Filling functions and nonpositive curvature

Robert Young
University of Toronto

June 2012

Fillings in lattices in semisimple groups

Conjecture (Gromov, Bestvina-Eskin-Wortman, Leuzinger-Pittet)

Roughly, in a non-uniform lattice in a symmetric space with rank n, it should be easy to find fillings of spheres with dimension
$\leq n-2$, but there should be $(n-1)$-dimensional spheres which are hard to fill.

Fillings in lattices in semisimple groups

Conjecture (Gromov, Bestvina-Eskin-Wortman, Leuzinger-Pittet)

Roughly, in a non-uniform lattice in a symmetric space with rank n, it should be easy to find fillings of spheres with dimension
$\leq n-2$, but there should be ($n-1$)-dimensional spheres which are hard to fill.
Today:

- Why should we believe this conjecture?

Fillings in lattices in semisimple groups

Conjecture (Gromov, Bestvina-Eskin-Wortman, Leuzinger-Pittet)

Roughly, in a non-uniform lattice in a symmetric space with rank n, it should be easy to find fillings of spheres with dimension $\leq n-2$, but there should be ($n-1$)-dimensional spheres which are hard to fill.
Today:

- Why should we believe this conjecture?
- Why is it harder to fill spheres than to fill curves?

Fillings in lattices in semisimple groups

Conjecture (Gromov, Bestvina-Eskin-Wortman, Leuzinger-Pittet)

Roughly, in a non-uniform lattice in a symmetric space with rank n, it should be easy to find fillings of spheres with dimension $\leq n-2$, but there should be ($n-1$)-dimensional spheres which are hard to fill.
Today:

- Why should we believe this conjecture?
- Why is it harder to fill spheres than to fill curves?
- How can we find fillings of spheres in solvable groups?

The Dehn function: Measuring simple connectivity

Let X be a simply-connected simplicial complex or manifold and let $\alpha: S^{1} \rightarrow X$ be a closed curve. Define

$$
\delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\ \beta\right|_{S^{1}}=\alpha}} \text { area } \beta
$$

The Dehn function: Measuring simple connectivity

Let X be a simply-connected simplicial complex or manifold and let $\alpha: S^{1} \rightarrow X$ be a closed curve. Define

$$
\begin{aligned}
& \delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\
\beta\right|_{S^{1}}=\alpha}} \text { area } \beta \\
& \delta X(n)=\sup _{\substack{\alpha: S^{1} \rightarrow X \\
\ell(\alpha) \leq n}} \delta(\alpha)
\end{aligned}
$$

The Dehn function: Measuring simple connectivity

Let X be a simply-connected simplicial complex or manifold and let $\alpha: S^{1} \rightarrow X$ be a closed curve. Define

$$
\begin{gathered}
\delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\
\beta\right|_{S^{1}}=\alpha}} \text { area } \beta . \\
\delta X(n)=\sup _{\substack{\alpha: S^{1} \rightarrow X \\
\ell(\alpha) \leq n}} \delta(\alpha) .
\end{gathered}
$$

In the case of \mathbb{R}^{2}, the circle has maximal area for a given perimeter, so $\delta_{\mathbb{R}^{2}}(2 \pi r)=\pi r^{2}$.

The word problem: how do you recognize the identity?

$$
\text { Let } G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

The word problem: how do you recognize the identity?

Let $G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$.
The word problem: If w is a product of generators (a word), how can we tell if it represents the identity?

Reducing using relations

Any two words representing the same group element can be transformed into each other by:

- Application of a relation:

$$
w r_{i}^{ \pm 1} w^{\prime} \leftrightarrow w w^{\prime}
$$

- Free insertion/reduction:

$$
w g_{i}^{ \pm 1} g_{i}^{\mp 1} w^{\prime} \leftrightarrow w w^{\prime}
$$

Reducing using relations

Any two words representing the same group element can be transformed into each other by:

- Application of a relation:

$$
w r_{i}^{ \pm 1} w^{\prime} \leftrightarrow w w^{\prime}
$$

- Free insertion/reduction:

$$
w g_{i}^{ \pm 1} g_{i}^{\mp 1} w^{\prime} \leftrightarrow w w^{\prime}
$$

Q: How many steps does this take?

The Dehn function of a group

If w represents the identity, define

$$
\delta(w)=\# \text { of applications of relations to reduce } w
$$

and

$$
\delta_{G}(n)=\max _{\substack{\ell(w) \leq n \\ w=\sigma^{1}}} \delta(w) .
$$

Example: \mathbb{Z}^{2}

Let $\mathbb{Z}^{2}=\langle x, y \mid[x, y]\rangle$. Going from $x y$ to $y x$ takes one application of the relation:

$$
x y \rightarrow\left(y x y^{-1} x^{-1}\right) x y \rightarrow y x
$$

So if $w=x^{2} y^{2} x^{-2} y^{-2}$, then w represents the identity and $\delta(w)=4$.
Similarly, $\delta\left(x^{n} y^{n} x^{-n} y^{-n}\right)=n^{2}$.

Example: \mathbb{Z}^{2}

Let $\mathbb{Z}^{2}=\langle x, y \mid[x, y]\rangle$. Going from $x y$ to $y x$ takes one application of the relation:

$$
x y \rightarrow\left(y x y^{-1} x^{-1}\right) x y \rightarrow y x
$$

So if $w=x^{2} y^{2} x^{-2} y^{-2}$, then w represents the identity and $\delta(w)=4$.
Similarly, $\delta\left(x^{n} y^{n} x^{-n} y^{-n}\right)=n^{2}$.
This implies that $\delta_{\mathbb{Z}^{2}}(4 n) \geq n^{2}$; in fact, $\delta_{\mathbb{Z}^{2}}(4 n)=n^{2}$.

Example: \mathbb{Z}^{2}

Let $\mathbb{Z}^{2}=\langle x, y \mid[x, y]\rangle$. Going from $x y$ to $y x$ takes one application of the relation:

$$
x y \rightarrow\left(y x y^{-1} x^{-1}\right) x y \rightarrow y x
$$

So if $w=x^{2} y^{2} x^{-2} y^{-2}$, then w represents the identity and $\delta(w)=4$.
Similarly, $\delta\left(x^{n} y^{n} x^{-n} y^{-n}\right)=n^{2}$.
This implies that $\delta_{\mathbb{Z}^{2}}(4 n) \geq n^{2}$; in fact, $\delta_{\mathbb{Z}^{2}}(4 n)=n^{2}$.
Theorem (Gromov)
When G acts geometrically (properly discontinuously, cocompactly, by isometries) on a space X, the Dehn function of G and of X are the same up to constants.

Dehn function examples - Combinatorial

The Dehn function reflects the complexity of the word problem.

- If G has unsolvable word problem, then δ_{G} is larger than any computable function.

Dehn function examples - Combinatorial

The Dehn function reflects the complexity of the word problem.

- If G has unsolvable word problem, then δ_{G} is larger than any computable function.
- If G is automatic, then $\delta_{G}(n) \precsim n^{2}$.

Dehn function examples - Geometric

The smallest Dehn functions are equivalent to negative curvature.

- If X has pinched negative curvature, then we can fill curves using geodesics. These discs have area linear in the length of their boundary, so $\delta_{X}(n) \sim n$.
- In fact, G is a group with sub-quadratic Dehn function $\left(\npreceq n^{2}\right)$ if and only if G is δ-hyperbolic (Gromov).

Dehn function examples - Geometric

Nonpositive curvature implies quadratic Dehn function:

- If X has non-positive curvature, we can fill curves with geodesics, but the discs may have quadratically large area.

Dehn function examples - Geometric

Nonpositive curvature implies quadratic Dehn function:

- If X has non-positive curvature, we can fill curves with geodesics, but the discs may have quadratically large area.
- But the class of groups with quadratic Dehn functions is extremely rich; it includes Thompson's group (Guba), many solvable groups (Leuzinger-Pittet, de Cornulier-Tessera), some nilpotent groups (Gromov, Sapir-Ol'shanskii, others), $\operatorname{SL}(n ; \mathbb{Z})$ for large $n(\mathrm{Y}$.$) , and many more.$
Sol_{3} and Sol_{5}

$$
\mathrm{Sol}_{3}=\left\{\left.\left(\begin{array}{ccc}
e^{t} & 0 & x \\
0 & e^{-t} & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, t \in \mathbb{R}\right\}
$$

Sol_{3} and Sol_{5}

$$
\begin{gathered}
\text { Sol }_{3}=\left\{\left.\left(\begin{array}{ccc}
e^{t} & 0 & x \\
0 & e^{-t} & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, t \in \mathbb{R}\right\} \\
\text { Sol }_{5}=\left\{\left.\left(\begin{array}{cccc}
e^{t_{1}} & 0 & 0 & x \\
0 & e^{t_{2}} & 0 & y \\
0 & 0 & e^{t_{3}} & z \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \sum t_{i}=0\right\}
\end{gathered}
$$

Sol_{3} and Sol_{5}

$$
\mathrm{Sol}_{3}=\left\{\left.\left(\begin{array}{ccc}
e^{t} & 0 & x \\
0 & e^{-t} & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, t \in \mathbb{R}\right\}
$$

has exponential Dehn function. (Gromov)

$$
\text { Sol }_{5}=\left\{\left.\left(\begin{array}{cccc}
e^{t_{1}} & 0 & 0 & x \\
0 & e^{t_{2}} & 0 & y \\
0 & 0 & e^{t_{3}} & z \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \sum t_{i}=0\right\}
$$

has quadratic Dehn function. (Gromov, Leuzinger-Pittet)

Sol_{3} and Sol_{5}

$$
\begin{aligned}
\mathrm{Sol}_{3} & \subset\left\{\left(\begin{array}{ccc}
e^{a} & 0 & x \\
0 & e^{b} & y \\
0 & 0 & 1
\end{array}\right)\right\} \\
& \cong\left\{\left(\begin{array}{cc}
e^{a} & x \\
0 & 1
\end{array}\right)\right\} \times\left\{\left(\begin{array}{cc}
e^{b} & y \\
0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2}
\end{aligned}
$$

Sol_{3} and Sol_{5}

$$
\begin{aligned}
\mathrm{Sol}_{3} & \subset\left\{\left(\begin{array}{ccc}
e^{a} & 0 & x \\
0 & e^{b} & y \\
0 & 0 & 1
\end{array}\right)\right\} \\
& \cong\left\{\left(\begin{array}{cc}
e^{a} & x \\
0 & 1
\end{array}\right)\right\} \times\left\{\left(\begin{array}{cc}
e^{b} & y \\
0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2}
\end{aligned}
$$

$$
\text { Sol }_{5} \subset\left\{\left(\begin{array}{cccc}
e^{a} & 0 & 0 & x \\
0 & e^{b} & 0 & y \\
0 & 0 & e^{c} & z \\
0 & 0 & 0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2}
$$

Sol_{3} and Sol_{5}

$$
\begin{aligned}
\text { Sol }_{3} & \subset\left\{\left(\begin{array}{ccc}
e^{a} & 0 & x \\
0 & e^{b} & y \\
0 & 0 & 1
\end{array}\right)\right\} \\
& \cong\left\{\left(\begin{array}{cc}
e^{a} & x \\
0 & 1
\end{array}\right)\right\} \times\left\{\left(\begin{array}{cc}
e^{b} & y \\
0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2} \\
\text { Sol }_{5} & \subset\left\{\left(\begin{array}{cccc}
e^{a} & 0 & 0 & x \\
0 & e^{b} & 0 & y \\
0 & 0 & e^{c} & z \\
0 & 0 & 0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2}
\end{aligned}
$$

But Sol_{5} has spheres which are exponentially difficult to fill!

Larger ranks

In general,

- Sol $_{2 n-1} \subset\left(\mathbb{H}^{2}\right)^{n}$

Larger ranks

In general,

- Sol $_{2 n-1} \subset\left(\mathbb{H}^{2}\right)^{n}$
- i.e., Sol ${ }_{2 n-1}$ is a subset of a symmetric space of rank n

Larger ranks

In general,

- Sol $_{2 n-1} \subset\left(\mathbb{H}^{2}\right)^{n}$
- i.e., Sol ${ }_{2 n-1}$ is a subset of a symmetric space of rank n
- So Sol $_{2 n-1}$ contains lots of $(n-1)$-dimensional surfaces (intersections with flats), but no n-dimensional surfaces.

Larger ranks

In general,

- Sol $_{2 n-1} \subset\left(\mathbb{H}^{2}\right)^{n}$
- i.e., Sol ${ }_{2 n-1}$ is a subset of a symmetric space of rank n
- So $\mathrm{Sol}_{2 n-1}$ contains lots of $(n-1)$-dimensional surfaces (intersections with flats), but no n-dimensional surfaces.
- It should be easy to find fillings of spheres with dimension $\leq n-2$, but there are $(n-1)$-dimensional spheres which are hard to fill.

Conjecture (Gromov, Bestvina-Eskin-Wortman, Leuzinger-Pittet)
Roughly, in a non-uniform lattice in a symmetric space with rank n, it should be easy to find fillings of spheres with dimension $\leq n-2$, but there should be $(n-1)$-dimensional spheres which are hard to fill.

Low dimensions

Constructing short curves in rank 2:

- (Lubotzky-Mozes-Raghunathan) If Γ is an irreducible lattice in a semisimple group G of rank ≥ 2, then $d_{\Gamma}(x, y) \sim d_{G}(x, y)$ for all $x, y \in \Gamma$.

Low dimensions

Constructing short curves in rank 2:

- (Lubotzky-Mozes-Raghunathan) If Γ is an irreducible lattice in a semisimple group G of rank ≥ 2, then $d_{\Gamma}(x, y) \sim d_{G}(x, y)$ for all $x, y \in \Gamma$.
Constructing small discs in rank 3:
- (Druțu) If Γ is an irreducible lattice of \mathbb{Q}-rank 1 in a semisimple group G of rank ≥ 3, then $\delta_{\Gamma}(n) \lesssim n^{2+\epsilon}$.

Low dimensions

Constructing short curves in rank 2:

- (Lubotzky-Mozes-Raghunathan) If Γ is an irreducible lattice in a semisimple group G of rank ≥ 2, then $d_{\Gamma}(x, y) \sim d_{G}(x, y)$ for all $x, y \in \Gamma$.
Constructing small discs in rank 3:
- (Druțu) If Γ is an irreducible lattice of \mathbb{Q}-rank 1 in a semisimple group G of rank ≥ 3, then $\delta_{\Gamma}(n) \lesssim n^{2+\epsilon}$.
- (Y.) $\delta_{\mathrm{SL}(p ; \mathbb{Z})}(n) \lesssim n^{2}$ when $p \geq 5$ (i.e., rank ≥ 4).

Low dimensions

Constructing short curves in rank 2:

- (Lubotzky-Mozes-Raghunathan) If Γ is an irreducible lattice in a semisimple group G of rank ≥ 2, then $d_{\Gamma}(x, y) \sim d_{G}(x, y)$ for all $x, y \in \Gamma$.
Constructing small discs in rank 3:
- (Druţu) If Γ is an irreducible lattice of \mathbb{Q}-rank 1 in a semisimple group G of rank ≥ 3, then $\delta_{\Gamma}(n) \lesssim n^{2+\epsilon}$.
- (Y.) $\delta_{\mathrm{SL}(p ; \mathbb{Z})}(n) \lesssim n^{2}$ when $p \geq 5$ (i.e., rank ≥ 4).
- (Leuzinger-Pittet) If Γ is an irreducible lattice in a semisimple group G of rank 2, then it has exponential Dehn function.

Higher dimensions

Fillings by balls (large k):

- (Bestvina-Eskin-Wortman) If Γ is an irreducible lattice in a semisimple group G which is a product of n simple groups and $k<n$, then the $(k-1)$ st Dehn function of Γ is bounded by a polynomial.

Higher dimensions

Fillings by balls (large k):

- (Bestvina-Eskin-Wortman) If Γ is an irreducible lattice in a semisimple group G which is a product of n simple groups and $k<n$, then the $(k-1)$ st Dehn function of Γ is bounded by a polynomial.
- (Y.) If $k \leq n-2$, any k-sphere of volume r^{k} in $\mathrm{Sol}_{2 n-1}$ has a filling of volume $\sim r^{k+1}$.

Filling curves in Sol_{5}

- Most flats in $\mathbb{H}^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2}$ intersect Sol 5 in an octahedron.

Filling curves in Sol_{5}

- Most flats in $\mathbb{H}^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2}$ intersect Sol $_{5}$ in an octahedron.
- Curves in this octahedron are (quadratically) easy to fill.

Filling curves in Sol_{5}

- Most flats in $\mathbb{H}^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2}$ intersect Sol $_{5}$ in an octahedron.
- Curves in this octahedron are (quadratically) easy to fill.
- So we'll fill arbitrary curves by breaking them down into simple curves that lie in finitely many flats.

Fillings in Sol_{5}

Two lemmas:

1. Simple edges: Any two points can be connected by a curve which lies in a flat.

Fillings in Sol_{5}

Two lemmas:

1. Simple edges: Any two points can be connected by a curve which lies in a flat.
2. Simple triangles: A curve in a finite union of flats can be filled with a disc in a (larger) finite union of flats.

Fillings in Sol_{5}

Two lemmas:

1. Simple edges: Any two points can be connected by a curve which lies in a flat.
2. Simple triangles: A curve in a finite union of flats can be filled with a disc in a (larger) finite union of flats.
An arbitrary curve can be broken into triangles. Adding up the filling areas of these curves gives us $\delta_{\text {Sol }_{5}}(\ell) \leq \ell^{2}$.

Filling in higher dimensions

If $n>k$, then a $k-1$-sphere in a finite union of flats in Sol ${ }_{2 n-1}$ can be filled with a k-disc in a (possibly larger) finite union of flats.

Filling in higher dimensions

If $n>k$, then a $k-1$-sphere in a finite union of flats in Sol ${ }_{2 n-1}$ can be filled with a k-disc in a (possibly larger) finite union of flats.

How do we break down a k - 1 -sphere into "simple spheres"?

From Lipschitz spheres to arbitrary cycles

Problem: Lipschitz spheres break down into simplices very nicely, but arbitrary spheres don't.

From Lipschitz spheres to arbitrary cycles

Problem: Lipschitz spheres break down into simplices very nicely, but arbitrary spheres don't.
Solution: In \mathbb{R}^{n}, we can use Whitney decompositions:

From Lipschitz spheres to arbitrary cycles

In general, there's a nice analogue of this construction due to Lang and Schlichenmaier - $\left(H_{2}\right)^{n}$ breaks down into nice pieces and we can use that to break a filling of α into nice simplices.

Generalizing further

This gives a way to turn a Lipschitz extension theorem into a filling inequality.

- It turns out that this technique is extremely general - the full generality is spaces which QI embed into a space with finite Assouad-Nagata dimension.

Generalizing further

This gives a way to turn a Lipschitz extension theorem into a filling inequality.

- It turns out that this technique is extremely general - the full generality is spaces which QI embed into a space with finite Assouad-Nagata dimension.
- One project: Apply this to lattices in semisimple groups.

Generalizing further

This gives a way to turn a Lipschitz extension theorem into a filling inequality.

- It turns out that this technique is extremely general - the full generality is spaces which QI embed into a space with finite Assouad-Nagata dimension.
- One project: Apply this to lattices in semisimple groups.
- Question: Which other spaces does this work for?

