Homological and homotopical filling functions

Robert Young
University of Toronto

Feb. 2012

The isoperimetric problem

Q: Given a curve of length / in the plane, what's the maximum area it can enclose?

The isoperimetric problem

Q: Given a curve of length / in the plane, what's the maximum area it can enclose?
If $\gamma: S^{1} \rightarrow \mathbb{R}^{2}$, let $F(\gamma)$ be the "area" of γ. Then we want to calculate:

$$
i(n)=\sup _{\substack{\alpha: S^{1} \rightarrow \mathbb{R}^{2} \\ \ell(\alpha) \leq n}} f(\alpha) .
$$

Generalizing filling area

Q: Given a curve $\alpha: S^{1} \rightarrow X$, what's its filling area?

The geometric group theory perspective

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

The geometric group theory perspective

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G

The geometric group theory perspective

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity

The geometric group theory perspective

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity
- Discs in X correspond to proofs that a word represents the identity

The geometric group theory perspective

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity
- Discs in X correspond to proofs that a word represents the identity
So by studying discs in X, we can get invariants related to the combinatorial group theory of G !

The geometric measure theory perspective

The Plateau problem: Is every curve in X filled by some minimal surface?

The geometric measure theory perspective

The Plateau problem: Is every curve in X filled by some minimal surface?
Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.

The geometric measure theory perspective

The Plateau problem: Is every curve in X filled by some minimal surface?
Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
- The currents form a vector space, and the map sending a current to its boundary is linear.

The geometric measure theory perspective

The Plateau problem: Is every curve in X filled by some minimal surface?
Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
- The currents form a vector space, and the map sending a current to its boundary is linear.
- Currents satisfy nice compactness properties.

The geometric measure theory perspective

The Plateau problem: Is every curve in X filled by some minimal surface?
Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
- The currents form a vector space, and the map sending a current to its boundary is linear.
- Currents satisfy nice compactness properties.

So we can find minimal currents filling a curve by taking limits of surfaces whose area approaches the infimum!

Two filling area functions

Let X be a simply-connected simplicial complex or manifold.

Two filling area functions

Let X be a simply-connected simplicial complex or manifold.
Let $\alpha: S^{1} \rightarrow X$ be a
closed curve.

$$
\delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\ \beta\right|_{S^{1}}=\alpha}} \text { area } \beta
$$

Two filling area functions

Let X be a simply-connected simplicial complex or manifold.
Let $\alpha: S^{1} \rightarrow X$ be a Let a be a 1-cycle. closed curve.

$$
\delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\ \beta\right|_{s^{1}}=\alpha}} \text { area } \beta
$$

$$
\mathrm{FA}(a)=\inf _{\beta \text { a } 2 \text {-chain }}^{\partial \beta=a}<1 \text { area } \beta .
$$

Two filling area functions

Let X be a simply-connected simplicial complex or manifold.
Let $\alpha: S^{1} \rightarrow X$ be a

$$
\text { Let } a \text { be a 1-cycle. }
$$ closed curve.

$$
\begin{aligned}
& \delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\
\beta\right|_{S^{1}}=\alpha}} \text { area } \beta . \\
& \delta X(n)=\sup _{\substack{\alpha: S^{1} \rightarrow X \\
\ell(\alpha) \leq n}} \delta(\alpha) .
\end{aligned}
$$

$$
\mathrm{FA}(a)=\inf _{\beta \text { a } 2 \text {-chain }}^{\partial \beta=a}<1 \text { area } \beta
$$

Two filling area functions

Let X be a simply-connected simplicial complex or manifold.
Let $\alpha: S^{1} \rightarrow X$ be a

$$
\text { Let } a \text { be a 1-cycle. }
$$ closed curve.

$$
\begin{array}{ll}
\delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\
\beta\right|_{S^{1}}=\alpha}} \text { area } \beta . & \mathrm{FA}(a)=\inf _{\substack{\beta \text { a } 2 \text {-chain } \\
\partial \beta=a}} \text { area } \beta . \\
\delta X(n)=\sup _{\substack{\alpha: S^{1} \rightarrow X \\
\ell(\alpha) \leq n}} \delta(\alpha) . & \mathrm{FA}_{X}(n)=\sup _{\substack{a \text { a } 1 \text {-cycle } \\
\ell(a) \leq n}} \mathrm{FA}(a) .
\end{array}
$$

Two filling area functions

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha: S^{1} \rightarrow X$ be a closed curve.

$$
\begin{array}{ll}
\text { et } \alpha: S^{1} \rightarrow X \text { be a } & \text { Let a be a 1-cycle. } \\
\text { osed curve. } & \text { FA }(a)=\inf _{\substack{\beta \text { a -chain } \\
\partial \beta=a}} \text { area } \beta . \\
\delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\
\beta\right|_{S^{1}}=\alpha}} \text { area } \beta . & \operatorname{FA}_{X}(n)=\sup _{\substack{a \text { a } 1 \text {-cycle } \\
\ell(a) \leq n}} \operatorname{FA}(a) .
\end{array}
$$

We call δ_{X} the homotopical Dehn function and FA X the homological Dehn function.

Question: Can we find nice spaces (say, spaces with a geometric action by some G) where these are different?

Question: Can we find nice spaces (say, spaces with a geometric action by some G) where these are different?

Theorem (Abrams, Brady, Dani, Guralnik, Lee, Y.)
Yes.

Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.

Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex $\leftrightarrow G$ is finitely generated.

Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex $\leftrightarrow G$ is finitely generated.
- G acts geometrically on a simply-connected complex $\leftrightarrow G$ is finitely presented.

Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex $\leftrightarrow G$ is finitely generated.
- G acts geometrically on a simply-connected complex $\leftrightarrow G$ is finitely presented.
- G acts geometrically on a $n-1$-connected complex $\leftrightarrow G$ is \mathcal{F}_{n}.

Homotopical finiteness properties

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex $\leftrightarrow G$ is finitely generated.
- G acts geometrically on a simply-connected complex $\leftrightarrow G$ is finitely presented.
- G acts geometrically on a n-1-connected complex $\leftrightarrow G$ is \mathcal{F}_{n}.
(Equivalently, G has a $K(G, 1)$ with finite n-skeleton.)

Homological finiteness properties

G is FP_{n} if \mathbb{Z} admits a projective resolution as a $\mathbb{Z} G$-module which is finitely generated in dimensions $\leq n$.

Homological finiteness properties

G is FP_{n} if \mathbb{Z} admits a projective resolution as a $\mathbb{Z} G$-module which is finitely generated in dimensions $\leq n$.

- In particular, if G is \mathcal{F}_{n}, we can take a $K(G, 1)$ with finite n-skeleton and consider its simplicial chain complex.

Homological finiteness properties

G is FP_{n} if \mathbb{Z} admits a projective resolution as a $\mathbb{Z} G$-module which is finitely generated in dimensions $\leq n$.

- In particular, if G is \mathcal{F}_{n}, we can take a $K(G, 1)$ with finite n-skeleton and consider its simplicial chain complex.
- Or if G acts geometrically on some homologically n-connected space (i.e., with trivial $\widetilde{H}_{i}(X ; \mathbb{Z})$ for $i \leq n$).

Homological finiteness properties

G is FP_{n} if \mathbb{Z} admits a projective resolution as a $\mathbb{Z} G$-module which is finitely generated in dimensions $\leq n$.

- In particular, if G is \mathcal{F}_{n}, we can take a $K(G, 1)$ with finite n-skeleton and consider its simplicial chain complex.
- Or if G acts geometrically on some homologically n-connected space (i.e., with trivial $\widetilde{H}_{i}(X ; \mathbb{Z})$ for $i \leq n$).
So δ and FA are quantitative versions of \mathcal{F}_{2} and FP_{2}.

Theorem (Bestvina-Brady)

Given a flag complex Y, there is a group K_{Y} such that K_{Y} acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y 's.

Theorem (Bestvina-Brady)

Given a flag complex Y, there is a group K_{Y} such that K_{Y} acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y 's.

- K_{Y} is finitely generated if and only if Y is connected

Theorem (Bestvina-Brady)

Given a flag complex Y, there is a group K_{Y} such that K_{Y} acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y 's.

- K_{Y} is finitely generated if and only if Y is connected
- K_{Y} is finitely presented if and only if Y is simply connected

Theorem (Bestvina-Brady)

Given a flag complex Y, there is a group K_{Y} such that K_{Y} acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y 's.

- K_{Y} is finitely generated if and only if Y is connected
- K_{Y} is finitely presented if and only if Y is simply connected
- K_{Y} is \mathcal{F}_{n} if and only if Y is n-1-connected
- K_{Y} is FP_{n} if and only if Y is homologically n - 1-connected

First version of construction

Suppose X is a space (not necessarily with a group action) with large Dehn function,

First version of construction

Suppose X is a space (not necessarily with a group action) with large Dehn function, and suppose Y is a complex such that

- $H_{1}(Y)$ is trivial,
- $\pi_{1}(Y)$ is nontrivial,
- $\pi_{1}(Y)$ is generated by conjugates of γ.

First version of construction

Suppose X is a space (not necessarily with a group action) with large Dehn function, and suppose Y is a complex such that

- $H_{1}(Y)$ is trivial,
- $\pi_{1}(Y)$ is nontrivial,
- $\pi_{1}(Y)$ is generated by conjugates of γ.

Then if we glue infinitely many scaled copies of Y to X, the result should have small homological Dehn function!

Modifying the construction for groups

- Let Y be a flag complex with trivial H_{1} and nontrivial π_{1}, normally generated by a single element γ. Say γ is a path of length 4 in Y.

Modifying the construction for groups

- Let Y be a flag complex with trivial H_{1} and nontrivial π_{1}, normally generated by a single element γ. Say γ is a path of length 4 in Y.
- Then, by Bestvina-Brady, the level set L_{Y} is acted on by a subgroup K_{Y}, and L_{Y} is made up of copies of Y.

Modifying the construction for groups

- Let Y be a flag complex with trivial H_{1} and nontrivial π_{1}, normally generated by a single element γ. Say γ is a path of length 4 in Y.
- Then, by Bestvina-Brady, the level set L_{Y} is acted on by a subgroup K_{Y}, and L_{Y} is made up of copies of Y.
- Furthermore, there is a copy of $F_{2} \times F_{2}$ in A_{Y} corresponding to that square. Let $E=K_{Y} \cap F_{2} \times F_{2}$.

Modifying the construction for groups

- Let Y be a flag complex with trivial H_{1} and nontrivial π_{1}, normally generated by a single element γ. Say γ is a path of length 4 in Y.
- Then, by Bestvina-Brady, the level set L_{Y} is acted on by a subgroup K_{Y}, and L_{Y} is made up of copies of Y.
- Furthermore, there is a copy of $F_{2} \times F_{2}$ in A_{Y} corresponding to that square. Let $E=K_{Y} \cap F_{2} \times F_{2}$.
- Then E acts on a subset $L_{E} \subset L_{Y}$ made up of copies of γ.

Modifying the construction for groups, part 2

- So if we can find a copy of E in some other group D, we can amalgamate D and K_{Y} together along E.

Modifying the construction for groups, part 2

- So if we can find a copy of E in some other group D, we can amalgamate D and K_{Y} together along E.
- There are semidirect products $D=F_{n} \rtimes_{(\phi, \phi)} F_{2}$ which contain copies of E and have large Dehn functions.

Modifying the construction for groups, part 2

- So if we can find a copy of E in some other group D, we can amalgamate D and K_{Y} together along E.
- There are semidirect products $D=F_{n} \rtimes_{(\phi, \phi)} F_{2}$ which contain copies of E and have large Dehn functions.
- So we can construct an amalgam of D with several copies of K_{Y}, glued along E. This is a group with large homotopical Dehn function, but small homological Dehn function.

Theorem (ABDGLY)

There is a subgroup of a $\operatorname{CAT}(0)$ group which has $\mathrm{FA}(n) \lesssim n^{5}$ but $\delta(n) \gtrsim n^{d}$ for any d, or even $\delta(n) \gtrsim e^{n}$.

Theorem (ABDGLY)

There is a subgroup of a $\operatorname{CAT}(0)$ group which has $\mathrm{FA}(n) \lesssim n^{5}$ but $\delta(n) \gtrsim n^{d}$ for any d, or even $\delta(n) \gtrsim e^{n}$.
In fact, if $\delta^{k}(n)$ is the k-th order homotopical Dehn function and FA ${ }^{k}$ is the corresponding homological Dehn function, then:

Theorem (ABDGLY)

There is a subgroup of a $\operatorname{CAT}(0)$ group which has $\mathrm{FA}(n) \lesssim n^{5}$ but $\delta(n) \gtrsim n^{d}$ for any d, or even $\delta(n) \gtrsim e^{n}$.
In fact, if $\delta^{k}(n)$ is the k-th order homotopical Dehn function and FA ${ }^{k}$ is the corresponding homological Dehn function, then:

$$
\begin{array}{cc}
\delta \prec \mathrm{FA} & \begin{array}{c}
\delta \succ \mathrm{FA} \\
\\
\text { Yes! }(\mathrm{ABDGLY})
\end{array} \\
\delta^{2} \prec \mathrm{FA}^{2} & \delta^{2} \succ \mathrm{FA}^{2} \\
& \\
\delta^{3+} \prec \mathrm{FA}^{3+} & \delta^{3+} \succ \mathrm{FA}^{3+}
\end{array}
$$

Theorem (ABDGLY)

There is a subgroup of a $\operatorname{CAT}(0)$ group which has $\mathrm{FA}(n) \lesssim n^{5}$ but $\delta(n) \gtrsim n^{d}$ for any d, or even $\delta(n) \gtrsim e^{n}$.
In fact, if $\delta^{k}(n)$ is the k-th order homotopical Dehn function and $F A^{k}$ is the corresponding homological Dehn function, then:

$$
\begin{array}{cc}
\delta \prec \mathrm{FA} & \begin{array}{c}
\delta \succ \mathrm{FA} \\
\\
\\
\\
\delta^{2} \prec \mathrm{FA}^{2} \\
\mathrm{Yes}(\mathrm{Y})
\end{array} \\
& \\
\delta^{3+} \prec \mathrm{FA}^{3+} & \delta^{2} \succ \mathrm{FA}^{2} \\
& \\
& \delta^{3+} \succ \mathrm{FA}^{3+}
\end{array}
$$

Theorem (ABDGLY)

There is a subgroup of a $\operatorname{CAT}(0)$ group which has $\mathrm{FA}(n) \lesssim n^{5}$ but $\delta(n) \gtrsim n^{d}$ for any d, or even $\delta(n) \gtrsim e^{n}$.
In fact, if $\delta^{k}(n)$ is the k-th order homotopical Dehn function and FA k is the corresponding homological Dehn function, then:

$$
\begin{array}{cc}
\delta \prec \mathrm{FA} & \delta \succ \mathrm{FA} \\
& \text { Yes! }(\mathrm{ABDGLY}) \\
\delta^{2} \prec \mathrm{FA}^{2} & \delta^{2} \succ \mathrm{FA}^{2} \\
\mathrm{Yes}(\mathrm{Y}) & \mathrm{No}(\text { Gromov, Whit } \\
\delta^{3+} \prec \mathrm{FA}^{3+} & \delta^{3+} \succ \mathrm{FA}^{3+}
\end{array}
$$

Theorem (ABDGLY)

There is a subgroup of a $\operatorname{CAT}(0)$ group which has $\mathrm{FA}(n) \lesssim n^{5}$ but $\delta(n) \gtrsim n^{d}$ for any d, or even $\delta(n) \gtrsim e^{n}$.
In fact, if $\delta^{k}(n)$ is the k-th order homotopical Dehn function and FA ${ }^{k}$ is the corresponding homological Dehn function, then:

$$
\begin{array}{cc}
\delta \prec \mathrm{FA} & \delta \succ \mathrm{FA} \\
& \text { Yes!(ABDGLY) }
\end{array}
$$

$$
\begin{gathered}
\delta^{2} \prec \mathrm{FA}^{2} \\
Y \operatorname{es}(\mathrm{Y})
\end{gathered}
$$

$$
\delta^{3+} \prec \mathrm{FA}^{3+}
$$

No(Brady-Bridson-Forester-Shankar)
$\delta^{2} \succ \mathrm{FA}^{2}$
No(Gromov, White)

$$
\delta^{3+} \succ \mathrm{FA}^{3+}
$$

No(Gromov, White)

Theorem (ABDGLY)

There is a subgroup of a $\operatorname{CAT}(0)$ group which has $\mathrm{FA}(n) \lesssim n^{5}$ but $\delta(n) \gtrsim n^{d}$ for any d, or even $\delta(n) \gtrsim e^{n}$.
In fact, if $\delta^{k}(n)$ is the k-th order homotopical Dehn function and FA ${ }^{k}$ is the corresponding homological Dehn function, then:

$$
\begin{array}{cc}
\delta \prec \mathrm{FA} & \delta \succ \mathrm{FA} \\
? ? ? & \text { Yes!(ABDGLY) } \\
\delta^{2} \prec \mathrm{FA}^{2} & \delta^{2} \succ \mathrm{FA}^{2} \\
\mathrm{Yes}(\mathrm{Y}) & \mathrm{No}(\text { Gromov, White }) \\
\delta^{3+} \prec \mathrm{FA}^{3+} & \delta^{3+} \succ \mathrm{FA}^{3+} \\
\text { No(Brady-Bridson-Forester-Shankar) } & \mathrm{No}(\text { Gromov, White })
\end{array}
$$

Open question: Is there a finitely presented group with $\delta \lesssim \mathrm{FA}$?

Open question: Is there a finitely presented group with $\delta \lesssim$ FA? This would have to be a group where it's harder to fill two curves of length $n / 2$ than to fill any curve of length n.

