem4.3.3] for a proof.)
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Theorem G.15 (Kaplansky density theorem)Let H be a Hilbert space and let
A ⊂ B(H) be a C∗-algebra with strong closureB. LetAsa andBsa denote the
self-adjoint elements ofA andB. Then:

(i) Asa is strongly dense inBsa;
(ii) the closed unit ball ofAsa is strongly dense in the closed unit ball ofBsa;
(iii) the closed unit ball ofA is strongly dense in the closed unit ball ofB.

Von Neumann algebras are classified into three types: I, II and III [Li92, Chap-
ter 6]. The class offinite von Neumann algebras will be of special interest to
us. Since its definition is related to properties of projections, we first describe the
latter (see [Li92, Definition 6.1.1] and [Li92, Proposition1.3.5]).

Definition G.16 Let A be a von Neumann algebra.

(i) A projectionis an elementp∈ A such thatp = p∗ = p2.
(ii) We say thatp ≤ q if q− p is a nonnegativeelement ofA . We say that

p∼ q if there exists av∈ A so thatp = vv∗ andq = v∗v.
(iii) A projection p∈ A is said to befinite if any projectionq of A such that

q≤ p andq∼ p must be equal top.

We remark that the relation∼ in point (ii) of Definition G.16 is an equivalence
relation.

Recall that, for projectionsp,q∈ B(H), theminimumof p andq, denotedp∧q,
is the projection fromH ontopH∩qH, while themaximum p∨q is the projection
from H onto pH+qH. The minimump∧ q can be checked to be the largest
operator dominated by bothp andq, with respect to the order≤. The maximum
p∨q has the analogous least upper bound property.

The following elementary proposition clarifies the analogybetween the role the
operations of taking minimum and maximum of projections play in noncommuta-
tive probability, and the role intersection and unions playin classical probability.
This, and other related facts concerning projections, can be found in [Nel74, Sec-
tion 1], see in particular (3) there. (For similar statements, see [Li92].) Recall the
notions of tracial, faithful and normal states, see Definitions 5.2.9 and 5.2.26.

Proposition G.17Let(A ,τ) be a W∗-probability space, withτ tracial. Let p,q∈
A be projections. Then p∧q, p∨q∈ A andτ(p)+ τ(q) = τ(p∧q)+ τ(p∨q).

As a consequence of Proposition G.17, we have the following.

Property G.18 Let (A ,τ) be a W∗- probability space, subset of B(H) for some
Hilbert space H. Assume thatτ is a a normal faithful tracial state.
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(i) Letε > 0 and p,q be two projections inA so thatτ(p)≥ 1−ε andτ(q)≥
1− ε. Then, with r= p∧q, τ(r) ≥ 1−2ε.

(ii) If pi is an increasing sequence of projections converging weaklyto the
identity, thenτ(pi) goes to one.

(iii) Conversely, if pi is an increasing sequence of projections such thatτ(pi)

goes to one, then pi converges weakly to the identity inA .

Proof of Property G.18 The first point is an immediate consequence of Proposi-
tion G.17. The second point is a direct consequence of normality of τ while the
third is a consequence of the faithfulness ofτ. ⊓⊔

Definition G.19 A von Neumann algebraA is finite if its identity is finite.

Von Neumann algebras equipped with nice tracial states are finite von Neumann
algebras, as stated below.

Proposition G.20[Li92, Proposition 6.3.15]LetA be a von Neumann algebra. If
there is a faithful normal tracial stateτ onA , A is a finite von Neumann algebra.

We also have the following equivalent characterization of normal states on a von
Neumann algebra, see [Ped79, Theorem 3.6.4].

Proposition G.21Let φ be a state on a von Neumann algebraA in B(H). Let
{ζi}i≥0 be an orthonormal basis for H and put, for x∈ B(H), Tr(x) = ∑i〈xζi ,ζi〉.
Then the following are equivalent:

• φ is normal;

• there exists an operator x of trace class on H such thatφ(y) = Tr(xy);
• φ is weakly continuous on the unit ball ofA .

G.5 Noncommutative functional calculus

We takeτ to be a linear form on a unital complex algebraA equipped with an
involution∗ such that, for alla∈ A ,

τ(aa∗) ≥ 0. (G.4)

Then, for alla,b∈A , we haveτ(a∗b) = τ(b∗a)∗ and the noncommutative version
of the Cauchy–Schwarz inequality, namely

|τ(a∗b)| ≤ τ(a∗a)
1
2 τ(b∗b)

1
2 . (G.5)
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(See, e.g., [Ped79, Theorem 3.1.3].) Moreover, by an application of Minkowski’s
inequality,

τ((a+b)∗(a+b))
1
2 ≤ τ(aa∗)

1
2 + τ(bb∗)

1
2 . (G.6)

Lemma G.22If τ is as above and, in addition, for some norm‖·‖ onA , |τ(a)| ≤
‖a‖ for all a ∈ A , then

|τ(b∗a∗ab)| ≤ ‖a∗a‖τ(b∗b) . (G.7)

Proof By the Cauchy–Schwarz inequality (G.5), the claim is trivial if τ(b∗b) = 0.
Thus, fixb∈ A with τ(b∗b) > 0. Define

τb(a) =
τ(b∗ab)
τ(b∗b)

.

Note thatτb is still a linear form onA satisfying (G.4). Thus, for alla1,a2 ∈ A ,
by the Cauchy–Schwarz inequality (G.5) applied toτb(a∗1a2),

|τ(b∗a∗1a2b)|2 ≤ τ(b∗a∗1a1b)τ(b∗a∗2a2b) .

Takinga1 = (a∗a)2n
anda2 the unit inA yields

τ(b∗(a∗a)2n
b)2 ≤ τ(b∗(a∗a)2n+1

b)τ(b∗b) .

Chaining these inequalities gives

τ(b∗(a∗a)b) ≤ τ(b∗(a∗a)2n
b)2−n

τ(b∗b)1−2−n ≤ ‖b∗(a∗a)2n
b‖2−n

τ(b∗b)1−2−n
.

Using the sub-multiplicativity of the norm and taking the limit asn → ∞ yields
(G.7). ⊓⊔

We next assume that(A ,∗,‖ ·‖) is a von Neumann algebra andτ a tracial state
on (A ,∗). The following noncommutative versions of Hölder inequalities can be
found in [Nel74].

For a ∈ A , we denote|a| = (aa∗)
1
2 . We have, fora,b ∈ A , b a self-adjoint

bounded operator,

|τ(ab)| ≤ ‖b‖τ(|a|) . (G.8)

We have the noncommutative Hölder inequality saying that for all p,q ≥ 1 such
that 1

p + 1
q = 1, we have

|τ(ab)| ≤ τ(|a|q)
1
q τ(|b|p)

1
p . (G.9)

More generally, see [FaK86, Theorem 4.9(i)], for allr ≥ 0 andp−1 +q−1 = r−1,

|τ(|ab|r)| 1
r ≤ τ(|a|q)

1
q τ(|b|p)

1
p . (G.10)

This generalizes and extends the matricial case of (A.13).
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H Stochastic calculus notions

A good background on stochastic analysis, at a level suitable to our needs, is
provided in [KaS91] and[ReY99].

Definition H.1 Let (Ω,F ) be a measurable space.

(i) A filtration Ft , t ≥ 0, is a nondecreasing family of sub-σ -fields ofF .

(ii) A random timeT is astopping timeof the filtrationFt , t ≥ 0, if the event
{T ≤ t} belongs to theσ -field Ft for all t ≥ 0.

(iii) A process Xt , t ≥ 0, isadaptedto the filtrationFt if, for all t ≥ 0, Xt is an
Ft -measurable random variable. In this case, we say{Xt ,Ft ,t ≥ 0} is an
adapted process.

(iv) Let {Xt ,Ft , t ≥ 0} be an adapted process, so thatE[|Xt |] < ∞ for all t ≥ 0.
The processXt , t ≥ 0 is said to be anFt martingaleif, for every 0≤ s<

t < ∞,

E[Xt |Fs] = Xs.

(v) Let Xt , t ≥ 0, be anFt martingale, so thatE[X2
t ] < ∞ for all t ≥ 0. The

martingale bracket〈X〉t , t ≥ 0 of Xt is the unique adapted increasing pro-
cess so thatX2

t −〈X〉t is a martingale for the filtrationFt .

(vi) If Xt , t ≥ 0, andYt , t ≥ 0, areFt martingales, theircross-bracketis defined
as〈X,Y〉t = [〈X +Y〉t −〈X−Y〉t ]/4.

In the case when the martingaleXt possesses continuous paths,〈X〉t equals its
quadratic variation. The usefulness of the notion of bracket of a continuous mar-
tingale is apparent in the following.

Theorem H.2 (Lévy) Let {Xt ,Ft , t ≥ 0} with X0 = 0 be a continuous, adapted,
n-dimensional process such that each component is a continuousFt -martingale
and the martingale cross bracket〈Xi ,X j〉t = δi, j t. Then the components Xi

t are
independent Brownian motions.

Let Xt ,t ≥ 0 be a real-valuedFt adapted process, and letB be a Brownian motion.
Assume thatE[

∫ T
0 X2

t dt] < ∞. Then

∫ T

0
XtdBt := lim

n→∞

n−1

∑
k=0

XTk
n
(BT(k+1)

n
−BTk

n
)

exists, the convergence holds inL2 and the limit does not depend on the choice of
the discretization of[0,T] (see [KaS91, Chapter 3]).
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One can therefore consider the problem of finding solutions to the integral equa-
tion

Xt = X0 +
∫ t

0
σ(Xs)dBs+

∫ t

0
b(Xs)ds (H.1)

with a givenX0, σ andb some functions onRn, andB a n-dimensional Brownian
motion. This can be written under the differential form

dXs = σ(Xs)dBs+b(Xs)ds. (H.2)

There are at least two notions of solutions: strong solutions and weak solutions.

Definition H.3 [KaS91, Definition 5.2.1] Astrong solutionof the stochastic dif-
ferential equation (H.2) on the given probability space(Ω,F ) and with respect to
the fixed Brownian motionB and initial conditionξ is a process{Xt ,t ≥ 0} with
continuous sample paths so that the following hold.

(i) Xt is adapted to the filtrationFt given byFt = σ(Gt ∪N ), with

Gt = σ(Bs,s≤ t;X0),N = {N ⊂ Ω,∃G∈ G∞ with N ⊂ G,P(G) = 0} .

(ii) P(X0 = ξ ) = 1.
(iii) P(∀t,

∫ t
0(|bi(Xs)|+ |σi j (Xs)|2)ds< ∞) = 1 for all i, j ≤ n.

(iv) (H.1) holds almost surely.

Definition H.4 [KaS91, Definition 5.3.1] Aweak solutionof the stochastic dif-
ferential equation (H.2) is a pair(X,B) and a triple(Ω,F ,P) so that(Ω,F ,P)

is a probability space equipped with a filtrationFt , B is ann-dimensional Brow-
nian motion, andX is a continuous adapted process, satisfying (iii) and (iv) in
Definition H.3.

There are also two notions of uniqueness.

Definition H.5 [KaS91, Definition 5.3.4]

• We say thatstrong uniquenessholds if two solutions with common prob-
ability space, common Brownian motionB and common initial condition
are almost surely equal at all times.

• We say thatweak uniqueness, or uniqueness in the sense of probability
law, holds if any two weak solutions have the same law.

Theorem H.6Suppose that b andσ satisfy

‖b(t,x)−b(t,y)‖+‖σ(t,x)−σ(t,y)‖ ≤ K‖x−y‖ ,

‖b(t,x)‖2+‖σ(t,x)‖2 ≤ K2(1+‖x‖2) ,
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for some finite constant K independent of t. Then there existsa unique solution to
(H.2), and it is strong. Moreover, it satisfies

E[
∫ T

0
‖b(t,Xt)‖2dt] < ∞ ,

for all T ≥ 0.

Theorem H.7Any weak solutions(Xi ,Bi ,Ωi ,F i ,Pi)i=1,2 of (H.2) withσ = In, so
that

E[

∫ T

0
‖b(t,Xi

t )‖2dt] < ∞ ,

for all T < ∞ and i= 1,2, have the same law.

Theorem H.8 (Burkholder–Davis–Gundy inequality)There exist universal con-
stantsλm,Λm so that, for all m∈ N, and any continuous local martingale(Mt ,t ≥
0) with bracket(At , t ≥ 0),

λmE(Am
T ) ≤ E(sup

t≤T
M2m

t ) ≤ ΛmE(Am
T ) .

Theorem H.9 (Itô, Kunita–Watanabe)Let f : R→R be a function of classC 2

and let X= {Xt ,Ft ;0≤ t < ∞} be a continuous semi-martingale with decompo-
sition

Xt = X0 +Mt +At ,

where M is a local martingale and A the difference of continuous, adapted, non-
decreasing processes. Then, almost surely,

f (Xt) = f (X0)+

∫ t

0
f ′(Xs)dMs+

∫ t

0
f ′(Xs)dAs+

1
2

∫ 2

0
f ′′(Xs)d〈M〉s, 0≤ t < ∞ .

Theorem H.10 (Novikov)Let {Xt ,Ft , t ≥ 0} be an adapted process with values
in Rd such that

E[e
1
2
∫ T
0 ∑d

i=1(X
i
t )

2dt] < ∞

for all T ∈R+. Then, if{Wt ,Ft , t ≥ 0} is a d-dimensional Brownian motion, then

Mt = exp{
∫ t

0
Xu.dWu−

1
2

∫ t

0

d

∑
i=1

(Xi
u)

2du}

is anFt -martingale.
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Theorem H.11 (Girsanov)Let{Xt ,Ft , t ≥ 0} be an adapted process with values
in Rd such that

E[e
1
2
∫ T
0 ∑d

i=1(X
i
t )

2dt] < ∞ .

Then, if{Wt ,Ft ,P,0≤ t ≤ T} is a d-dimensional Brownian motion,

W̄i
t = Wi

t −
∫ t

0
Xi

sds, 0≤ t ≤ T ,

is a d-dimensional Brownian motion under the probability measure

P̄ = exp{
∫ T

0
XudWu−

1
2

∫ T

0

d

∑
i=1

(Xi
u)

2du}P.

Theorem H.12Let {Xt ,Ft ,0 ≤ t < ∞} be a submartingale whose every path is
right-continuous. Then, for anyτ > 0 andλ > 0,

λP( sup
0≤t≤τ

Xt ≥ λ ) ≤ E[X+
τ ] .

We shall use the following consequence.

Corollary H.13 Let{Xt ,Ft , t ≥ 0} be an adapted process with values inRd, such
that

∫ T

0
‖Xt‖2dt =

∫ T

0

d

∑
i=1

(Xi
t )

2dt

is uniformly bounded by the constant AT . Let{Wt ,Ft ,t ≥ 0} be a d-dimensional
Brownian motion. Then, for any L> 0,

P( sup
0≤t≤T

|
∫ t

0
XudWu| ≥ L) ≤ 2e

− L2
2AT .

Proof We denote in shortYt =
∫ t

0 Xu.dWu and write, forλ > 0,

P( sup
0≤t≤T

|Yt | ≥ A) ≤ P( sup
0≤t≤T

eλYt ≥ eλ A)+P( sup
0≤t≤T

e−λYt ≥ eλ A)

≤ P

(
sup

0≤t≤T
eλYt− λ2

2
∫ t
0 ‖Xu‖2du ≥ eλ A− λ2AT

2

)

+P

(
sup

0≤t≤T
e−λYt− λ2

2
∫ t
0 ‖Xu‖2du ≥ eλ A− λ2AT

2

)
.
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By Theorem H.10,Mt = e−λYt− λ2
2
∫ t
0 ‖Xu‖2du is a nonnegative martingale. Thus, by

Chebyshev’s inequality and Doob’s inequality,

P

(
sup

0≤t≤T
Mt ≥ eλ A− λ2AT

2

)
≤ e−λ A+

λ2AT
2 E[MT ] = e−λ A+

λ2AT
2 .

Optimizing with respect toλ completes the proof. ⊓⊔
The next statement, an easy consequence of the Dubins–Schwartz time change

identities (see [KaS91, Thm. 3.4.6]), was extended in [Reb80] to a much more
general setup than we need to consider.

Theorem H.14 (Rebolledo’s Theorem)Let n∈ N, and let MN be a sequence of
continuous centered martingales with values inRn with bracket〈MN〉 converging
pointwise (that is, for all t≥ 0) in L1 towards a continuous deterministic function
φ(t). Then, for any T> 0, (MN(t), t ∈ [0,T]) converges in law as a continuous
process from[0,T] into Rn towards a Gaussian process G with covariance

E[G(s)GT(t)] = φ(t ∧s) .
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[Chv83] V. Chvàtal.Linear Programming. New York, NY, W. H. Freeman, 1983.
[Col03] B. Collins. Moments and cumulants of polynomial random variables on unitary

groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not., pages
953–982, 2003.

[CoMG06] B. Collins, E. Maurel-Segala and A. Guionnet. Asymptotics of unitary and
orthogonal matrix integrals. arxiv:math/0608193 [math.PR], 2006.

[CoS05] A. Connes and D. Shlyakhtenko.L2-homology for von Neumann algebras.J.
Reine Angew. Math., 586:125–168, 2005.

[CoL95] O. Costin and J. Lebowitz. Gaussian fluctuations in random matrices.Phys. Rev.
Lett., 75:69–72, 1995.

[DaVJ88] D. J. Daley and D. Vere-Jones.An Introduction to the Theory of Point Processes.
Springer Series in Statistics. New York, NY, Springer, 1988.

[DaS01] K. R. Davidson and S. J. Szarek. Local operator theory, random matrices and
Banach spaces. InHandbook of the Geometry of Banach Spaces, Vol. I, pages 317–
366. Amsterdam, North-Holland, 2001.

[Dei99] P. A. Deift. Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert
Approach, volume 3 ofCourant Lecture Notes in Mathematics. New York, NY, New
York University Courant Institute of Mathematical Sciences, 1999.

[Dei07] P. Deift. Universality for mathematical and physical systems. InInternational
Congress of Mathematicians 2006. Vol. I, pages 125–152. Zürich, Eur. Math. Soc.,
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[JiMMS80] M. Jimbo, T. Miwa, Y. Môri and M. Sato. Density matrix of an impenetrable
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General conventions and notation

Unless stated otherwise, forS a Polish space,M1(S) is given the topology of weak
convergence, that makes it into a Polish space.

When we writea(s) ∼ b(s), we assert that there existsc(s) defined fors ≫ 0 such
that lims→∞ c(s) = 1 andc(s)a(s) = b(s) for s ≫ 0. We use the notationan ∼ bn for
sequences in the analogous sense. We writea(s) = O(b(s)) if limsups→∞ |a(s)/b(s)| < ∞.
We write a(s) = o(b(s)) if limsups→∞ |a(s)/b(s)| = 0. an = O(bn) and an = o(bn) are
defined analogously.

The following is a list of frequently used notation. In case the notation is not routine, we
provide a pointer to the definition.

∀ for all
a.s., a.e. almost sure, almost everywhere
Ai(x) Airy function
(A ,‖ · ‖,∗,φ) C∗-algebra (see Definition 5.2.11)
A,Ao,Ac closure, interior and complement ofA
A\B set difference
B(H) space of bounbed operators on a Hilbert spaceH
Ck(S), Ck

b(S) functions onSwith continuous (resp., bounded continuous)
derivatives up to orderk

C∞(S) infinitely differentiable functions onS
C∞

b (S) bounded functions onSpossessing bounded derivatives of all order
C∞

c (S) infinitely differentiable functions onSof compact support
C(S,S′) Continuous functions fromSto S′

C∞
poly(R

m) infinitely differentiable functions onRm all of whose derivatives
have polynomial growth at infinity.

CLT central limit theorem
Prob→ convergence in probability
d(·, ·),d(x,A) metric and distance from pointx to a setA
det(M) determinant ofM
∆(x) Vandermonde determinant, see (2.5.2)
∆(K) Fredholm determinant of a kernelK, see Definition 3.4.3
∆N open(N−1)-dimensional simplex
D(L ) domain ofL
/0 the empty set
ε(σ) the signature of a permutationσ
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∃,∃! there exists, there exists a unique
f (A) image ofA under f
f−1 inverse image off
f ◦g composition of functions
Flagn(λ ,F) Flag manifold, see (4.1.4)
GLn(F) invertible elements of Matn(F)
H skew-field of quaternions
Hn(F) elements of Matn(F) with X∗ = X
i basis elements ofC (together with 1)
i, j ,k basis elements ofH (together with 1)
i.i.d. independent, identically distributed (random variables)
1A(·), 1a(·) indicator onA and on{a}
In identity matrix in GLn(F)
⌊t⌋, ⌈t⌉ largest integer smaller than or equal tot, smallest integer greater than or equal tot
LDP large deviation principle (see Definition D.1)
Lip(R) Lipschitz functions onR
LLN law of large numbers
log(·) logarithm, natural base
LSI logarithmic Sobolev inequality (see Subsection 2.3.2 and (4.4.13))
Matp×q(F) p-by-q matrices with entries belonging toF (whereF=R, C or H)
Matp(F) same as Matp×p(F)
M1(S) probability measures onS
µ,ν,ν ′ probability measures
µ ◦ f−1 composition of a (probability) measure and a measurable map
N(0,I) zero mean, identity covariance standard multivariate normal
∧,∨ (pointwise) minimum, maximum
PI Poincaré inequality (see Definition 4.4.2)
P(·),E(·) probability and expectation, respectively
R,C reals and complex fields
Rd d-dimensional Euclidean space (whered is a positive integer)
Rµ (z) R-transform of a measureµ (see Definition 5.3.37)
ρM volume on Riemannian manifoldM
sp(T) spectrum of an operatorT
Sa(z) S-transform ofa (see Definition 5.3.29)
Sµ (z) Stieltjes transform of a measureµ (see Definition 2.4.1).
Sn−1 unit sphere inRn

SO(N), SU(N) special orthogonal group (resp., special unitary group)
sun(F) anti-self-adjoint elements of Matn(F), with vanishing trace ifF = C

Σ(µ) noncommutative entropy of the measureµ, see (2.6.4)
tr(M), tr(K) trace of a matrixM or of a kernelK
v′ transpose of the vector (matrix)v
v∗ transpose and complex conjugate of the vector (matrix)v
Un(F) unitary matrices in GLn(F)
{x} set consisting of the pointx
Z+ positive integers
⊂ contained in (not necessarily properly)
〈·, ·〉 scalar product inRd

〈 f ,µ〉 integral of f with respect toµ
⊕ direct sum
⊗ tensor product
⊞ free additive convolution (see Definition 5.3.20)
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⊠ free multiplicative convolution (see Definition 5.3.28



Index

Adapted, 251, 257,459, 460
Airy

equation, 92, 140, 142, 145, 167
function, 91, 133, 138–141, 231
kernel, seeKernel, Airy
process, seeProcess, Airy
stochastic operator, 307–317

Algebraic function, algebraicity condition,
412

Ambient space, 200, 202, 203, 207, 209–
212,438, 439

Antisymmetric matrices, 214
Arzela–Ascoli Theorem, 266, 268

Bakry–Emery condition (BE), 39, 287,289,
290, 294, 321

Banach–Alaoglu Theorem, 310, 338,421
Bercovici–Pata bijection, 411
Bernoulli random variables, 225, 227
Bernoulli walk,8
Beta integral,60
(L2)-Betti numbers, 413
Birkhoff, G., 86
Bobkov–Götze, 87
Bochner–Bakry–Emery,297
Borel–Cantelli Lemma, 19, 252, 266, 270–

272, 276, 311, 378, 382
Bracelet,31

circuit length of, 31
Branch, 46, 135
Brownian motion, 186, 248, 253, 257, 261,

280, 292, 307, 309, 314, 319, 321, 459
carousel, 321
free, 412
Hermitian, 248, 257

symmetric, 248, 257, 319
symplectic, 248

Bulk, 90, 91, 114, 163, 183, 184, 215, 319,
321

C∗-// algebra, 329–339, 394, 400, 413,451
probability space, 329,331–338, 351, 353,
369, 394, 395, 407
universal C∗-algebra, 334, 336

Carré du champ operator,289
itéré, 289

Catalan number,7, 9, 10, 85, 377
Cauchy transform, 411
Cauchy–Binet Theorem, 57, 98, 99, 225,

415
Central, 192
Central limit theorem (CLT), 29, 86, 87, 88,

131, 186, 215, 227, 248, 318, 319, 321,
412, 413
dynamical, 273–277
multidimensional, 35
see alsoFree, central limit theorem

Characteristic polynomial, 55, 257
Christoffel–Darboux, 100, 181
Circular law, 88
Coarea formula, 187,193, 195, 198, 201,

205, 318, 442–445
Configuration,215, 216, 233, 236, 238
Combinatorial problems, 184, 319
Commutant, 343
Complete, completion 329, 334, 335, 341,

389
Concentration, 38–43, 71, 87, 88, 186, 273,

281–302, 320, 389
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Confluent alternant identity, 69
Conjugation-invariant, 201, 202, 205, 208
Connection problem, 183
Contraction principle, 320,428
Convergence,419, 420

almost sure, 28, 71, 73, 263, 268, 323,
324, 375, 378, 379, 393
Lp, 28, 268, 375, 388
in distribution (law), 92, 93, 103, 241,
274, 322,328
in expectation, 323, 324, 375, 379
in moments, 328, 337
sequential, 338
vague, 44, 45, 134
weak, 44, 134, 388, 420
weakly, in probability, 7, 23, 44, 71

Convex,
function, 72, 285–287, 291
set, 21
strict, 72, 75, 298

Correlation functions,216
see alsoIntensity, joint

Coupling, 66
Critical (point, value), 193,440, 441
Cumulant, 354, 357, 361–364, 369, 410

see alsoFree, cumulant
Cut-off, 250
Cyclo-stationary, 318
Cylinder set, 215

Decimation, 66, 88, 166, 170
Determinantal

formulas, 152–155
process, 90, 94, 131, 186, 193, 214–220–
248, 318, 319
projections, 222–227
relations, 120
stationary process, 215, 237–239

Diagonal, block-diagonal, 190, 191, 198, 200,
201, 206, 207, 209–214, 254, 263, 276,
277, 282, 300, 301, 304, 305, 319, 388,
389, 402, 411, 432–437

Differential equations,
system, 121-123, 126–130, 170–180, 182,
183

Differential extension,158
Differentiation formula, 123, 144

Diffusion process, 247–281, 319, 321
Discriminant, 55, 257,417
Distribution (law),326, 327, 331, 333, 343,

344, 349, 360, 363, 365, 366, 378, 380,
382, 385, 387, 391, 394, 412
Bernoulli, seeBernoulli random variables
Cauchy, 374
χ, 303, 307
function, 344
Gaussian, seeGaussian, distribution
Schwarz, 126, 310
stable, 321

Double commutant theorem (von Neumann),
340, 343, 455

Doubly stochastic matrix, 21, 86
Dyck path, 7,8, 15–17, 20, 85, 353, 363,

364
Dyson, 181,249, 319

see alsoSchwinger–Dyson equation

Edelman–Dumitriu,303
Edge, 13, 17, 30, 90, 92–94, 132, 162, 166,

177, 183, 215, 306, 319, 321, 376, 378,
387
bounding table, 34, 35
connecting, 13, 17
hard, 321
self, 13, 17

Eigenvalue, 6, 20, 21–23, 36, 37, 45, 48, 51,
55, 58, 65, 71, 78, 90–94, 131, 186, 188,
193, 198, 199, 209–212, 220, 221, 223,
226–228, 230, 231, 240, 249, 261, 263,
269, 286, 298, 320, 321, 327, 374–393,
395, 396, 399,433
complex, 88, 89, 213
joint density, 65, 87
joint distribution, 50–70, 87, 88, 184, 186,
187, 191, 261, 303, 318
law of ordered, 53, 248
law of unordered, 53, 189, 304
maximal, 23, 28, 66, 81, 86–88, 103, 183,
269, 306, 321
see alsoEmpirical measure

Eigenvector, 38, 53, 286, 304, 389
Eigenvector–eigenvalue pair,308–317
Empirical distribution (measure),6, 7, 20,

21, 23, 29, 36, 38, 45, 51, 71, 80, 82, 83,
85, 88, 89, 114, 228, 262, 320, 324, 327,
375, 379, 388, 389, 396, 397, 399, 413
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annealed, 328, 379
quenched, 328, 379

Ensemble,187
beta, 186, 303, 321
Biorthogonal, 244
COE, CSE, 318
Gaussian, 90, 186, 189, 193, 198, 206
(see alsoHermite)
Jacobi, seeJacobi, ensemble
Laguerre, seeLaguerre, ensemble
unitary, 186
see alsoGOE, GSE, GUE

Entropy 71, 78, 413
Enumeration of maps, 182
Ergodic, 186, 233, 238, 239, 294, 321
Euclidean space, 187–190, 197, 203, 205,

437,438–445
Exploration process, 15
Exponential tightness, 77, 80, 278, 279,427,

428
Extreme point, 21, 86

Federer, 194, 318, seeCoarea formula
Feynmann’s diagrams, 181
Fiber, 196
Field, 187
Filtration, 249, 251, 254, 280,459
Fisher information, 413
Flag manifold, 190, 197,198, 209, 211
Fock, Boltzmann–Fock space, 350, 359, 362,

409
Forest, 27, 31
Fourier transform, 87, 118, 230, 231, 237,

360
Fredholm

adjugant, 110, 111, 113, 157
determinant, 94, 98, 107, 108,109–113,
120, 121, 128, 142,156, 163, 170, 182,
183, 222, 234
resolvent, 110, 111, 121–123, 157

Free,
asymptotically, 374–393, 411
central limit theorem, 368
convolution, 262, 319, 325,359–368, 373,
374, 388, 389, 410, 411
cumulant, 325,354–356, 359, 360, 364,
410, 411
increments, 412

independence, 322,348–374
infinitely divisible law, 373group, 322
group factors, 413
harmonic analysis, 359, 368, 370
multiplicative convolution, 365–368, 411
probability, 322–410, 366
Poisson, 365
product, 349–353
semicircular variables, 323, 324
variables, 325,348–352, 362, 378, 380,
382, 387, 391, 394, 395, 410–413
see alsoBrownian motion, free

Freeness, 87, 324, 350, 387, 392, 410
second order, 87
with amalgamation, 412

Functional calculus, 330, 331, 457–458
Fundamental identity,111–113, 124, 173
Füredi–Komlós (FK), 23–29, 86

Gamma function (Euler’s),53, 139, 194, 303
Gap, 114, 131, 148, 150, 152, 155, 159, 239
Gaudin–Mehta,91
Gauss decomposition, 244
Gaussian, 42, 88

distribution (law), 29, 30, 33, 45, 184,
188, 277, 284, 291, 303, 307, 311, 381,
397, 405
ensembles, seeEnsembles, Gaussian
process, 274–276
sub-, 39
Wigner matrixseeWigner

Gaussian orthogonal ensemble (GOE), 6,51–
54, 58, 66, 71, 82, 87, 93, 132, 148, 150,
160, 166, 169, 183, 184, 186, 187, 189–
191, 199, 229, 248, 302, 305, 323, 412

Gaussian symplectic ensemble (GSE), 37,
53, 58, 66, 68, 71, 93, 132, 148, 150,
160, 170, 183, 184, 186, 189–191, 302,
412

Gaussian unitary ensemble (GUE), 36,51–
54, 58, 66, 68, 71, 82, 87, 93, 105, 121,
158, 163, 169, 183, 184, 186, 187, 189–
191, 199, 215, 228, 229, 248, 302, 319,
323, 394, 395, 412

Gelfand–Naimark Theorem, 331
Gelfand–Neimark-Segal construction (GNS),

326, 333,340, 342, 369, 370, 400, 401,
452

Generalized determinant, 193,443
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Generic, 200, 201, 203, 209–212
Geodesic,27, 28, 203,448

frame, 297,448
Gersgorin circle theorem, 415
Gessel–Viennot,245
Graph,

unicyclic, 30
see alsoSentence, Word

Green’s theorem, 398
Gromov,299
Gronwall’s Lemma, 260, 292
Group, 200, 299, 300

algebra, 325,450
discrete, 325, 327, 332
see alsoFree, group, Lie, group, Orthog-
onal, groupandUnitary, groups

Hamburger moment problem, 329
Harer-Zagier recursions,104, 181
Heat equation, 320
Helly’s Theorem, 45
Herbst’s Lemma,40, 284
Hermite,

polynomials, 95, 99, 101, 182, 187, 190,
191
ensemble, 189, 193, see alsoEnsemble,
Gaussian/Hermite

Hessian, 289–291, 298, 437,447, 448
Hilbert space, 326, 328, 330–332, 339–341,

350–353, 409,451–457
Hoffman–Wielandt,21
Hölder norm, 265
Householder reflector (transformation),303,

305
Hypergeometric function, 104, 106

Implicit function theorem, 371, 372
Inequality,

Burkholder–Davis–Gundy, 255, 260, 265,
266, 271, 272, 275, 413,461
Burkholder–Rosenthal, 413
Cauchy–Schwarz, 285, 295, 335, 338, 384,
390, 457
Chebyshev, 11, 17, 19, 29, 40, 49, 265,
271, 284, 378, 398, 463
Gordon, 87
Hadamard, 108,415

Hölder, 24, 387
Jensen, 23, 77, 273, 275
noncommutative Hölder, 416, 458
Logarithmic Sobolev (LSI), 38,39–43, 87,
283–285, 287, 290, 298, 302
Poincaré (PI), 283–285, 397, 405, 412
Slepian, 87
Weyl, 415

Infinitesimal generator,288, 292
Infinite divisibility, 411
Initial condition, 249, 250, 257, 258, 262,

269, 275
Integral operator, 220

admissible, 220, 221, 226, 227, 230, 232
compact, 221
good, 221, 233–239, 241

Integration formula, 65, 66, 187–214
Intensity,216–220, 222, 227, 234–238, 240,

242
Interlace, 62
Involution, 329, 330, 333, 334,450
Isometry, 195, 196, 197, 201, 203, 205–

207, 211, 343, 346, 439, 454
Itô’s Lemma (formula), 250, 251, 260, 263,

269, 292, 293
Itzykson–Zuber–Harish-Chandra, 184, 320

Jacobi,
ensemble, 70, 183, 186, 190, 191, 193,
197, 206, 208, 318
polynomial, 187, 191

Jacobian, 54, 305, 306
Jánossy density,218, 219, 319
Jimbo–Miwa–Môri–Sato,91, 181, 182
Jonsson, 86

Kaplansky density theorem, 341,456
Karlin–McGregor,247
Kernel,107, 121, 220, 224–228

Airy, 92, 133, 143, 147, 161, 162, 168,
177, 183, 228, 230
antisymmetric, 158
γ-twisting of, 156
Hermitian, 221
matrix, 155–159, 161, 170–172
positive definite, 221, 230
trace-class projection, 223–226
resolvent, 122, 173, 177
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self-dual, 158, 159, 172
sine, 91, 114, 121, 122, 131, 144, 161,
173, 181, 228, 229, 233, 237
smooth, 158, 172
symmetric, 158

Klein’s Lemma,286, 320
Kolmogorov-Smirnov distance,346

Laguerre
ensemble, 70, 186, 189, 193, 206, 210,
318
polynomial, 107, 183, 190

Lagrange inversion theorem, 371
Laplace–Beltrami operator, 296, 437,447,

448
Laplace’s method, 59,115–117, 119, 134,

142, 429
Large deviation, 70–85, 88, 186, 248, 277,

320, 413, 427–429
lower bound, 72, 78, 79, 84
principle (LDP), 72, 77, 81–83, 413,427
rate function, seeRate function
speed, 72, 78, 81, 82, 84, 278, 427
upper bound, 72, 77, 82, 84, 278–281
weak LDP, 80,427

Lattice, 9
Law, seeDistribution (law)

of large numbers, 248
Lebesgue’s Theorem, 216
Ledoux’s bound,103, 133, 181
Left regular representation, 322, 350
Leibnitz rule, 380, 390
Letter, 13
Levi–Civita connection, 296,446, 447
Lévy–Khitchine, 411
Lévy distance (metric), 346,425
Lévy process, 412
Lévy’s Theorem, 257,459
Lie,

bracket, 202, 296,446
group, 186, 191, 199, 299,441

Linearization (trick), 396, 400, 402, 403,
408

Lipschitz
bounded metric, 23, 77,425
constant, 38–42, 299, 302
function, 23, 38–42, 46, 250, 267, 268,
282, 284–287, 292, 293, 298, 301, 302

Limit distribution (law), 66, 262
Lusin’s Theorem, 340,423
Logarithmic asymptotics, seeLarge devia-

tion
Logarithmic capacity,72
Lyapunov function, 250, 251

Manifold, 187, 193–200, 207, 318,437–
450
Riemannian, 295, 299, 320, 321
submanifold, 199
see alsoFlag manifold

MANOVA, 318
Marčenko–Pastur law,21, 365
Markov, 410, 412

Process, 246
semigroup, 245,288, 292, 295

Martingale (martingale bracket), 252, 254,
255, 263, 265, 271, 274, 275, 278, 280,
281,459
see alsoSemi-martingale

Master loop equation, seeSchwinger–Dyson
equation

Matching,34, 182
Matrix

band, 319, 324, 412
distinct, 54
good, 54
Hankel, 88
inversion lemma, 45,414
Markov, 88
normalized, 54
sample covariance, 412, see alsoWishart
matrix
Toeplitz, 88, 182
Wigner matrixseeWigner
with dependent entries, 87, 88, 287–302

Measure,
GaussianseeGaussian distribution
Haar, 53, 88, 186, 188, 191, 200, 299,
300, 320, 321, 324, 388, 389, 390, 393,
441
Hausdorff, 194
Lebesgue, 55-57, 77, 93, 96, 102, 107,
115, 121, 149, 156, 165, 188, 206, 220,
230, 236, 238, 247, 261, 287, 298, 305,
320, 439–441
positive, 215
Radon, 215
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reconstruction of, 44, 49
sub-probability, 44, 45

Median,285
Melin transform, 366
Metrizable, 338,419
Minimizer (of variational problem), 311–314

Mixing, 233, 238
Moment, 29, 101, 102, 268, 273, 318, 328,

361–364, 366, 369, 370, 383, 412
see alsoHamburger moment problem

Monge-Kantorovich-Rubinstein distance, 320
Monomial, 200, 209–214, 375, 379, 380,

382, 383, 391, 432
Montel’s Theorem, 372

Noncommutative,
derivative, 380, 389, 397
entropy, seeEntropy, noncommutative
law, 325, 326, 336, 338, 340, 379, 388
Lp-norm, 416
polynomial, 301, 323, 325, 326, 394, 402
probability (space), 322, 325, 326, 328,
348–352, 356, 360, 363, 365, 366, 374,
375, 379, 388, 400
(random) variable, 325, 326, 337, 366,
394, 396, 399, 412

Non-intersecting, 245, 319
Norm, 329–331, 334, 336, 341, 343, 352,

394, 400, 401, 406, 412,422
Frobenius, 415
semi-, 334, 335
sub-multiplicativity, 335
see alsoNoncommutative, Lp-norm and
Operator, norm

Normal
matrix, 199, 214standard variable, 188,
190, 227, 229

Normalization constant, 54, 58, 81, 96, 191,
303

Operator,
algebra, 322, 324, 410,450–458
affiliated, 325, 336,343–345, 347, 369,
370, 372, 410
bounded, 326–328, 330, 343, 350, 360,
366, 409
commutator, 122
densely-defined, 343, 453, 454
left annihilation, 350, 362, 364

left (right) creation, 350, 362, 364, 409
multiplication, 122, 330, 341, 343, 344,
353
norm, 343, 394, 412
normal, 328–330,415, 432,451–453
unbounded, 342, 343, 347, 369
unitary, 332, 343,451, 452
see also underSelf-adjoint

Orthogonal, 192
ensemble, seeGOE
group, 53, 187, 253, 299, 320, 393
matrix, 52, 54, 254, 305
polynomial, 86, 94, 181, 184, 190, 191,
321
projection, 204, 206, 208, 210

Oscillator wave-function,95, 99, 101, 114,
133, 164, 221

Painlevé,91, 93, 122, 128, 143, 146, 147,
170, 182, 183
σ -form, 91

Palm (distribution, process),234, 238–240,
318

Parseval’s Theorem, 232, 237
Partition,9, 359, 367

block of, 354–359, 364, 367, 369, 377
crossing, 9, 10
interval of, 354–359, 367
non-crossing, 9, 10, 15, 17, 354, 355,
358, 362, 364, 366, 367, 377
pair, 16, 369, 377
refinement of, 354

Pauli matrices,261
Permutation matrix, 200, 201, 209–213, 411,

432
Perturbation, 184, 415
Pfaffian, 148,149, 183, 193, 319

integration formulas, 148–151, 154
Point process,215–220, 225, 318

simple, 215–220
see alsoDeterminantal, process

Poisson process, 220
Polar decomposition, 343, 346,454
Polish space, 107, 215, 264, 423–426
Polynomial, 58, 60, 257, 268, 270–275, 290,

293, 323, 328, 330, 333, 343, 370, 379,
381, 390, 392–394, 397, 412
degree, 394, 400, 402, 410
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see alsoOrthogonal, polynomialandNon-
commutative, polynomial

Poset, 354
Principal value, 49
Process,

Airy, 230, 319
Bessel, 319
Birth-death, 245
eigenvalue, 319
Gaussian, see Gaussian, process
Laguerre, 319
measure-valued, 262, 263, 277
sine, 230, 231, 319
see alsoDiffusion, Markov, processand
Point, process.

Projector, projection, 186, 190, 191, 198,
345–347, 409, 410, 432, 434, 435, 456

Quaternion, 187, 430
determinant, 183

Queueing, 319
Quotient (space), 334, 335, 341, 389

Ramirez–Rider–Virag Theorem,309
Random analytic functions, 319
Rate function,72, 277, 278,427–429

good, 72, 74, 81, 278, 427, 428
minimizer, 75, 81
strictly convex, 72, 75

Rebolledo’s Theorem, 274,463
Reflection, 8, 85, 245
Regular (point, value), 193, 196–198, 205,

440, 441
Resolution of the identity, 339,452, 453
Resolvent, 87

see alsoFredholm, resolvent
Resultant, 55, 64,417
Ricci tensor (curvature), 297–299, 321, 435,

448–450
Riemannian,

manifold, seeManifold, Riemannian
metric, 295, 299, 445, 446

Riemann-Hilbert, 182–185
Riemann zeta function, 185
Riesz’ Theorem, 279, 281, 331, 338, 344,

423
Root system, 192, 318

R-transform,360, 365, 370, 371

Saddle point, 136
Sard’s Theorem, 194, 205,441
Scale invariance,395, 403, 408
Schroedinger Operator, 302
Schur function, 320
Schwinger–Dyson equation,381, 382, 386,

389, 391, 404, 406–409, 411, 412
also appear asmaster loop equation

Self-adjoint, 198, 220, 260, 323, 329, 333,
334, 343–347, 368, 370, 395, 396, 412,
432, 433, 451–454
anti-, 196, 201, 206, 207, 210, 432, 436

Self-dual, 37, 392
see alsoKernel, self-dual

Selberg integral formula, 54,59–64, 87, 88
Semicircle distribution (law),6, 7, 21, 23,

43, 47, 51, 81, 86, 88, 101, 105, 262,
273, 319, 323, 365, 368, 369, 373, 374,
375, 404, 410

Semicircular variables, 323, 374, 375, 377–
380, 382, 394, 395, 410, 412

Semi-martingale, 249, 253, 254
Sentence,17, 18, 25, 33, 378

equivalent, 17
FK, 25–28
graph associated with, 17, 378
support of, 17
weight of, 17

Separable, 338–341, 351, 419
Shift, 233, 238
Sinai–Soshnikov, 86
Singular value, 87–89, 189, 193, 207, 301,

394,434
Size bias,239
Skew field, 187,430
Skew-Hermitian matrix, 253
Sobolev space, 293
Solution,

strong, 249–251, 253, 254, 258, 259, 269,
460
weak, 249, 251, 261,460

Soshnikov, 184
Spacing, 114, 160, 183, 184, 240, 242
Spectral,

analysis, 330
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measure, 327, 366, 370, 375, 389, 412
projection, 332, 343, 344, 454
radius (norm), 269, 323, 325, 331, 336,
383, 395, 396,451
resolution, 328,453
theorem, 198, 328, 331, 339, 340, 343,
344, 347,433, 452–456

Spectrum, 328, 330–332, 394–396, 398, 399,
451–454

Spiked models, 184
State,331–334, 336–342, 391, 395, 454,

455
faithful, 342–345, 369, 370, 394, 395,
456
normal, 342–345, 369, 370, 454, 456,
457
tracial, 322, 324,331–334, 340–343, 349,
367–370, 372, 380, 387, 389, 391, 394,
395, 413, 456

Stationary process, 261, 269, 318
see alsoDeterminantal, stationary pro-
cessandTranslation invariance

Steepest descent, 134, 138, 141
Stieltjes transform, 9, 20, 38,43–50, 81, 87,

267, 360, 396, 398, 412
Stirling’s formula,59, 119
Stochastic,

analysis (calculus), 87, 248–281, 412, 413
differential equation (system), 249, 250,
258, 261, 274, 291
noncommutative calculus, 413

Stone–Weierstrass Theorem, 330
Stopping time, 251, 253,459
S-transform,366, 368
Subordination function, 410
Superposition, 66, 88
Symmetric function, 65
Symplectic, 192

see alsoGaussian symplectic ensemble

Talagrand,285–287, 320
Tangent space, 196
Tensor product, 399, 400,451
Telecommunications, 413
Three-term recurrence (recursion), 100, 181,

321
Tight, 314–317, 389,425

see alsoExponential tightness

Tiling, 319
Torsion-free, 297,446
Trace, 11, 86,107, 198, 332, 350, 363, 387,

392, 394
-class, 220, 227, 412
normalized, 325, 392, 400
see alsoState, tracial

Tracy–Widom,93, 142–147, 181–185, 306,
307

Translation invariance, 215, 230,231–241
Tridiagonal, 186, 302–317, 321
Topology, 88, 344,418

Skorohod, 314
strong operator, 339
weak, 71, 72, 262, 282, 372,421, 425–
427
weak operator, 339
weak*, 328, 336, 338, 389,421

Tree, 15, 19, 25, 27, 28, 30, 376, 377
pendant, 31
rooted planar tree, 9

Trigonometric sum identities, 87

Ulam’s problem, 184
Unbounded variable, 325, 336
Unital agebra, 325, 329, 340, 356, 395, 399,

400, 450
Unitary, 192

ensemble, seeEnsemble, unitary
Gaussian ensemble, seeGUE
groups, 53, 187, 191–197, 244, 253, 299,
320, 324, 393
matrix, 52, 54, 88, 254, 374, 388–390,
411, 416
see alsoOperator, unitary

Universality, 183–185

Vacuum, 350, 363, 409
Vandermonde determinant,52, 58, 61, 96,

151
Varadhan’s lemma, 76,429
Verblunsky coefficients, 321
Vertices, 13, 17
Voiculescu, 322, 410

transform, 371, 373
Volume (measure), 187, 188, 191, 193, 195,

224, 234, 295,440, 446
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von Neumann algebra, 322, 339–342, 344,
348, 353, 370, 413, 455–458

Voronoi cell,235–237

Wasserstein distance, 320
Weierstrass approximation theorem, 11
Weingarten function, 411
Weyl, 187, 192, 193, 199,202

formula, 206, 244, 318
operator, 202quadruple, 199–203, 206–
214
see alsoInequality, Weyl

Wigner,
complex (Hermitian) Wigner matrix, 35–
37, 184
complex Gaussian (Hermitian) Wigner ma-
trix, 28, 35, 260, 323, 393, 411
Gaussian Wigner matrix, 6, 43, 45, 101,
103, 261, 273, 276, 320, 323, 374, 394
matrix, 6, 23, 29, 42, 47, 50, 51, 86, 87,
186, 262, 323, 324, 337, 375, 383, 412
surmise, 181
Theorem, 7, 10, 22, 35,36–38, 81, 85,
105, 186, 262, 378
word seeWord

Wishart matrix,20, 21, 85–87, 184, 186,
189, 190, 261, 282, 285, 319, 324, 392,
393, 412

Word, 11,13, 18, 25, 34, 36, 37, 319, 322,
325–328, 333, 334, 367, 369, 395, 400,
410, 412
closed, 13, 14, 18, 30, 33, 376
q-colorable, 377
equivalent, 13, 14
FK, 25–28
FK parsing of, 25, 27
graph associated with, 13, 376
length of, 13, 334
skeleton of FK, 26
weight of, 13, 376
Wigner, 14, 16, 25, 30, 376, 377

W∗-
algebra, seevon Neumann algebra
probability space,339–347

Young diagram, 88, 411


