Homological and homotopical filling functions

Robert Young University of Toronto

Feb. 2012

Q: Given a curve of length *I* in the plane, what's the maximum area it can enclose?

Q: Given a curve of length I in the plane, what's the maximum area it can enclose? If $\gamma : S^1 \to \mathbb{R}^2$, let $F(\gamma)$ be the "area" of γ . Then we want to calculate:

$$i(n) = \sup_{\substack{\alpha: S^1 \to \mathbb{R}^2 \\ \ell(\alpha) \le n}} f(\alpha).$$

Generalizing filling area

Q: Given a curve $\alpha: S^1 \to X$, what's its filling area?

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

Paths in X correspond to words in G

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity
- Discs in X correspond to proofs that a word represents the identity

Suppose that X is a simply connected complex and G acts geometrically (cocompactly, properly discontinuously, and by isometries) on X. Then:

- Paths in X correspond to words in G
- Loops in X correspond to words in G that represent the identity
- Discs in X correspond to proofs that a word represents the identity

So by studying discs in X, we can get invariants related to the combinatorial group theory of G!

The Plateau problem: Is every curve in *X* filled by some minimal surface?

The Plateau problem: Is every curve in *X* filled by some minimal surface?

Federer and Fleming constructed spaces of currents:

Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.

The Plateau problem: Is every curve in *X* filled by some minimal surface?

Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
- The currents form a vector space, and the map sending a current to its boundary is linear.

The Plateau problem: Is every curve in *X* filled by some minimal surface?

Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
- The currents form a vector space, and the map sending a current to its boundary is linear.
- Currents satisfy nice compactness properties.

The Plateau problem: Is every curve in *X* filled by some minimal surface?

Federer and Fleming constructed spaces of currents:

- Every curve corresponds to a 1-dimensional current, every surface corresponds to a 2-dimensional current.
- The currents form a vector space, and the map sending a current to its boundary is linear.
- Currents satisfy nice compactness properties.

So we can find minimal currents filling a curve by taking limits of surfaces whose area approaches the infimum!

Let X be a simply-connected simplicial complex or manifold.

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha: S^1 \to X$ be a closed curve.

$$\delta(\alpha) = \inf_{\substack{\beta: D^2 \to X \\ \beta|_{S^1} = \alpha}} \operatorname{area} \beta.$$

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha : S^1 \to X$ be a Let *a* be a 1-cycle. closed curve.

$$\delta(\alpha) = \inf_{\substack{\beta:D^2 \to X \\ \beta|_{S^1} = \alpha}} \operatorname{area} \beta. \qquad \qquad \mathsf{FA}(a) = \inf_{\substack{\beta \text{ a 2-chain} \\ \partial\beta = a}} \operatorname{area} \beta.$$

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha : S^1 \to X$ be a Let *a* be a 1-cycle. closed curve.

$$\delta(\alpha) = \inf_{\substack{\beta:D^2 \to X \\ \beta|_{S^1} = \alpha}} \operatorname{area} \beta. \qquad \qquad \mathsf{FA}(a) = \inf_{\substack{\beta \text{ a 2-chain} \\ \partial\beta = a}} \operatorname{area} \beta.$$

$$\delta_X(n) = \sup_{\substack{\alpha: S^1 \to X \\ \ell(\alpha) \le n}} \delta(\alpha).$$

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha : S^1 \to X$ be a Let a be a 1-cycle. closed curve.

$$\delta(\alpha) = \inf_{\substack{\beta: D^2 \to X \\ \beta|_{S^1} = \alpha}} \operatorname{area} \beta. \qquad \mathsf{FA}(a) = \inf_{\substack{\beta \text{ a } 2\text{-chain} \\ \partial\beta = a}} \operatorname{area} \beta.$$

$$\delta_X(n) = \sup_{\substack{\alpha: S^1 \to X \\ \ell(\alpha) \le n}} \delta(\alpha). \qquad \qquad \mathsf{FA}_X(n) = \sup_{\substack{a \text{ a 1-cycle} \\ \ell(a) \le n}} \mathsf{FA}(a).$$

Let X be a simply-connected simplicial complex or manifold.

Let $\alpha : S^1 \to X$ be a Let a be a 1-cycle. closed curve.

$$\delta(\alpha) = \inf_{\substack{\beta: D^2 \to X \\ \beta|_{S^1} = \alpha}} \operatorname{area} \beta. \qquad \qquad \mathsf{FA}(a) = \inf_{\substack{\beta \text{ a 2-chain} \\ \partial\beta = a}} \operatorname{area} \beta.$$

$$\delta_X(n) = \sup_{\substack{\alpha: S^1 \to X \\ \ell(\alpha) \le n}} \delta(\alpha). \qquad \qquad \mathsf{FA}_X(n) = \sup_{\substack{a \text{ a 1-cycle} \\ \ell(a) \le n}} \mathsf{FA}(a).$$

We call δ_X the homotopical Dehn function and FA_X the homological Dehn function.

Question: Can we find nice spaces (say, spaces with a geometric action by some G) where these are different?

Question: Can we find nice spaces (say, spaces with a geometric action by some G) where these are different?

Theorem (Abrams, Brady, Dani, Guralnik, Lee, Y.) *Yes.*

Finitely generated and finitely presented are part of a spectrum of properties:

 Any discrete group acts geometrically on some discrete metric space.

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex \leftrightarrow G is finitely generated.

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex \leftrightarrow G is finitely generated.
- G acts geometrically on a simply-connected complex \leftrightarrow G is finitely presented.

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex \leftrightarrow G is finitely generated.
- G acts geometrically on a simply-connected complex \leftrightarrow G is finitely presented.
- *G* acts geometrically on a n-1-connected complex \leftrightarrow *G* is \mathcal{F}_n .

Finitely generated and finitely presented are part of a spectrum of properties:

- Any discrete group acts geometrically on some discrete metric space.
- G acts geometrically on a connected complex \leftrightarrow G is finitely generated.
- G acts geometrically on a simply-connected complex \leftrightarrow G is finitely presented.
- *G* acts geometrically on a n-1-connected complex \leftrightarrow *G* is \mathcal{F}_n .

(Equivalently, G has a K(G, 1) with finite *n*-skeleton.)

G is FP_n if \mathbb{Z} admits a projective resolution as a $\mathbb{Z}G$ -module which is finitely generated in dimensions $\leq n$.

G is FP_n if \mathbb{Z} admits a projective resolution as a $\mathbb{Z}G$ -module which is finitely generated in dimensions $\leq n$.

► In particular, if G is F_n, we can take a K(G,1) with finite n-skeleton and consider its simplicial chain complex.

G is FP_n if \mathbb{Z} admits a projective resolution as a $\mathbb{Z}G$ -module which is finitely generated in dimensions $\leq n$.

- In particular, if G is F_n, we can take a K(G,1) with finite n-skeleton and consider its simplicial chain complex.
- Or if G acts geometrically on some homologically n-connected space (i.e., with trivial H̃_i(X; ℤ) for i ≤ n).

G is FP_n if \mathbb{Z} admits a projective resolution as a $\mathbb{Z}G$ -module which is finitely generated in dimensions $\leq n$.

- ► In particular, if G is F_n, we can take a K(G,1) with finite n-skeleton and consider its simplicial chain complex.
- Or if G acts geometrically on some homologically n-connected space (i.e., with trivial H̃_i(X; ℤ) for i ≤ n).

So δ and FA are quantitative versions of \mathcal{F}_2 and FP₂.

Given a flag complex Y, there is a group K_Y such that K_Y acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y's.

Given a flag complex Y, there is a group K_Y such that K_Y acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y's.

► *K_Y* is finitely generated if and only if *Y* is connected

Given a flag complex Y, there is a group K_Y such that K_Y acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y's.

- ► K_Y is finitely generated if and only if Y is connected
- ► K_Y is finitely presented if and only if Y is simply connected

Given a flag complex Y, there is a group K_Y such that K_Y acts geometrically on a space consisting of infinitely many scaled copies of Y. Indeed, this space is homotopy equivalent to an infinite wedge product of Y's.

- ► *K_Y* is finitely generated if and only if *Y* is connected
- ► K_Y is finitely presented if and only if Y is simply connected
- K_Y is \mathcal{F}_n if and only if Y is n-1-connected
- K_Y is FP_n if and only if Y is homologically n 1-connected

Suppose X is a space (not necessarily with a group action) with large Dehn function,

Suppose X is a space (not necessarily with a group action) with large Dehn function, and suppose Y is a complex such that

- $H_1(Y)$ is trivial,
- $\pi_1(Y)$ is nontrivial,
- $\pi_1(Y)$ is generated by conjugates of γ .

Suppose X is a space (not necessarily with a group action) with large Dehn function, and suppose Y is a complex such that

- ► H₁(Y) is trivial,
- $\pi_1(Y)$ is nontrivial,
- $\pi_1(Y)$ is generated by conjugates of γ .

Then if we glue infinitely many scaled copies of Y to X, the result should have small homological Dehn function!

Let Y be a flag complex with trivial H₁ and nontrivial π₁, normally generated by a single element γ. Say γ is a path of length 4 in Y.

- Let Y be a flag complex with trivial H₁ and nontrivial π₁, normally generated by a single element γ. Say γ is a path of length 4 in Y.
- ► Then, by Bestvina-Brady, the level set L_Y is acted on by a subgroup K_Y, and L_Y is made up of copies of Y.

- Let Y be a flag complex with trivial H₁ and nontrivial π₁, normally generated by a single element γ. Say γ is a path of length 4 in Y.
- ► Then, by Bestvina-Brady, the level set L_Y is acted on by a subgroup K_Y, and L_Y is made up of copies of Y.
- Furthermore, there is a copy of F₂ × F₂ in A_Y corresponding to that square. Let E = K_Y ∩ F₂ × F₂.

- Let Y be a flag complex with trivial H₁ and nontrivial π₁, normally generated by a single element γ. Say γ is a path of length 4 in Y.
- ► Then, by Bestvina-Brady, the level set L_Y is acted on by a subgroup K_Y, and L_Y is made up of copies of Y.
- Furthermore, there is a copy of F₂ × F₂ in A_Y corresponding to that square. Let E = K_Y ∩ F₂ × F₂.
- Then *E* acts on a subset $L_E \subset L_Y$ made up of copies of γ .

So if we can find a copy of E in some other group D, we can amalgamate D and K_Y together along E.

- So if we can find a copy of E in some other group D, we can amalgamate D and K_Y together along E.
- ► There are semidirect products D = F_n ⋊_(φ,φ) F₂ which contain copies of E and have large Dehn functions.

- So if we can find a copy of E in some other group D, we can amalgamate D and K_Y together along E.
- ► There are semidirect products D = F_n ⋊_(φ,φ) F₂ which contain copies of E and have large Dehn functions.
- So we can construct an amalgam of D with several copies of K_Y, glued along E. This is a group with large homotopical Dehn function, but small homological Dehn function.

There is a subgroup of a CAT(0) group which has $FA(n) \leq n^5$ but $\delta(n) \geq n^d$ for any d, or even $\delta(n) \geq e^n$.

There is a subgroup of a CAT(0) group which has $FA(n) \leq n^5$ but $\delta(n) \geq n^d$ for any d, or even $\delta(n) \geq e^n$.

In fact, if $\delta^k(n)$ is the *k*-th order homotopical Dehn function and FA^{*k*} is the corresponding homological Dehn function, then:

There is a subgroup of a CAT(0) group which has $FA(n) \leq n^5$ but $\delta(n) \geq n^d$ for any d, or even $\delta(n) \geq e^n$.

In fact, if $\delta^k(n)$ is the *k*-th order homotopical Dehn function and FA^{*k*} is the corresponding homological Dehn function, then:

$$\delta \prec \mathsf{FA}$$
 $\delta \succ \mathsf{FA}$
Yes!(ABDGLY)

 $\delta^2 \prec \mathsf{FA}^2 \qquad \qquad \delta^2 \succ \mathsf{FA}^2$

$\delta^{3+} \prec FA^{3+}$	$\delta^{3+} \succ$	FA^{3+}

There is a subgroup of a CAT(0) group which has $FA(n) \leq n^5$ but $\delta(n) \geq n^d$ for any d, or even $\delta(n) \geq e^n$.

In fact, if $\delta^k(n)$ is the *k*-th order homotopical Dehn function and FA^{*k*} is the corresponding homological Dehn function, then:

$\delta \prec FA$	$\delta \succ FA$
	Yes!(ABDGLY)

$\delta^2 \prec FA^2$	$\delta^2 \succ FA^2$
Yes(Y)	
$\delta^{3+} \prec FA^{3+}$	$\delta^{3+} \succ FA^{3+}$

There is a subgroup of a CAT(0) group which has $FA(n) \leq n^5$ but $\delta(n) \geq n^d$ for any d, or even $\delta(n) \geq e^n$.

In fact, if $\delta^k(n)$ is the *k*-th order homotopical Dehn function and FA^{*k*} is the corresponding homological Dehn function, then:

 $\delta \prec \mathsf{FA}$ $\delta \succ \mathsf{FA}$ Yes!(ABDGLY)

$\delta^2 \prec FA^2$	$\delta^2 \succ FA^2$
Yes(Y)	No(Gromov, White)

 $\delta^{3+} \prec \mathsf{FA}^{3+}$

 $\delta^{3+} \succ FA^{3+}$ No(Gromov, White)

There is a subgroup of a CAT(0) group which has $FA(n) \leq n^5$ but $\delta(n) \geq n^d$ for any d, or even $\delta(n) \geq e^n$.

In fact, if $\delta^k(n)$ is the *k*-th order homotopical Dehn function and FA^{*k*} is the corresponding homological Dehn function, then:

 $\delta \prec \mathsf{FA}$ $\delta \succ \mathsf{FA}$ Yes!(ABDGLY)

 $\begin{array}{ll} \delta^2 \prec \mathsf{FA}^2 & \delta^2 \succ \mathsf{FA}^2 \\ \mathsf{Yes}(\mathsf{Y}) & \mathsf{No}(\mathsf{Gromov}, \mathsf{White}) \end{array}$

 $\delta^{3+} \prec FA^{3+}$ $\delta^{3+} \succ FA^{3+}$ No(Brady-Bridson-Forester-Shankar) No(Gromov, White)

There is a subgroup of a CAT(0) group which has $FA(n) \leq n^5$ but $\delta(n) \geq n^d$ for any d, or even $\delta(n) \geq e^n$. In fact, if $\delta^k(n)$ is the *k*-th order homotopical Dehn function and FA^k is the corresponding homological Dehn function, then: $\delta \prec FA$??? Yes!(ABDGLY)

 $\begin{aligned} \delta^2 \prec \mathsf{FA}^2 & \delta^2 \succ \mathsf{FA}^2 \\ \mathsf{Yes}(\mathsf{Y}) & \mathsf{No}(\mathsf{Gromov}, \mathsf{White}) \end{aligned}$

 $\delta^{3+} \prec FA^{3+}$ $\delta^{3+} \succ FA^{3+}$ No(Brady-Bridson-Forester-Shankar) No(Gromov, White) Open question: Is there a finitely presented group with $\delta \lesssim$ FA?

Open question: Is there a finitely presented group with $\delta \lesssim FA$? This would have to be a group where it's harder to fill two curves of length n/2 than to fill any curve of length n.