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ABSTRACT

This paper examines the factors determining the distribution, length scale, magnitude, and structure of me-

soscale oceanic eddies in an eddy-resolving primitive equation simulation of the Southern Ocean [Modeling

Eddies in the Southern Ocean (MESO)]. In particular, the authors investigate the hypothesis that the primary

source of mesoscale eddies is baroclinic instability acting locally on the mean state. Using local mean vertical

profiles of shear and stratification from an eddying primitive equation simulation, the forced–dissipated

quasigeostrophic equations are integrated in a doubly periodic domain at various locations. The scales, energy

levels, and structure of the eddies found in the MESO simulation are compared to those predicted by linear

stability analysis, as well as to the eddying structure of the quasigeostrophic simulations. This allows the

authors to quantitatively estimate the role of local nonlinear effects and cascade phenomena in the generation

of the eddy field.

There is a modest transfer of energy (an ‘‘inverse cascade’’) to larger scales in the horizontal, with the length

scale of the resulting eddies typically comparable to or somewhat larger than the wavelength of the most

unstable mode. The eddies are, however, manifestly nonlinear, and in many locations the turbulence is fairly

well developed. Coherent structures also ubiquitously emerge during the nonlinear evolution of the eddy

field. There is a near-universal tendency toward the production of grave vertical scales, with the barotropic

and first baroclinic modes dominating almost everywhere, but there is a degree of surface intensification that

is not captured by these modes. Although the results from the local quasigeostrophic model compare well with

those of the primitive equation model in many locations, some profiles do not equilibrate in the quasigeo-

strophic model. In many cases, bottom friction plays an important quantitative role in determining the final

scale and magnitude of eddies in the quasigeostrophic simulations.

1. Introduction

Altimetric observations of the sea surface (e.g., Fu and

Menard 1983; Stammer 1997) reveal mesoscale eddies

throughout the world’s oceans, especially near western

boundary currents and in the Antarctic Circumpolar

Current (ACC). Mesoscale eddies are likely generated

by baroclinic instability of the mean flow, gaining their

energy from the massive potential energy reservoir as-

sociated with horizontal gradients of the mean stratifi-

cation (Gill et al. 1974). The eddies dominate the oceanic

kinetic energy (KE) and, through their effect on transport,

play a major role in the general circulation. However,

we do not have a well accepted consistent theory for their

structure and statistics, especially in cases with realistic

stratification, and eddies are not resolved in operational

medium- and long-term climate forecasting models.

From the practical point of view, because they affect

transport of heat, salt, and other tracers, unresolved eddies

must be parameterized in climate forecasting models, and

this need has yielded various parameterization schemes. A

parameterization of mesoscale eddies attempts to mimic

the turbulent flux that would arise had the eddies been

resolved, and at the heart of any such scheme is a ‘‘theory’’

for the eddy statistics. However, even in the highly ideal-

ized case of two-layer quasigeostrophic (QG) flow driven
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by a horizontally homogeneous, time-independent mean

flow, there is as yet no closed theory for the eddy statistics

(for attempts and criticisms, see Held and Larichev 1996;

Thompson and Young 2007). Time-dependent mean flows

further complicate the picture (Farrell and Ioannou 1999;

Flierl and Pedlosky 2007). To take into account the more

complex local mean flows that arise in a general circulation

model, parameterizations must therefore make rather

drastic assumptions about the structure of the unresolved

flow (e.g., Gent et al. 1995; Visbeck et al. 1997). However,

even parameterizations that attempt to better account for

the full vertical structure of the mean flow (e.g., Ferrari

et al. 2010) still implicitly assume a horizontally local re-

lationship between the resolved flow and the unresolved

eddy fluxes; this will not be accurate if, for example, the

eddying flow at a given location was generated elsewhere

and advected in by the mean flow.

A great deal of work has been done both to understand

how best to implement parameterizations in general circu-

lation models and to understand the scale and magnitude

of eddies generated by a given mean flow, but relatively

little has been done to investigate the assumed local re-

lationship. One approach, taken by Smith (2007b) and

Tulloch et al. (2011), is to use the hydrographic or model

mean state to compute local linear baroclinic instability

scales and growth rates at each lateral, open-ocean loca-

tion and to compare these directly to either observations

or model output. If the dynamics is effectively close to that

predicted by the local linear model, then these quantities

would also characterize the observed eddy field. Not too

surprisingly, only a rough, inconclusive correspondence

between the observed field and the local linear prediction

was found. Moreover, recent analyses of the altimetric

data show that a large fraction of the mesoscale field is

organized into coherent structures, such as rings (Chelton

et al. 2007) and jet-like striations (Maximenko et al. 2005),

which are likely the result of highly nonlinear processes.

Although it is more likely the case that the nonlinear

evolution of the instability determines the eddy properties,

the relationship between the mean state and the eddying

flow may still be local. Of particular importance is the

degree to which the nonlinear evolution of local baroclinic

instabilities leads to an inverse cascade of energy, in both

the horizontal and vertical. Altimetric observations do

suggest that an inverse cascade to larger horizontal scales

exists at the ocean surface (Scott and Wang 2005). How-

ever, determining which combination of vertical modes is

sampled by the surface flow remains an open problem.

Which modes are sampled by the observations is impor-

tant for the following reasons: In the case of quasigeo-

strophic dynamics with two equal-depth layers, the

classical picture of Rhines (1979) and Salmon (1980) is

that baroclinic energy cascades toward the first baroclinic

wavelength of deformation, at which point the baroclinic

energy is transferred to the barotropic mode, and the

barotropic energy then cascades toward larger scales, until

finally dissipative mechanisms become effective. In this

picture, the steady-state flow will be dominated by the

barotropic mode. However, when realistic ocean stratifi-

cation is present, the flow does not completely barotropize,

except possibly on very long time scales, and a large por-

tion of the energy remains in the baroclinic mode (Smith

and Vallis 2001, 2002). This picture may be further modi-

fied by the presence of the ‘‘surface quasigeostrophic’’

mode (Lapeyre and Klein 2006), which undergoes its own

inverse cascade (Capet et al. 2008).

As well as the vertical structure of the cascade and its

projection on the observed surface, the structure of the

evolved flow is also highly dependent on the nature of the

mean potential vorticity (PV) gradient and the dissipation

mechanism. Even relatively small gradients of the Cori-

olis parameter (the b effect) can result in a steady flow

dominated by zonal jets (Rhines 1975; Vallis and Maltrud

1993). When the mean flow is not strictly zonal, as is the

case in most oceanic locations, the eddy field may take on

a very complex structure, still dominated by jets, but with

extremely high eddy energy (Spall 2000; Arbic and Flierl

2004b; Smith 2007a). On the other hand, the presence of

sufficiently strong drag may overwhelm the b effect and

yield a nearly isotropic flow (Thompson and Young 2006,

2007). Finally, the nature of the drag term—quadratic

versus linear—may also change the scale of the equili-

brated flow (Arbic and Flierl 2004a; Grianik et al. 2004).

In short, even when the flow is local and neglecting the

effects of topography, variations in the local stratification,

mean shear, and dissipation can result in a great diversity

of possible equilibrated eddy fields.

In the present paper, we take a more direct approach

and try to avoid the need for a complete theory of equil-

ibrated mesoscale eddies in a homogeneous mean flow.

Beginning with a high-resolution, eddy-rich ocean global

circulation model simulation, we ask, to what extent is the

steady-state eddy field at a particular location consistent

with a homogeneous model of mesoscale turbulence? To

address this question, we analyze the output from the 1/68

run of the Modeling Eddies in the Southern Ocean

(MESO) project (Hallberg and Gnanadesikan 2006), a

series of simulations using an isopycnal primitive equa-

tion (PE) model. We consider first the statistical and

structural properties of the eddy field throughout the

model domain and perform a local stability analysis like

that of Smith (2007b). We then choose a set of six lo-

cations and use the time-averaged mean fields at those

locations to drive a horizontally periodic quasigeo-

strophic turbulence model to steady state. The primary

metrics of comparison are (i) the horizontal length scale,
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(ii) the magnitude, and (iii) the vertical structure of the

eddy field: to what extent are these quantities consistent

in the global circulation model and quasigeostrophic

simulations?

The paper is organized as follows: section 2 is devoted

to the studies of eddy properties in MESO simulations,

with an emphasis on their vertical structure and a com-

parison with computations of linear baroclinic instability.

Section 3 discusses the quasigeostrophic simulations car-

ried out at various locations in the Southern Ocean. A

comparison between eddies in MESO simulations and the

forced–dissipated quasigeostrophic simulations is pre-

sented in section 4, and a summary is given in section 5.

2. Eddies in a comprehensive primitive equation
ocean model

In this section, we examine the mesoscale turbulence

in the eddy-resolving comprehensive primitive equa-

tion ocean model, specifically the 1/68 resolution MESO

simulations of Hallberg and Gnanadesikan (2006). This

is an isopycnal hemispheric ocean model with realistic

geometry but somewhat idealized forcing.1 There are

20 interior vertical layers and a three-level bulk mixed

layer on the top.

a. Eddy properties in MESO simulations

The surface eddy kinetic energy (EKEs) in MESO

simulations, computed by considering a one-year time

average of the square of velocity fluctuations, is pre-

sented in Fig. 1 (bottom). This map of EKEs compares

reasonably well with observations from altimetry (for

more details, see Hallberg and Gnanadesikan 2006). It

shows an inhomogeneous distribution of oceanic eddies:

regions of high EKE are mostly located around western

boundary currents and in some regions in the main body

of the Antarctic Circumpolar Current (ACC).

A snapshot of the surface EKE in Fig. 1 (top) shows

that these regions of high EKEs correspond to regions

where mesoscale turbulence tends to be organized into

rings with typical velocities of 1 m s21 and diameters

Lring of about 200 km. To extract coherent structures in

an objective way from the eddy field, we employ the

Okubo–Weiss parameter W 5 4[(›xu)2 1 ›yu›xy]. This

procedure has been used in previous diagnostics of al-

timetry measurements (Isern-Fontanet et al. 2003, 2006;

Chelton et al. 2007). Coherent structures are found by

looking for simply connected regions in which W , 22 3

10212 s22, as in Chelton et al. (2007). The critical value

must be sufficiently low to capture relevant coherent

structures and sufficiently high to capture the whole area

of a given coherent structure (Isern-Fontanet et al. 2006).

We define the length scale Lco of a given structure as

equal to the diameter of a disk that has the area of the

coherent structure, Lco 5 2(area/p)1/2. In practice, this

FIG. 1. (top) Snapshot of the surface KE (m2 s22) plotted with a

log10 scale. (bottom) One-year average of EKEs from MESO

simulations. The black circles correspond to the six locations con-

sidered for QG simulations; see Fig. 4 for the vertical structure of

EKE at these particular points.

1 For instance, there is no seasonal cycle in wind forcing.
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criterion selects the core of the coherent structure and

somewhat underestimates the length scale. The length

Lco is therefore better considered as a convenient mea-

sure of the geographic variation of the eddy length scale

rather than as an absolute measure of the eddy length

scale itself. Both a snapshot and a one-year average of

this quantity are plotted in Fig. 2. Similar to observations

of eddies in the Mediterranean Sea by Isern-Fontanet

et al. (2006), regions highly populated by large-scale

coherent eddies are found in high EKE regions.

b. Modal projection of the eddy energy

To understand the broad characteristics of the verti-

cal structure of the eddy field, we compute the vertical

normal modes at each location. The baroclinic modes

ffmgm$1 are solutions of the Sturm–Liouville eigen-

value problem

d

dz

 
f 2
0

N2

dfm

dz

!
5 2

fm

R2
m

, (1)

where N(lon, lat, z) and f0(lat) are the vertical profile of

buoyancy frequency and the Coriolis parameter, re-

spectively at a given location defined by its latitude and

longitude. The boundary conditions for this problem are

dfm/dz(z 5 0) 5 dfm/dz(z 5 2H) 5 0, where H(lon,

lat) is the ocean depth at the location in question. To

each baroclinic mode is associated an eigenvalue R22
m

(lon, lat) defining the mth Rossby radius of deformation.

For convenience, we also define the first deformation

wavelength L1 [ 2pR1.2 Note that the vertical modes

provide a complete orthonormal basis for the vertical

structure of any field satisfying the same boundary condi-

tions. However, it has been recently argued that one should

rather consider a basis that takes into account both the

interior baroclinic modes and the surface-intensified

modes that reflect the contribution from surface den-

sity gradients (Lapeyre 2009). Unfortunately, such a basis

would not be orthonormal and would require more com-

plicated analysis and interpretations, and therefore as a

starting point we consider conventional baroclinic modes

only; with a sufficiently high vertical resolution, these would

also capture the surface-intensified modes, although the

exploration of that is beyond the scope of the present paper.

Baroclinic modes and deformation scales are com-

puted locally from the one-year-averaged density pro-

files. The problem (1) is discretized as in (Smith 2007b,

FIG. 2. (top) Core of the coherent rings extracted on a snap-

shot by using the Okubo–Weiss criterion; colors represent

the equivalent diameter Lco of the coherent structures (see text

for details). (bottom) One-year average of Lco represented

as in (top). This allows us to define a global map of eddy length

scale.
2 Note that the above method of calculating the Rossby radius

differs by a constant factor from the scaling estimate NH/f, even in

the case of uniform stratification. In this case, it is readily shown

that R1 5 NH/(pf ) and so L1 5 2NH/f.
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appendix A), and the particular discretization used here

is the same as that in the MESO simulations, but with

a minimum upper-layer depth of 30 m. Velocity fields are

projected onto these modes at each point, and the parti-

tion of eddy kinetic energy into first baroclinic and baro-

tropic modes is given in Fig. 3. Evidently, the EKE of the

first baroclinic mode and of the barotropic mode accounts

for nearly all the total EKE in MESO, typically well over

80%. The barotropic mode is clearly dominant along the

ACC path, whereas the contribution of the first baroclinic

mode becomes equivalent to the barotropic mode at

lower latitudes. This is generally consistent with previous

diagnostics by Wunsch (1997) on the vertical structure of

eddies in the ocean, from (sparse) observations.

Vertical profiles of EKE at six different locations are

plotted as in Fig. 4, and Table 1 gives additional in-

formation. Although EKE is in some places (e.g., at 348S,

308E, in the Aghulas Current) mostly barotropic and first

baroclinic, the eddying field is in a number of places

surface intensified in a way that cannot be explained by

its barotropic and first baroclinic mode only (see the

dashed blue lines of Fig. 4). That is to say, even though

most of the energy does reside in the barotropic and first

baroclinic modes, there is in some places a nonnegligible

residual near the surface, possibly because of some form

of surface instability or surface quasigeostrophic dy-

namics. A natural first question is then to determine if

this vertical structure can be understood by linear in-

stability computations of baroclinic instability around an

imposed mean flow.

c. Linear instability in the primitive equation
simulations

Following Smith (2007b), linear instability computa-

tions have been performed at each horizontal point of the

MESO simulations (details are described in the appendix).

The mean state is computed by taking a one-year time

average over the entire flow. We chose the time period of

one year after performing some preliminary analysis that

showed that most unstable regions are characterized by

fairly short instability time scales, from weeks to months.

The mean flow is also varying on a similar time scale, and if

we were to average over a much longer period the mean

flow would be unrepresentative of the flow that the eddies

actually see, whereas taking a smaller time average would

leave a too-strong signature of the eddies in the mean

fields. Taking a one-year average seemed the best choice,

 
FIG. 3. (top) Ratio of barotropic EKE to total EKE. (middle)

Ratio of first baroclinic EKE to total EKE. (bottom) Sum of first

baroclinic and barotropic contributions.
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and these fields are used in both the linear stability analysis

and the nonlinear quasigeostrophic simulations described

later.

The maximum instability growth rate vinst 5 1/tinst is

plotted in Fig. 5 (top). Regions of fast growth in Fig. 5

are localized in space and are associated with large in-

stability wavelengths L
inst

5 2p/(k2
inst1l2

inst)
1/2 (see ap-

pendix) in Fig. 6. These regions of fast growth mostly

reflect the fine-grained structures of the mean flow and

the localized regions of instability. This rough field is in

some contrast with the rather smooth distribution of

EKE in Fig. 1, which may reflect the smoothing out of

localized instabilities by advective effects.

The ratio Linst/L1 is plotted in Fig. 5, and the first baro-

clinic Rossby radius R1 is shown in Fig. 7. This ratio

Linst/L1 is typically about 2 in the ACC and drops to about

0.3 at lower latitudes, except in regions of high growth

rate, as for instance in western boundary currents. Note

that, in the classical Eady problem (constant stratification

and velocity shear and a flat bottom), Linst/L1 ’ 2 (Vallis

FIG. 4. Vertical EKE profiles in MESO (blue) and QG (red) simulations. Solid lines rep-

resent the EKE profile normalized by its average on the vertical; this allows us to compare the

vertical structure on one side and the amplitude on the other. Values of the vertically averaged

EKE are given in the different boxes for comparison. Dashed lines represent a reconstruction

of the same EKE profile with the barotropic and the first baroclinic mode only, to determine

how well the full profile is represented by considering only these two modes. The green solid

line represents the squared norm of the amplitude of the most unstable linear mode, normal-

ized by its vertical average. It would be the vertical EKE profile of the most unstable linear

mode. At 458S, 808E, nonlinear QG simulations were found to be stable, so there is no QG

simulation associated with this location.
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2006). The ACC is the region where the stratification

is the closest to a linear profile, so it is not surprising

that predictions based on the Eady problem are well

approached. By contrast, small values of the ratio Linst/L1

are mostly associated with surface-intensified modes in

regions where the mean flow is surface intensified and

easterly sheared (Tulloch et al. 2011).

A major issue in the dynamics of mesoscale eddies in

general and here in particular is understanding what sets

their horizontal scale. Comparing the eddy properties in

the fully developed primitive equation simulations with

the linear stability properties (shown in Fig. 6), one finds

that the simulated eddies tend to be a few times larger

than the scale of the linear instability, but the interpreta-

tion is difficult because of the presence of structures in the

field. The rings visible in Fig. 2 do seem to have diameters

close to the instability wavelength in regions of fast growth:

for example, Table 1 shows that the instability wavelength

in the Aghulas Current (point 348S, 308E) is Linst ’ 2L1 5

500 km, which is the about the size of oceanic rings in this

region. Note that the way coherent structures are extracted

tends to underestimate the eddy length scale, because our

criterion on the Okubo–Weiss parameter selects the core

of the rings. Note also that other metrics for the eddy

length scale (for a discussion, see, e.g., Tulloch et al. 2011)

would lead to similar conclusions.

The b effect is one possible and oft-cited mechanism

that may play a part in setting eddy scales. In the pres-

ence of sufficiently large b, the flow will become aniso-

tropic in the horizontal, possibly self-organizing into

zonal jets (Rhines 1975; Vallis and Maltrud 1993) with

widths on the order of the Rhines scale (V/b)1/2, where V

is some measure of the barotropic eddy velocity. Here,

we define a Rhines wavelength as LRh 5 2p(yrms/b)1/2,

where yrms is the root-mean-square meridional baro-

tropic velocity; other choices do not change the results

significantly. Figure 6 (bottom) shows the Rhines

wavelength computed from the one-year average of the

MESO simulation and shows that this scale is generally

larger than both the instability wavelength and the ring

size, taking on values of about 500 km in regions of high

eddy activity. This is not surprising, because b becomes

quite small at high latitudes, using an estimated value of

yrms ; 0.1 m s21 (appropriate to regions of high eddy

activity, judging from Fig. 1) and b at 508 yields LRh ;

500 km. Moreover, the jets recently observed in the

ocean (Maximenko et al. 2005; Richards et al. 2006) are

typically at low latitudes: small jets in the ACC appear to

be driven by topographic variations rather than b

(Thompson 2010). Locally, oceanic eddy length scales

tend to be closer to the scales given by linear instability

analysis than the Rhines wavelength, but we should not

conclude that the eddy field is a consequence of linear

dynamics. The rings themselves are certainly nonlinear

structures (for an interpretation of these structures as a

result of potential vorticity homogenization with addi-

tional dynamical constraints, see, e.g., Venaille and

Bouchet 2011), and their length scale is not necessarily

given by local properties of the mean flow.

All these results are consistent with previous analysis

of eddy length scale in terms of linear baroclinic in-

stability (Tulloch et al. 2011). We note in addition that

maps of eddy length scale, Rhines scale, and instability

wavelength exhibit strong spatial inhomogeneities, with

high values along western boundary currents. Caution is

then warranted when interpreting zonal averages of

such quantities.

As noted previously, the vertical structure of the

eddies is primarily barotropic and first baroclinic, but

there is in many places an additional intensification

near the surface. Figure 4 shows, among other things,

a comparison between the structure of vertical EKE

profiles in the MESO simulation and the vertical pro-

file of the energy of the fastest-growing linear mode

EKElin(z) 5 j~cinstj
2/
Ð 0

2H dz j~cinstj
2, with arbitrary ampli-

tude, at six particular locations. The surface intensi-

fication in both quantities suggests that at least part of this

structure is a direct consequence of the linear instability

TABLE 1. This table summarizes properties of the most unstable mode at different locations, as well as nondimensional parameters, and

some properties of EKE in MESO at these points. Here, k*
inst

5 2pk
inst

/L is the nondimensional instability wavenumber; with L 5 64R1, it

gives k*
int ’ kinst/(10R1)tinst, which is the corresponding time scale (the inverse of the growth rate) in days. The terms A0 and A1 give the

relative contribution of the amplitude of the unstable linear modes, as a percentage, to the barotropic and first baroclinic projections.

Numbers in parentheses refer to secondary peaks in stability analysis. Throughput is U1/(rbR1), with rb 5 dE f/(2H), and criticality is

U1/(bR2
1). Here, E is the total EKE in MESO simulations at this point (m2 s22) and EMESO

0 and EMESO
1 give the relative contribution of the

KE to barotropic and first baroclinic KE, respectively.

Location k*
inst tinst A0, A1 Throughput Criticality EMESO EMESO

0 , EMESO
1

348S, 308E 6 11 97, 1 30 0.3 4 3 1022 61, 38

458S, 308E 16 (5) 16 (19) 16, 63 (79, 19) 20 5 1 3 1023 52, 41

308S, 308E 23 (4) 54 (90) 12, 42 (84, 4) 6 5 1 3 1024 71, 24

348S, 808E 19 54 87, 7 2 0.4 7 3 1024 49, 29

458S, 808E 5 60 88, 10 1 0.4 5 3 1023 72, 26

608S, 808E 14 11 32, 48 0.4 1.6 4 3 1025 32, 47
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properties of the column. At the location 458S, 808E, there

are eddies in the MESO field, despite the fact that linear

analysis yields nearly stable modes (the growth rate ; 1/100

days21 and the scale of fastest growth linst ; L1/50 are

both very small). Moreover, no eddy activity forms in the

nonlinear quasigeostrophic model run with the mean flow

at this location (discussed later), even after one year of

integration. It seems likely that in this region eddies in

MESO have their origin elsewhere and are advected in,

rather than growing in situ.

Overall, the vertical structure of the EKE in the primi-

tive equation simulations does have some resemblance to

FIG. 5. (top) Growth rate of the most unstable mode, computed

locally using one-year-averaged mean profiles from MESO simu-

lations. Vertical structures of the corresponding amplitude are

given for six points (represented by small black circles) in Fig. 4.

(bottom) Ratio of the corresponding instability wavelength

Linst 5 2p/(k2
inst1l2

inst)
1/2 with the deformation wavelength 2pR1.

FIG. 6. (top) Wavelength Linst of the most unstable mode. (bottom)

Rhines scale LRh 5 2p(yrms/b)1/2.
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linear dynamics, with surface intensification but otherwise

a fairly uniform structure in the vertical. In the next sec-

tion, we explore the extent to which the structure can be

understood on the basis of quasigeostrophic turbulence.

3. Eddies in forced–dissipated quasigeostrophic
simulations, with an imposed mean flow

We found that the eddy field in the primitive equation

simulation bears some rough correspondence in vertical

structure to that of the locally computed linear instabilities,

but the horizontal eddy scales are larger and the spatial

structures of the eddies are quite complex, including co-

herent vortices, jets, and turbulent undulations of stream-

lines. On the practical side, one would like a theory for the

horizontal property flux the eddy field generates to effec-

tively parameterize the effects of subgrid-scale eddies on

a coarsely resolved ocean model. The eddy flux is a func-

tion of the eddy scale, energy, and vertical structure, and so

a theory for the latter will yield the former.

However, there is no complete theory for the steady-

state eddy statistics driven by an imposed mean state,

even within the highly idealized assumptions of quasi-

geostrophic scaling and horizontal homogeneity (effec-

tively equivalent to the use of a horizontally periodic

domain). Attempts to form a theory for the steady-state,

horizontally homogeneous eddy statistics in the case of

two equal-depth layers and zonal-mean flow began with

Haidvogel and Held (1980), and yet even these restrictions

are insufficient to allow straightforward closure. Thompson

and Young (2006) were able to construct a useful closure

with b 5 0 and a linear vorticity drag on the bottom layer,

although their theory for the eddy diffusivity still required

some empirical fitting. When nonzero b is included with

zonal-mean flow, some progress was made by Held and

Larichev (1996) and Lapeyre and Held (2003), although

Thompson and Young (2007) suggest that the former

results are problematic, in part because they do not ex-

plicitly take into account the role of drag in dissipating the

energy, which has been known since at least Maltrud and

Vallis (1991) to affect the inverse cascade. Furthermore,

the possibility that the zonal flow is not uniformly east-

ward gives a rich phenomenology to the jets and eddies,

as noted by Berloff et al. (2009b,a) for westward flows and

Spall (2000) and Arbic and Flierl (2004b) for nonzonal-

mean flows. Indeed, in some cases the flow cannot

achieve a steady state (Smith 2007a). Nontrivial vertical

structure and other drag mechanisms only add additional

problems.

Our approach is therefore to use the steady-state sta-

tistics of a local model for the eddies as our theory, and

this, in a nutshell, is the motivation for this section. Here,

we consider nonlinear quasigeostrophic simulations of

perturbations about imposed, baroclinically unstable

mean states taken from six locations in the MESO run.

The six locations are referenced in Tables 1 and 2 and

represented as black circles in Fig. 1. We first review the

quasigeostrophic model and describe its numerical im-

plementation and then discuss the issues that arise in

generating steady states with this model.

a. Quasigeostrophic dynamics around imposed
mean flows

The perturbation quasigeostrophic PV is

q 5 =2c 1
›

›z

 
f 2
0

N2

›

›z
c

!
, (2)

where c is the perturbation streamfunction and u 5

(2›yc, ›xc) is the corresponding velocity perturbation.

Neglecting contributions from the relative vorticity, the

mean quasigeostrophic PV gradients are

›Q

›x
5

›

›z

 
f 2
0

N2

›V

›z

!
,

›Q

›y
5 b 2

›

›z

 
f 2
0

N2

›U

›z

!
, (3)

where b is the planetary vorticity gradient and f0 is the

Coriolis parameter. The corresponding mean density

profiles used in the six quasigeostrophic simulations pre-

sented here are plotted in Fig. 8, and the imposed mean

velocity and PV gradient profiles are shown in Fig. 9.

FIG. 7. Map of first baroclinic Rossby radius of deformation R1.
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The quasigeostrophic equation advection equation

for the perturbation PVq given the imposed mean state

U, $Q is

›q

›t
1 (u 1 U) � $q 1 u � $Q 5 0

0 . z . 2H and (4a)

›

›t

›c

›z
1 (u 1 U) � $›c

›z
1

�
u 3

›U

›z

�
� k 5 2N2w

z 5 0, 2H, (4b)

with w(0) 5 0 and w(2H) 5 2Dbottom, (4c)

where Dbottom represents bottom friction (topography is

omitted; see below) and k is the unit vector in the vertical

direction. The boundary conditions (4b) can be formally

replaced by the condition of no buoyancy variation at the

top and the bottom layer (›zc 5 0 at z 5 0, 2H), provided

that surface buoyancy anomalies are interpreted as a thin

sheet of potential vorticity just above the ground and

below the lid (Bretherton 1966). However, regardless

of the formal representation of the boundary conditions,

the accuracy of their numerical implementation depends

strongly on vertical resolution. Note that the term U�$Q is

omitted in Eq. (4a). This may be justified if there is scale

separation between large-scale flow and perturbations

(Pedlosky 1984) or if the mean flow is a steady state of the

unforced undissipated quasigeostrophic equations. Al-

though neither is strictly true in our case, following Arbic

and Flierl (2004b) we do not expect quantitative changes

to result from the presence of the term.

When dealing with nonlinear simulations of geostrophic

turbulence, bottom topography may play an important

role in that it may alter the vertical partitioning and

variability of the eddy kinetic energy by coupling ver-

tical modes together (e.g., Treguier and Hua 1988;

Treguier and McWilliams 1990). In addition, closed

contours of bottom topography may lead to the forma-

tion of coherent vortices (e.g., Dewar 1998; Merryfield

1998), and the presence of topographic beta effect

may affect jet spacing and distribution (e.g., Sinha and

Richards 1999). In this study, we omit bottom topogra-

phy primarily as a simplification, but we recognize its

TABLE 2. Summary of QG simulations. See text for details on the parameters of the ‘‘control’’ simulation. Here, r is bottom friction, yth

is thermal drag (always zero unless specified), and E is the average KE (m2 s22). The terms E0 and E1 are the percentage of barotropic and

first baroclinic energy. Here, ke0, ke1, and kape1 give the peak of barotropic and baroclinic KE, as well as APE (in 2p/L unit, where L 5

64R1 is the domain size). The values of EMESO, EMESO
0 , and EMESO

1 are given for comparison with output of MESO simulations.

Location Feature E E0, E1 ke0, ke1, kape1 EMESO EMESO
0 , EMESO

1

348S, 308E Control 10* 86, 14 1, 5, 1 4 3 1022 61, 38

b 5 0 4* 92, 8 6, 6, 6 4 3 1022 61, 38

r 5 100rcontrol 2 3 1021 35, 63 4, 4, 4 4 3 1022 61, 38

r 5 0.1rcontrol 2 3 102* 99, 1 1, 1, 1 4 3 1022 61, 38

yth 5 1024 days21 3 3 1022* 63, 34 4, 4, 4 4 3 1022 61, 38

348S, 808E Control 2 3 1024* 32, 55 5, 5, 5 7 3 1024 49, 29

b 5 0 5 3 1025 42, 47 6, 6, 6 7 3 1024 49, 29

r 5 100rcontrol 6 3 1024* 48, 42 4, 4, 4 7 3 1024 49, 29

r 5 0.1rcontrol 6 3 1024* 70, 20 8, 4, 4 7 3 1024 49, 29

yth 5 1025 days21 2 3 1024 32, 57 8, 8, 5 7 3 1024 49, 29

458S, 308E Control 4 3 1024* 48, 43 6, 2, 2 1 3 1023 52, 41

b 5 0 1 3 1022 67, 29 2, 6, 4 1 3 1023 52, 41

r 5 100rcontrol 1 3 1023 43, 50 4, 4, 2 1 3 1023 52, 41

r 5 0.1rcontrol 9 3 1022* 97, 2 1, 6, 1 1 3 1023 52, 41

yth 5 1024 days21 3 3 1024 46, 45 6, 3, 3 1 3 1023 52, 41

458S, 808E Control stable 5 3 1023 72, 26

y 5 0 3 3 1025 31, 59 4, 4, 3 5 3 1023 72, 26

608S, 308E Control 2 3 1025* 29, 27 9, 9, 2 1 3 1024 71, 24

b 5 0 2 3 1025* 36, 41 4, 4, 4 1 3 1024 71, 24

r 5 100rcontrol 4 3 1025* 59, 29 5, 5, 4 1 3 1024 71, 24

r 5 0.1rcontrol 1 3 1025* 35, 28 8, 8, 5 1 3 1024 71, 24

yth 5 1024 days21 4 3 1025* 46, 30 9, 9, 9 1 3 1024 71, 24

608S, 808E Control 3 3 1025* 16, 42 2, 9, 2 4 3 1025 32, 47

b 5 0 2 3 1026 51, 43 4, 4, 2 4 3 1025 32, 47

r 5 100rcontrol 6 3 1026* 53, 38 2, 2, 2 4 3 1025 32, 47

r 5 0.1rcontrol 9 3 1026* 13, 36 13, 13, 9 4 3 1025 32, 47

yth 5 1024 days21 5 3 1026 21, 40 5, 5, 5 4 3 1025 32, 47

* The simulation is not equilibrated.
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potential importance. We do note that the presence of

nonzonal-mean flows extracted from a temporal average

of the primitive equation ocean model is mostly due to

topographic steering (e.g., Marshall 1995). In that sense,

one may argue that topography is implicitly present in

the forcing term of our quasigeostrophic simulations.

The quasigeostrophic simulations were performed in

a doubly periodic domain of extension L 5 64R1 (where

R1 is the first deformation radius), using a spectral code in

the horizontal and finite-difference in the vertical (for

details, see Smith and Vallis 2002). All the runs pre-

sented in this paper have an effective resolution of 2562

in the horizontal and vertical resolution that varies from

place to place, depending on the average number of

layers present at that location in the MESO simulation

(typically from 7 to 16). Integrations were performed

until a statistically steady state was achieved. The equili-

bration times were found to be extremely large, requiring

typically more than 15 yr. This difficult equilibration was

already reported in the same framework, but for even

more idealized settings, by Arbic and Flierl (2004b). When

equilibration was not possible over this period of time,

additional dissipation mechanisms were included (see

the next section for more discussion of this choice).

b. Effect of the mean state parameters and structure
on the steady-state perturbation flow

Steady state is achieved when eddy energy generation

by the unstable mean flow is balanced by dissipation.

Multiplication of (4a) by 2c and integration over the

periodic domain yields the eddy energy budget

dE

dt
5

ð
dz Vuq 2 Uyq 2 dissipation. (5)

Generation of eddy energy thus occurs through the eddy

flux of PV, and the dissipation term depends on the

bottom drag Dbottom. Because eddy energy tends to ac-

cumulate in low-mode, large-scale flows, the most en-

ergy effective dissipation mechanisms are either scale

independent or concentrated at large scales; in the

present simulations, we primarily use linear (scale inde-

pendent) bottom drag. The numerical simulations also

include a small-scale enstrophy dissipation filter, but this

has negligible effects on the energy budget.

1) THE BETA EFFECT

The Coriolis gradient b yields a constant term in the

meridional mean PV gradient, ›yQ 5 b 2 ›z[(f0/N)2›zU].

Profiles of mean PV gradients at six different locations

are given in Fig. 9. Typically, variations of the mean

PV gradient due to thickness (or stretching) variations

are much stronger than b in the locations considered

(as in Smith 2007b), and linear instability computations

depend only a little on b at these points. The effect of

b would have been much more important if we had

considered the linear instability due to just the baro-

tropic and first baroclinic modes (i.e., if we had pro-

jected the mean shear onto just the first two modes), the

equivalent of a two-layer model. For instance, defining

the two-layer criticality number as Cr 5 U
1
/bR2

1, where

U1 is the projection of the mean zonal velocity on the

first baroclinic mode, gives values on the order of one

(see Table 1), but this definition does not take into

account the strong vertical variations of mean PV gradi-

ents, which overwhelm b.

The relative unimportance of b from the point of view of

linear stability contrasts with the strong qualitative differ-

ences between simulations performed with and without b

at almost every location (see Table 2). The energy levels in

the nonlinear simulations are sometimes greater with b

than without it, which from a linear perspective is perhaps

somewhat surprising. A similar result was found for non-

zero mean meridional flows by Spall (2000), and the result

stands in contrast to the effect of b on cases with purely

zonal flow. In the zonal-mean flow case (with predomi-

nantly zonal flow directed eastward in upper layers rela-

tively to the lower layers), increasing b has a stabilizing

effect for linear modes, and consistently the scaling of Held

and Larichev (1996) predicts a decrease of energy pro-

duction with b in forced–dissipated simulations.

The reasons for the contrasting roles of b in zonal- and

nonzonal-mean flow can actually be well understood

through its tendency to produce zonally elongated flows

(rather than its effect on stability), which then affects the

eddy generation terms in (5) in different ways. When b is

large enough to produce eddy-driven zonal jets (e.g.,

FIG. 8. Density profiles from one-year-averaged MESO simulations,

at the six locations considered for the QG simulations.

SEPTEMBER 2011 V E N A I L L E E T A L . 1615



when drag is small enough to allow zonal anisotropies to

form), the northward (cross jet) PV flux yq is suppressed,

because cross-jet fluxes tend to be increasingly suppressed

as the jet strengthens (Smith 2005; Haynes et al. 2007). By

contrast, as the jets increase in strength, correlations arise

between potential vorticity q and zonal velocities u, re-

sulting in an enhanced eastward (along jet) PV flux uq.

When both U and V are nonzero, increasing b will lead

to stronger jets, and eddy energy injection due to the

along-jet flux (
Ð

dz Vuq) will far dominate the increas-

ingly negligible across-jet flux due to the zonal flow

(2
Ð

dz Uyq); thus, when the flow is more nonzonal, eddy

energy will increase with b (Smith 2007a). In some of

the locations investigated here, this enhanced production

of eddy energy due to nonzonal-mean flow prevented

equilibration in the quasigeostrophic simulation.

FIG. 9. Mean vertical profiles of (top panels in each set) velocity and (bottom panels in each set) PV gradients at the six different

locations used for the QG simulations. Velocities are in m s21, and PV gradients are in units of b. Note that the horizontal and vertical

axes are not the same for the different locations.
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2) THE ROLE OF BOTTOM FRICTION

In addition to the complexities encountered with the

combination of b and nonzonal-mean flows, reliance on

bottom drag can also make equilibration difficult to

achieve. In cases in which the dynamics is confined to the

upper ocean and with no efficient energy transfers from

these upper layers to the lower layers, bottom friction

may not be sufficient to achieve equilibration (Arbic and

Flierl 2004b). In the real ocean, energy may also dissi-

pate either by eddies propagating away from the region

of generation and by small-scale dissipation by non-

geostrophic processes in the ocean interior. In some

cases, we sought to achieve equilibration by the addition

of another dissipative process: namely, a small thermal

drag of the form yth›z(( f0/N)2›zc) on the right-hand side

of the PV transport Eq. (4a). This term damps vertical

variations of buoyancy, allowing for the equilibration

of simulations that are significantly influenced by the

growth of available potential energy (APE). This is

the case, for example, when eddies are organized into

surface-intensified zonal jets separating regions of quasi-

homogenized potential vorticity: the total energy is domi-

nated by the APE of the homogenized regions, whereas

the kinetic energy, dominated by the jets at the interfaces,

was quasi equilibrated.

A nondimensional parameter one can associate with

bottom friction is the throughput U1/R1rb, where rb is the

bottom friction coefficient. In the limit of small bottom

velocities, the bottom drag is an approximation to the

Ekman drag, and rb ; dE f/2H, where dE is the Ekman

layer depth. Control experiments assumed a typical

Ekman layer depth on the order of 10 m, which leads to

throughput values from 0.5 to 30 in the six locations

considered (see Table 1). The fact that some simulations

were difficult to equilibrate and many uncertainties were

attached to the estimation of the depth of bottom Ek-

man layer motivated us to carry out a number of other

simulations in which the Ekman layer depth is fixed at

1, 100 (not shown in this paper), and 1000 m. These

values (some of them being unrealistic for the ocean)

span the limits of very weak and very strong bottom

friction. Note that the bottom drag force is parameterized

as Fbot 5 Cd(u2
bot1u2

c)1/2ubot in the MESO simulations

(Hallberg and Gnanadesikan 2006). However, the fric-

tion term in MESO simulations involves the total velocity

(eddies plus mean flow) so that a quadratic friction for

the quasigeostrophic simulations would in general not

be equivalent to the quadratic friction of the primitive

equation simulations. In fact, use of a linear drag is more

or less equivalent to the bottom drag used in MESO

simulations whenever the bottom velocity is smaller than

approximately 0.05 m s21.

As expected from previous numerical computations of

geostrophic turbulence in two-layer models, bottom fric-

tion plays an important role in setting the horizontal and

vertical structure of the turbulence (Arbic and Flierl

2004a; Thompson and Young 2007). This is illustrated in

Table 2 by the changes in the contribution of barotropic

and first baroclinic modes with different values of bottom

friction. The ratio of the baroclinic to barotropic kinetic

energy tends to zero in the limit of vanishing bottom

friction, whereas it tends to a constant value in the limit

of high bottom friction, consistent with previous forced–

dissipated simulations of two-layer quasigeostrophic

models (Arbic and Flierl 2004a).

The complete barotropization in the low-friction limit

can be understood as a tendency for the system to reach

the gravest modes, consistently with the Rhines–Salmon

phenomenology of two-layer turbulent flow. In the high-

friction limit, bottom drag strongly damps the dynamics in

the lower layers. If one combines the condition of vanish-

ing velocity at the bottom and the tendency for the system

to reach the gravest vertical mode, then the energy will

project mostly on the barotropic and the first baroclinic

mode in such a way that the baroclinic mode compensates

the barotropic mode at the bottom. The ratios of barotropic

to baroclinic energy in MESO (see Table 1) and in the

quasigeostrophic simulations (see Table 2) show that the

ocean is in an intermediate regime between these two limits.

4. Comparison between primitive equation and
quasigeostrophic simulations

a. Eddy kinetic energy levels and vertical structure

A comparison of eddy kinetic energy levels in the

MESO simulation (see Table 1) and the equilibrated

quasigeostrophic simulations (see Table 2) shows some

of the strengths and limits of the locality hypothesis.

Some regions of high energy levels in MESO are also

regions of high energy levels in quasigeostrophic simu-

lations, but in other regions (see, e.g., point 348S, 308E in

the Aghulas Current) energy levels produced in the

quasigeostrophic simulations are orders of magnitude

higher than MESO simulation (or it was necessary to

consider artificially high bottom drag to obtain similar

values). On the other hand, regions of low energy levels

in MESO are always found to be regions of low energy

levels in quasigeostrophic simulations; in fact, the en-

ergy levels produced in quasigeostrophic simulations are

smaller than in MESO simulations. These results sug-

gest that a few very energetic regions supply eddies to

other, less baroclinically active regions, although the

existence of missing energy sources (such as mixed

baroclinic–barotropic instabilities or direct generation

by winds) and sinks (such as ageostrophic processes) in
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the QG models forced by baroclinic instability make

such an assertion a little tentative.

The normalized profiles of EKE extracted from the

QG simulations at the six different locations are pre-

sented in Fig. 4. Also shown are the corresponding EKE

profiles from the same locations in the MESO simula-

tion, as well as EKE profiles because of only to the

barotropic and first baroclinic mode (see also Table 2).

In some places, there is a clear tendency for energy to

accumulate in low modes (at points 348S, 308E and 348S,

808E), whereas in others the vertical structure is similar

to that of the most unstable mode, sometimes enhanced

near the surface.

b. Eddy length scale and horizontal structure

To compare the horizontal organization of mesoscale

turbulence between the two models, snapshots of surface

flows are presented in Figs. 10 and 11. Snapshots of the

MESO simulation (in which the time-mean flow is re-

moved) are chosen such that the point at which the ver-

tical profiles are extracted for the quasigeostrophic

simulation is at the center of the domain. The domain

length scale is the same as for the quasigeostrophic sim-

ulations: namely, L 5 64R1, where R1 is the first baro-

clinic Rossby radius of deformation at this point. In each

case, MESO snapshots are compared with the quasigeo-

strophic simulations that are equilibrated (see Table 2),

even if the equilibration involves high bottom friction or

the use of thermal damping. Because point 458S, 808E was

found to be stable and because none of the 608S, 308E

simulations were equilibrated, the dynamics at these lo-

cations are not discussed in the following. Perhaps the

most noticeable feature is the emergence of structures of

one form or another in nearly all cases.

Point 348S, 308E is located in the western boundary

current along South Africa, perhaps the most energetic

region of the ocean. A typical feature of eddying activity

in this region is the formation of mesoscale rings, which

is visible in Fig. 10 (left). Strikingly, the (all anticyclonic)

rings produced in the quasigeostrophic simulations are

of similar size, slightly larger than the wavelength of the

most baroclinically unstable mode. This quasigeo-

strophic illustration is taken from a run with high bottom

friction (r 5 100rb in Table 2). Decreasing the friction to

r 5 10rb leads to an increase of the number of rings, and

their length scale is then equal to the instability wave-

length. In this case, the flow looks very similar to the

‘‘vortex crystal’’ observed previously in the two-layer

quasigeostrophic simulations of Arbic and Flierl (2004b)

and in simulations of the Euler equations with both

random and deterministic forcing (Jiménez and Guegan

2007). In our simulations, when either the (westward)

zonal-mean shear or the meridional mean shear were set

to zero, no vortex crystals were observed. For lower

bottom friction (rb and 0.1rb on Table 2), there remains

only one vortex at the scale of the instability wavelength,

whereas the flow is dominated by a single domain scale

barotropic vortex. This implies that the scale of the eddies

is a nonmonotonic function of bottom friction, consistent

with the results of Thompson and Young (2006). Note

that both the westward component of the mean shear and

a nonzero meridional velocity were needed to produce

these rings.

Barotropic instability and topographic interactions are

not present in the quasigeostrophic simulations; evidently,

baroclinic instability and nonlinear evolution are suffi-

cient to create the coherent rings, with comparable length

scales to the observed rings in MESO simulations. That is,

their formation is the result of self-organization and they

are not shed from zonal jets. In the particular case of lo-

cation 348S, 308E, the mean flow is close to the western

boundary current and the formation of the rings in the

primitive equation simulation is almost certainly affected

by the coastline. However, although less pronounced, the

formation of such rings occurs in both the QG and PE

simulations performed in other regions, far from bound-

ary currents. This spontaneous self-organization of the

flow into rings can be observed in movies of MESO sim-

ulations, which are available from the authors.

At 458S, 308E (Fig. 11, left), both the MESO and the

QG simulation show rings embedded between coherent,

relatively strong eastward jets. It seems likely that the jet

structures observed in MESO (and in the real ACC) are

due to the effects of topography, whereas the jets found

in the QG simulation are likely consequences of the low

energy state of the run. Other energy dissipation mech-

anisms or nonlocal effects might allow a higher equil-

ibrated energy level that suppresses b-driven jets. In

addition, the rings are larger in MESO than in the QG

simulation. This may be a consequence of the fact that

the total kinetic energy of the QG run is about one-third

that of the same region in the MESO simulation, resulting

in smaller structures in the QG simulations. Another

possibility is that larger rings might come from other re-

gions in MESO simulations.

c. Is there an inverse cascade?

Do the energy-containing eddies have a scale larger

than the instability wavelength? Here, we regard the

latter as corresponding to the injection wavelength in

forced–dissipated quasigeostrophic simulations. There

are then two different but related scales we consider: the

scale of the KE and the scale of the APE. Equivalently,

we may also consider the energy in the barotropic mode

(entirely kinetic) and the energy in the first and higher

baroclinic modes (kinetic plus potential).
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Spectra of barotropic and first baroclinic KE and the

APE are plotted in Figs. 10 and 11 (bottom). These

spectra support the idea that there is a moderate inverse

cascade for both barotropic and first baroclinic modes:

the energy peak is generally larger than the instability

wavelength, but only by a factor of a few. The equivalent

barotropic nature of the flow is noticeable in these cases:

the first baroclinic and barotropic kinetic energy spectra

have roughly the same shape. It is also apparent that the

total energy is dominated by the available potential

energy, which is always at scales larger than the in-

stability wavelength, consistent with a moderate inverse

cascade for the available potential energy in the quasi-

geostrophic simulations.

FIG. 10. Snapshots of surface speed (m s21) in (top) MESO and (bottom) the corresponding QG simulations. At

a given location, the domain length is the same for the MESO and QG snapshots: namely, L 5 64R1. (bottom) Energy

spectra from the MESO simulation. Also shown are the relevant length scales (and corresponding wavenumbers),

including the linear instability wavelength Linst (the prime denotes a secondary peak in the growth rate), the Rhines

scale 2p(V/b)1/2, and the first baroclinic wavelength 2pR1 (wavenumber k1 ’ 10 on the spectrum). The QG runs

presented are the one with high bottom friction (r 5 100rcontrol) for point 348S, 308E and the one with thermal

damping for point 348S, 808E; see Table 2 for more details.
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In regions where b is sufficiently large and where

energy levels are sufficiently low, strong eastward jets

form and separate regions of homogenized potential

vorticity in the upper layers, as in Fig. 10 (right). This is

of course consistent with the familiar notion that the

beta effect leads to anisotropic flows (Rhines 1975;

Vallis and Maltrud 1993). However, the Rhines scale

itself (LRh [ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
yrms/b

p
) does not manifest itself un-

ambiguously in the simulations: one might expect to see

a footprint of this length scale in the horizontal dy-

namics if the flow were fully barotropic, but, perhaps

because there is no clear separation between the in-

stability scale and the scale of the eddies, this is not

always the case. Point 608S, 808E is an exception, as il-

lustrated in Fig. 11: here, the peak in the kinetic energy

spectrum occurs at the Rhines scale and corresponds to

the zonal jet width in physical space (these zonal jets

have a negligible contribution to the instantaneous

surface velocity but do appear on a snapshot of the

barotropic velocity). This peak is not related to the in-

jection mechanism, because the instability wavelength

is at much shorter scale (and corresponds to the size of

the surface-intensified coherent rings in physical space).

In that case, there is effectively a clear inverse cascade

for the barotropic mode, with a cascade arrest at about

the Rhines scale.

FIG. 11. The QG runs presented with thermal damping. See Fig. 10 for legend and Table 2 for more details.
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d. On the locality hypothesis

The QG simulations performed at different locations

display very different flow structures. Although the

presence of the beta effect and surface-intensified strat-

ification are clearly key ingredients in setting some of the

flow properties, as is bottom friction, these parameters

vary only very slowly in space (stratification varies

mostly in the meridional direction) and are unlikely to be

responsible for the different regimes. By contrast, mean

shear profiles vary quite rapidly and are characterized by

quite fine-grained structures (Fig. 5); changing the mean

shear (e.g., by setting the mean zonal or meridional ve-

locities to zero) strongly affects the turbulent properties.

We conclude that in our QG simulations, the transi-

tion from one regime of self-organization (e.g., domi-

nated by zonal jets) to another regime (e.g., dominated

by coherent rings) occurs over the horizontal scales of

variations of the mean vertical shear. This shows the

limitation of locality hypothesis: in regions character-

ized by strong spatial variations of the mean shear (i.e.,

close to western boundary currents or to regions where

topographic steering is important), eddy properties at

one point may be due to instabilities occurring in the

same area but at a different place. This picture is con-

sistent with the fact that EKE maps are smooth (see,

e.g., Fig. 1, bottom).

5. Summary and conclusions

The aims of this paper have been to make progress in

understanding the processes that set the length scale,

vertical structure, and magnitudes of oceanic eddies. We

have proceeded by supposing the mean flow is given,

either from observations or, as in this paper, from

a primitive equation model. Using the profiles of shear

and stratification at various locations, we compute the

linear instability properties of the flow at all locations

and integrate a fully nonlinear quasigeostrophic model

driven by the mean state at six particular locations. The

degree to which the latter produces an eddy field of

similar energy, scale, and structure to that at the driving

location in the MESO simulation can be taken as a test

of the ‘‘locality hypothesis’’ (i.e., the idea that eddy

statistics are a function of the local mean state). Con-

sistent with this hypothesis, neither the linear stability

analysis nor nonlinear integrations take into account the

horizontal shear or time dependence of the flow, nor do

they allow eddies to advect in or out of the region.

Although only a only few ingredients have been taken

into account, a number of the nonlinear quasigeostrophic

simulations compare well with the primitive equation

simulations in the structure, scale, and magnitude of the

eddies. We conjecture that, in regions characterized by

strong and fast instabilities (time scales from days to

weeks), the length scale and the regime of self-organization

can be interpreted with local, nonlinear quasigeostrophic

simulations. However, because the simulations are local,

the propagation of eddies away from the source is ne-

glected, and, because the mean flow is imposed, possibly

important interactions between eddies and mean flows

are neglected. In regions characterized by weak, slow in-

stabilities, the dynamics seem to be governed by eddies

coming from more unstable regions. In some regions,

artificially high bottom drag or thermal damping were

necessary to equilibrate quasigeostrophic simulations,

suggesting that the primitive equations are equilibrating

by nonlocal mechanisms (e.g., the advection of the eddy

field away from a region of instability) or possibly through

ageostrophic sources of dissipation.

Perhaps most striking overall is the degree of in-

homogeneity of the eddy field in both the quasigeo-

strophic and primitive equation simulations. In some

regions, the flow is clearly very strongly eddying; in some

regions, it is less so. In some regions, the flow is dominated

by coherent structures (jets and rings); in some regions, it

is less so. The presence of such coherent structures in at

least three of the six cases investigated is surprisingly well

reproduced by the quasigeostrophic simulations. The flow

dynamics is generally more reminiscent of the phenom-

enology of equivalent barotropic, reduced gravity quasi-

geostrophic turbulence than of barotropic turbulence on

a b plane: in modal representation, barotropic and baro-

clinic flows are both dominant, but, in regimes of high

bottom friction, their ratio is such that the flow has the

structure of a two-vertical-layer system with most of the

dynamics confined in the upper layer.

Regarding the horizontal scale of the eddies, we find

that typically the eddy scale is somewhat larger than the

instability scale, suggesting a moderate inverse cascade

rather than an extended one (although the production of

zonal jets may be regarded as an extended transfer of

energy to grave horizontal scales in the zonal direction).

The final scale of the eddies is determined by a combi-

nation of bottom drag, the formation of coherent struc-

tures, and Rossby wave scattering, with no single effect

dominating anywhere. Regarding the vertical structure of

the eddies, nearly all of the kinetic energy is in the baro-

tropic and first baroclinic modes. In some regions, there

is a residual of surface-intensified flow, which seems to

arise from the linear instability problem, for which the

fastest-growing mode is commonly surface intensified.

Evidently, the vertical structure of the eddies are in

something of an intermediate regime between the pro-

file set by the most unstable mode and a tendency for

barotropization and first baroclinization. The nonlinear
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integrations generally show more agreement with the

primitive equations, in terms of horizontal and vertical

scales and structure, than do purely linear instability

calculations. Nonetheless, in many cases the fully equili-

brated flows do show a residual signature of the linear

instability, particularly in the near-surface enhancement

of the eddy flow.

The inhomogeneity of the flow and the lack of a single

flow regime—whether linear or highly turbulent—suggests

that we should not seek a single, all-encompassing theory

of mesoscale eddies. Nor would it be correct to base a pa-

rameterization of mesoscale eddy fluxes purely on the

basis of linear theory or purely on the presumption that the

flow is in a fully developed state of geostrophic turbulence.

The bulk of the Southern Ocean seems somewhere be-

tween these extremes. Ingredients for a full understanding

of the eddy field must come from linear theory, geo-

strophic turbulent cascade phenomenology, and theories

explaining the emergence and the dynamics of coherent

structures. A greater degree of idealization than the setting

of this paper, but with more realism than previous studies

with idealized profiles of shear and stratification, may be

needed to make progress in this area, and we are currently

pursuing this, with the hope of bridging the gap between

idealized studies of geostrophic turbulence and the real

ocean.
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APPENDIX

Linear Instability Computations

We linearize the quasigeostrophic Eq. (4a) and look

for normal modes of the form

c 5 Re[~ck,l(z)e2iv
k,l t1ikx1ily]. (6)

The growth rate Ivk,l (where I denotes the imaginary

part) and corresponding modes ~c
k,l

(z) are computed for

a range of wavenumbers k and l such that 1/(5R1) .

(k2 1 l2)1/2 , 5/R1, following Tulloch et al. (2011). The

maximum growth rate is defined as

vinst 5 max
l,k

[I(vk,l)],

and the corresponding instability wavelength is Linst 5

2p(kinst 1 linst)
21/2.
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