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The isoperimetric problem

Q: Given a curve of length l in the plane, what’s the maximum
area it can enclose?

If γ : S1 → R2, let F (γ) be the “area” of γ. Then we want to
calculate:

i(n) = sup
α:S1→R2

`(α)≤n

f (α).
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Generalizing filling area

Q: Given a curve α : S1 → X , what’s its filling area?



The geometric group theory perspective

Suppose that X is a simply connected complex and G acts
geometrically (cocompactly, properly discontinuously, and by
isometries) on X . Then:

I Paths in X correspond to words in G

I Loops in X correspond to words in G that represent the
identity

I Discs in X correspond to proofs that a word represents the
identity

So by studying discs in X , we can get invariants related to the
combinatorial group theory of G !
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The geometric measure theory perspective

The Plateau problem: Is every curve in X filled by some minimal
surface?

Federer and Fleming constructed spaces of currents:

I Every curve corresponds to a 1-dimensional current, every
surface corresponds to a 2-dimensional current.

I The currents form a vector space, and the map sending a
current to its boundary is linear.

I Currents satisfy nice compactness properties.

So we can find minimal currents filling a curve by taking limits of
surfaces whose area approaches the infimum!
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Two filling area functions

Let X be a simply-connected simplicial complex or manifold.

Let α : S1 → X be a
closed curve.

δ(α) = inf
β:D2→X

β|S1=α

areaβ.

δX (n) = sup
α:S1→X
`(α)≤n

δ(α).

Let a be a 1-cycle.

FA(a) = inf
β a 2-chain

∂β=a

areaβ.

FAX (n) = sup
a a 1-cycle

`(a)≤n

FA(a).

We call δX the homotopical Dehn function and FAX the
homological Dehn function.
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Question: Can we find nice spaces (say, spaces with a geometric
action by some G ) where these are different?

Theorem (Abrams, Brady, Dani, Guralnik, Lee, Y.)

Yes.
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Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of
properties:

I Any discrete group acts geometrically on some discrete metric
space.

I G acts geometrically on a connected complex ↔ G is finitely
generated.

I G acts geometrically on a simply-connected complex ↔ G is
finitely presented.

I G acts geometrically on a n − 1-connected complex ↔ G is
Fn.

(Equivalently, G has a K (G , 1) with finite n-skeleton.)
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Homological finiteness properties

G is FPn if Z admits a projective resolution as a ZG -module which
is finitely generated in dimensions ≤ n.

I In particular, if G is Fn, we can take a K (G , 1) with finite
n-skeleton and consider its simplicial chain complex.

I Or if G acts geometrically on some homologically n-connected
space (i.e., with trivial H̃i (X ; Z) for i ≤ n).

So δ and FA are quantitative versions of F2 and FP2.
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Theorem (Bestvina-Brady)

Given a flag complex Y , there is a group KY such that KY acts
geometrically on a space consisting of infinitely many scaled copies
of Y . Indeed, this space is homotopy equivalent to an infinite
wedge product of Y ’s.

I KY is finitely generated if and only if Y is connected

I KY is finitely presented if and only if Y is simply connected

I KY is Fn if and only if Y is n − 1-connected

I KY is FPn if and only if Y is homologically n − 1-connected
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First version of construction

Suppose X is a space (not necessarily with a group action) with
large Dehn function,

and suppose Y is a complex such that

I H1(Y ) is trivial,

I π1(Y ) is nontrivial,

I π1(Y ) is generated by conjugates of γ.

Then if we glue infinitely many scaled copies of Y to X , the result
should have small homological Dehn function!
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Modifying the construction for groups

I Let Y be a flag complex with trivial H1 and nontrivial π1,
normally generated by a single element γ. Say γ is a path of
length 4 in Y .

I Then, by Bestvina-Brady, the level set LY is acted on by a
subgroup KY , and LY is made up of copies of Y .

I Furthermore, there is a copy of F2 × F2 in AY corresponding
to that square. Let E = KY ∩ F2 × F2.

I Then E acts on a subset LE ⊂ LY made up of copies of γ.
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Modifying the construction for groups, part 2

I So if we can find a copy of E in some other group D, we can
amalgamate D and KY together along E .

I There are semidirect products D = Fn o(φ,φ) F2 which contain
copies of E and have large Dehn functions.

I So we can construct an amalgam of D with several copies of
KY , glued along E . This is a group with large homotopical
Dehn function, but small homological Dehn function.
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Theorem (ABDGLY)

There is a subgroup of a CAT(0) group which has FA(n) . n5 but
δ(n) & nd for any d, or even δ(n) & en.

In fact, if δk(n) is the k-th order homotopical Dehn function and
FAk is the corresponding homological Dehn function, then:

δ ≺ FA δ � FA

??? Yes!(ABDGLY)

δ2 ≺ FA2 δ2 � FA2

Yes(Y) No(Gromov, White)

δ3+ ≺ FA3+ δ3+ � FA3+

No(Brady-Bridson-Forester-Shankar) No(Gromov, White)
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Open question: Is there a finitely presented group with δ � FA?

This would have to be a group where it’s harder to fill two curves
of length n/2 than to fill any curve of length n.
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