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Self-similar solutions to extension problems

Problems that don’t have smooth solutions can sometimes have
“wild” solutions.

I (Kaufman) Surjective rank–1 maps from the cube to the
square

I (joint w/ Wenger, Guth) Topologically nontrivial low-rank
maps

I (joint w/ Guth) Hölder signed-area preserving maps

I (joint w/ Wenger) Hölder maps to the Heisenberg group

I What else?
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I (joint w/ Wenger) Hölder maps to the Heisenberg group

I What else?



Kaufman’s construction

Theorem (Kaufman)

There is a Lipschitz map f : [0, 1]3 → [0, 1]2 which is surjective
and satisfies rankDf ≤ 1 almost everywhere.

By Sard’s Theorem, if f is smooth and rankDf ≤ 1 everywhere,
then f ([0, 1]3) has measure zero, so there is no smooth map
satisfying the theorem.

But there is a self-similar map!
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The Heisenberg group

Let H be the 3–dimensional nilpotent Lie group

H =


1 x z

0 1 y
0 0 1

 ∣∣∣∣∣∣ x , y , z ∈ R

 .

This contains a lattice

HZ = 〈X ,Y ,Z | [X ,Y ] = Z , all other pairs commute〉.
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From Cayley graph to sub-riemannian metric

I There is a distribution of
horizontal planes spanned
by red and blue edges.

I d(u, v) = inf{`(γ) | γ is a
horizontal curve from u to
v}

I st(x , y , z) = (tx , ty , t2z)
scales the metric by t

I The ball of radius ε is
roughly an ε× ε× ε2 box.

I Non-horizontal curves have
Hausdorff dimension 2.
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A geodesic in H

I Every horizontal curve is the
lift of a curve in the plane.

I The length of the lift is the
length of the original curve.

I The change in height along
the lift of a closed curve is
the signed area of the curve.

I By the isoperimetric
inequality, geodesics are
lifts of circular arcs.
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A surface in H

I No C2 surface can be
horizontal.

I (Gromov, Pansu) In fact,
any surface in H has
Hausdorff dimension at
least 3.

I What’s the shape of a
surface in H?
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What’s the shape of a surface in H?

Let 0 < α ≤ 1. A map f : X → Y is α–Hölder if there is some
L > 0 such that for all x1, x2 ∈ X ,

dY (f (x1), f (x2)) ≤ LdX (x1, x2)α.

Question (Gromov)

Let 0 < α ≤ 1. What are the α–Hölder maps from D2 or D3 to H?
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Hölder maps to H

I For α ≤ 1
2 , any smooth map to H is 1

2–Hölder.

If f is α–Hölder, then dimHaus f (X ) ≤ α−1 dimHaus X . So...

I (Gromov) For α > 2
3 , there is no α–Hölder embedding of D2

in H.

I (Züst) For α > 2
3 , any α–Hölder map from Dn to H factors

through a tree.

What happens when 1
2 < α < 2

3?
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If f is α–Hölder, then dimHaus f (X ) ≤ α−1 dimHaus X . So...

I (Gromov) For α > 2
3 , there is no α–Hölder embedding of D2
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I (Züst) For α > 2
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Hölder maps to H

Theorem (Wenger–Y.)

When 1
2 < α < 2

3 , the set of α–Hölder maps is dense in C0(Dn,H).

Lemma
Let γ : S1 → H be a Lipschitz closed curve in H and let
1
2 < α < 2

3 . Then γ extends to a map β : D2 → H which is
α–Hölder.

We need the following result:

Theorem
There is a c > 0 such that for any n ∈ N, a horizontal closed curve
γ : S1 → H of length L can be subdivided into cn3 horizontal
closed curves of length at most L

n .
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Maps with signed area zero

For a closed curve γ, let σ(γ) be the signed area of γ (the integral
of the winding number of γ). This is defined when γ is α–Hölder
with α > 1

2 .

A map f : D2 → R2 has null signed area if every
Lipschitz closed curve λ in D2 satisfies σ(f ◦ λ) = 0.

Corollary

Let γ : S1 → R2 be a Lipschitz closed curve with σ(γ) = 0 and let
1
2 < α < 2

3 . Then γ extends to a map β : D2 → R2 which is
α–Hölder and has null signed area.
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Signed-area preserving maps

I A map f : D2 → D2 is signed-area preserving if for every
Lipschitz closed curve γ, σ(γ) = σ(f ◦ γ).

I A smooth signed-area preserving map must preserve
orientation; in fact, the Jacobian must equal 1.

I (De Lellis–Hirsch–Inauen) When α > 2
3 , an α–Hölder

signed-area preserving map must preserve orientation. (The
image of a positively-oriented simple closed curve has
nonnegative winding number around any point.)

I (Guth–Y.)When 1
2 < α < 2

3 , the α–Hölder signed-area
preserving maps from D2 to R2 are dense in C0(D2,R2).

I Based on lemma: There is a c > 0 such that for any n ∈ N, a
curve γ : S1 → R2 of length L can be subdivided into
γ1, . . . , γcn3 such that `(γi ) ≤ L

n and σ(γi ) = σ(γ)
cn3

.
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Open questions

I What else can this be used for?



Hölder maps from R3 to H

Theorem (Wenger–Y.)

When 1
2 < α < 2

3 , the set of α–Hölder maps is dense in C0(Dn,H).


