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Note: Most of the illustrations in these notes are omitted. Please draw
your own!

5. The 3-dimensional model geometries

Yesterday, we looked at a lot of different ways to construct 3-manifolds;
today, we’ll look at how to construct geometric structures on them.

A 3-manifold has a geometric structure if it’s locally isometric to some
homogeneous model space. Our model spaces will fall into three categories:

5.1. Spaces of constant curvature. The two-dimensional model geome-
tries (the plane, the sphere, and the hyperbolic plane) were all surfaces of
constant curvature, and they all have 3-dimensional analogues: R3, S3, and
hyperbolic 3-space.

5.1.1. R3. Euclidean space is homogeneous (all points are symmetric). In
fact, it’s isotropic (all directions are symmetric). Several 3-manifolds have
euclidean structures. The easiest one to describe is the 3-torus, but there
are a total of 10 of them.

Example 5.1. One flat manifold comes from gluing the faces of a hexagonal
prism – each rectangular face is glued to its opposite face, and the top and
bottom are glued together by a π/3-twist.)

5.1.2. S3. The 3-sphere is a 3-manifold with constant positive curvature.
It serves as the model space for infinitely many manifolds.

Example 5.2. Lens spaces form an infinite class of spherical manifolds.
In general, the spherical manifolds can be completely classified into a few
infinite families and finitely many others.

5.1.3. Hyperbolic 3-space. Hyperbolic geometry is probably the most com-
mon and most complicated of the 3-dimensional model geometries.

Example 5.3. It’s a bit harder to describe hyperbolic 3-manifolds than
hyperbolic surfaces. One source of complete (but not compact) hyperbolic
3-manifolds is knot complements. A knot complement is S3 with a closed
curve removed.

Complete hyperbolic structures on knot complements are complicated,
but useful to know about. In order to construct a complete hyperbolic
structure, we need to send the “knot” that we removed from S3 to infinity.
(This is similar to the way that we needed to send the puncture to infinity
to construct a complete hyperbolic structure on a punctured surface.)

For surfaces, we did this by constructing a cusped hyperbolic surface,
where the puncture was the “tip” of an infinite cusp, which gets thinner
and thinner as it goes off to infinity. For 3-manifolds, we can do something
similar; the knot will be the “tip” of an infinite cusp which gets thinner
and thinner.
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What does this cusp look like? There’s a model of hyperbolic 3-space
which is frequently used to study cusps like this, called the upper half-
space model (figure omitted). In this model, translations in the xy-plane
are isometries; if we take the quotient of the upper half-space model by two
independent translations, we get a cusp. This is what cusps in hyperbolic
3-manifolds look like; they have tori as cross sections (just like the boundary
of a neighborhood of a knot is a torus), and these tori shrink exponentially
as one goes further out along the cusp.

5.2. Product geometries. These are mostly pretty simple:

5.2.1. S2×R. This is a pretty simple geometry, and there are only 4 com-
pact manifolds with an S2 × R-geometric structure.

Example 5.4. We can list the four manifolds: S2 × S1, a “Klein bottle”
formed by adding a twist to S2×S1, P 2×S1 (the projective plane times a
circle), and P 3#P 3 (the connected sum of two copies of projective space).

5.2.2. R2 × R. This one doesn’t count – it’s the same as R3.

5.2.3. H2×R. There are infinitely many compact manifolds with an H2×R-
structure (for instance, Σ× R when Σ is a hyperbolic surface.)

Example 5.5. One non-trivial example is a mapping torus for a surface of
genus 2: we can embed the surface of genus 2 in R3 so that it’s symmetric
under a rotation of order 3. Consider the mapping torus of this map – it
has an H2 × R-structure

5.3. Geometries of torus bundles. A mapping torus for the torus comes
from a map from the torus to itself. If we consider a square torus, any map
from the torus to itself can be straightened into a “linear” map. That is, it
can be replaced by a map which comes from a linear transformation of the
plane. In fact, it has to come from a matrix

M =
(

a b
c d

)
with a, b, c, d integers and ad− bc = ±1.

If X is the resulting mapping torus, it’s a torus bundle. We’ll put a
geometric structure on X so that each torus in X is a flat torus; the exact
geometric structure will depend on the eigenvalues of M . (Since M has
determinant ±1, we know that the eigenvalues have product ±1.)

5.3.1. M has complex eigenvalues. The eigenvalues of M have to have norm
1, so some power of M is the identity. In this case, there’s some flat torus
such that M acts as an isometry of that flat torus. If we use this torus to
construct X, X gets a flat structure (see the example for R3 for an example
where M has order 6).

5.3.2. M has two distinct positive eigenvalues.

Example 5.6. Take

M =
(

2 1
1 1

)
.

Let’s look at the mapping torus. We get this mapping torus by gluing
opposite sides of a cube, and gluing the top face to the bottom by a linear
map which looks like (figure omitted). Let’s say the bottom face is square,
or at least close to square. Since the top face and the bottom face are
identified, we can reconstruct what the structure on the top face has to be
to match up (figure omitted). In between, we need some sort of smooth
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transition between the top and bottom. We can get this transition by
stretching one direction while squashing another.

In this case, X has a Sol-structure. Sol is typically represented as a
metric on R3. Normally, the integral for the length of a curve γ(t) looks
like:

L =
∫ √

γ′x(t)2 + γ′y(t)2 + γ′z(t)2 dt,

where x, y, and z are treated symmetrically. In Sol, the integral looks like:

L =
∫ √

e−2zγ′x(t)2 + e2tγ′y(t)2 + γ′z(t)2 dt.

z is unchanged, but the size of the x-direction and the y-direction depends
on z.

In particular, the shortest path from (0, 0, 0) to (e10, 0, 0) isn’t along the
x-axis. It’s much shorter to go from (0, 0, 0) to (0, 0, 10) (10 units), then
(e10, 0, 10) (1 unit), then (e10, 0, 0) (10 units).

The symmetries for Sol stretch and squish the x and y axes – if you
translate everything up by c, you need to squash x by ec and stretch y by
e−c.

5.3.3. M has eigenvalue 1 with multiplicity 2.

Example 5.7. Take

M =
(

1 1
0 1

)
.

We can do the same thing as before, but now, instead of needing to
squash and stretch to link the top and bottom, we need to skew. The
resulting geometry is called Nil.

One way of looking at this geometry involves a contact structure. At
each point in R3, we put a plane; in the x direction, the plane is horizontal,
and in the y direction, it slopes up with slope x. Consider the curves that
are tangent to these planes, and let the length of a curve be the length of its
projection to the xy-plane. This is approximately Nil-geometry: translating
in the x direction and tilting preserves all the planes, and you can use
translations like that to express X as a quotient of Nil.

This is an unusual geometry. Since none of the planes are tangent to the
z-axis, you can’t go straight up. Instead, to change z, you have to move in
a circle in the xy-plane; it’s sort of like a spiral staircase.

One way to think about this is that it’s what your front wheels do when
you parallel park – the front wheels can move forward or backward and
turn left or right, so they have two degrees of freedom (a plane). But by
combining motions (left, forward, right, backward), they move in a third
direction.

5.4. Nil-like (contact) geometries. Nil-geometry points out a pattern in
the model geometries – in Nil, paths moving in the xy-plane lead to motion
in the z-direction. We can do the same thing for paths in the sphere and
the hyperbolic plane:

5.4.1. S2. This is essentially the same geometry as S3.

5.4.2. R2. This is Nil.
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5.4.3. H2. This gives rise to something new! In fact, this is a geometry on
T1H

2.
One way to think about this is that if you have a vector on H2 and

slide it around the hyperbolic plane, the curvature of the plane causes the
vector to change. This is a geometry that takes account of that change; it’s
the model geometry that gives a structure on T1Σ when Σ is a hyperbolic
surface.

6. Putting them all together: Thurston-Perelman
Geometrization

In general, not every 3-manifold has a geometric structure. For example,
take the connected sum of two 3-tori. The genus 2 surface has a hyperbolic
structure, but not the connected sum of two 3-tori – the problem is that
when you take the universal cover of the connected sum, you get a com-
plicated space consisting of copies of R3 connected by spherical tubes (i.e.,
products of spheres and intervals). In general, in order to get a geometric
structure on a 3-manifold, you need to break it up into pieces.

The Geometrization Theorem says you can do exactly that:

Theorem 6.1 (Thurston-Perelman). Every orientable closed 3-manifold
can be cut along tori and spheres so that after you fill in the spheres with
balls, each piece has a complete geometric structure with finite volume.

So, to get a geometric structure on the connected sum of 3-tori, you cut
them apart, fill in the hole, and get Euclidean structures on each piece.

In general, you might need to cut along tori to get a geometric structure
– for instance, knot complements all have a torus as their boundary, so we
can glue them together. The resulting manifold doesn’t have a geometric
structure, but the pieces do.

One of the big consequences of this theorem is the Poincaré Conjecture,
which states:

Conjecture 6.2. Every simply connected, closed 3-manifold is homeomor-
phic to the 3-sphere.

This is a consequence of the Geometrization Theorem (in fact, geometriza-
tion was developed partly in order to solve the Poincaré Conjecture.) If X
is simply connected, there aren’t any good tori or spheres to cut along,
so X itself must have a geometric structure. The only simply-connected
manifold with a geometric structure is the 3-sphere.

7. Further reading

A good (though advanced) introduction to the 3-dimensional model ge-
ometries can be found in William Thurston’s book “Three-dimensional ge-
ometry and topology.” (Edited by Silvio Levy).

More details on precisely which manifolds have which geometric struc-
tures can be found in Peter Scott’s paper “The geometries of 3-manifolds.”


