Filling invariants for lattices in symmetric spaces

Robert Young (joint work with Enrico Leuzinger)

New York University

September 2016

This work was partly supported by a Sloan Research Fellowship, by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada, and by NSF grant DMS-1612061.

Conjecture (Thurston, Gromov, Leuzinger-Pittet, Bestvina-Eskin-Wortman)

In a nonuniform lattice in a rank-k symmetric space, spheres with dimension $\leq k - 2$ have polynomial filling volume, but there are (k - 1)-dimensional spheres with exponential filling volume.

Conjecture (Thurston, Gromov, Leuzinger-Pittet, Bestvina-Eskin-Wortman)

In a nonuniform lattice in a rank-k symmetric space, spheres with dimension $\leq k - 2$ have polynomial filling volume, but there are (k - 1)-dimensional spheres with exponential filling volume.

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space of rank $k \ge 2$ and n < k, then

 $\mathsf{FV}^n_{\mathsf{\Gamma}}(V) pprox V^{rac{n}{n-1}}$ $\mathsf{FV}^k_{\mathsf{\Gamma}}(V) \gtrsim \exp(V^{rac{1}{k-1}}).$

Let X be an (n-1)-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$\mathsf{FV}^n(\alpha) = \inf_{\substack{\beta \in C_n(X) \\ \partial \beta = \alpha}} \max \beta.$$

Let X be an (n-1)-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$\mathsf{FV}^n(\alpha) = \inf_{\substack{\beta \in C_n(X) \\ \partial \beta = \alpha}} \max \beta.$$

$$\mathsf{FV}_X^n(V) = \sup_{\substack{\alpha \in C_{n-1}(X) \\ \max(\alpha) \le V}} \mathsf{FV}^n(\alpha).$$

Let X be an (n-1)-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$\mathsf{FV}^n(\alpha) = \inf_{\substack{\beta \in C_n(X) \\ \partial \beta = \alpha}} \max \beta.$$

$$\mathsf{FV}_X^n(V) = \sup_{\substack{\alpha \in C_{n-1}(X) \\ \max(\alpha) \le V}} \mathsf{FV}^n(\alpha).$$

FV_X²(n) is also known as the homological Dehn function

Let X be an (n-1)-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$\mathsf{FV}^n(\alpha) = \inf_{\substack{\beta \in C_n(X) \\ \partial \beta = \alpha}} \max \beta.$$

$$\mathsf{FV}_X^n(V) = \sup_{\substack{\alpha \in C_{n-1}(X) \\ \max(\alpha) \le V}} \mathsf{FV}^n(\alpha).$$

FV²_X(n) is also known as the homological Dehn function
 FV²_{ℝ²}(2πr) = πr²

Let X be an (n-1)-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$\mathsf{FV}^n(\alpha) = \inf_{\substack{\beta \in C_n(X) \\ \partial \beta = \alpha}} \max \beta.$$

$$\mathsf{FV}_X^n(V) = \sup_{\substack{\alpha \in C_{n-1}(X) \\ \max(\alpha) \le V}} \mathsf{FV}^n(\alpha).$$

FV²_X(n) is also known as the homological Dehn function
 FV²_{ℝ²}(2πr) = πr²
 FVⁿ_{ℝ^k}(rⁿ⁻¹) = C_nrⁿ for k ≥ n (i.e., FVⁿ_{ℝ^k}(V) = C_nVⁿ/_{n-1})

Filling invariants as geometric group invariants

If X and Y are bilipschitz equivalent, then there is a C > 0 such that

$$\mathsf{FV}^n_X(C^{-1}V) \lesssim \mathsf{FV}^n_Y(V) \lesssim \mathsf{FV}^n_X(CV).$$

Filling invariants as geometric group invariants

If X and Y are bilipschitz equivalent, then there is a C > 0 such that

$$\mathsf{FV}^n_X(C^{-1}V) \lesssim \mathsf{FV}^n_Y(V) \lesssim \mathsf{FV}^n_X(CV).$$

Theorem (Gromov, Epstein-Cannon-Holt-Levy-Paterson-Thurston) If X and Y are quasi-isometric and are, for instance, manifolds with bounded curvature or simplicial complexes with bounded degree, then FV_X^n and FV_Y^n are the same up to constants.

Filling invariants as geometric group invariants

If X and Y are bilipschitz equivalent, then there is a C > 0 such that

$$\mathsf{FV}^n_X(C^{-1}V) \lesssim \mathsf{FV}^n_Y(V) \lesssim \mathsf{FV}^n_X(CV).$$

Theorem (Gromov, Epstein-Cannon-Holt-Levy-Paterson-Thurston) If X and Y are quasi-isometric and are, for instance, manifolds

with bounded curvature or simplicial complexes with bounded degree, then FV_X^n and FV_Y^n are the same up to constants. In particular, if *G* is a group acting geometrically on an *n*-connected space *X*, we can define $FV_G^n = FV_X^n$ (up to constants).

Examples: negative curvature

Small FV^2 is equivalent to negative curvature.

If X has pinched negative curvature, then we can fill curves using geodesics. These discs have area linear in the length of their boundary, so FV²(n) ∼ n.

Examples: negative curvature

Small FV^2 is equivalent to negative curvature.

- If X has pinched negative curvature, then we can fill curves using geodesics. These discs have area linear in the length of their boundary, so FV²(n) ∼ n.
- ▶ In fact, G is a group with sub-quadratic Dehn function $(FV^2 \preccurlyeq n^2)$ if and only if G is δ -hyperbolic (Gromov).

Examples: nonpositive curvature and quadratic bounds

Nonpositive curvature implies quadratic Dehn function:

If X has nonpositive curvature, we can fill curves with geodesics, but the discs may have quadratically large area. Examples: nonpositive curvature and quadratic bounds

Nonpositive curvature implies quadratic Dehn function:

- If X has nonpositive curvature, we can fill curves with geodesics, but the discs may have quadratically large area.
- But the class of groups with quadratic Dehn functions is extremely rich; it includes Thompson's group (Guba), many solvable groups (Leuzinger-Pittet, de Cornulier-Tessera), some nilpotent groups (Gromov, Sapir-Ol'shanskii, others), lattices in symmetric spaces (Druţu, Y., Cohen, others), and many more.

Examples: higher dimensions

• (Lang, Bonk-Schramm) If G is δ -hyperbolic, then $FV_X^n(V) \lesssim V$ for all n.

Examples: higher dimensions

- (Lang, Bonk-Schramm) If G is δ -hyperbolic, then $FV_X^n(V) \lesssim V$ for all n.
- (Gromov, Wenger) If X is complete and nonpositively curved, then FVⁿ_X(V) ≤ Vⁿ_{n-1} for all n.

Examples: higher dimensions

- (Lang, Bonk-Schramm) If G is δ -hyperbolic, then $FV_X^n(V) \lesssim V$ for all n.
- (Gromov, Wenger) If X is complete and nonpositively curved, then FVⁿ_X(V) ≤ V^{n/n-1}/_{n-1} for all n.
- But subsets of nonpositively curved spaces can have stranger behavior!

$$\mathsf{Sol}_3 = \left\{ \left. \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, t \in \mathbb{R} \right\}$$

$$\mathsf{Sol}_3 = \left\{ \left. \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, t \in \mathbb{R} \right\}$$

$$\mathsf{Sol}_5 = \left\{ egin{pmatrix} e^{t_1} & 0 & 0 & x \ 0 & e^{t_2} & 0 & y \ 0 & 0 & e^{t_3} & z \ 0 & 0 & 0 & 1 \end{pmatrix} \middle| \sum t_i = 0
ight\}$$

Sol₃ and Sol₅

$$\mathsf{Sol}_3 = \left\{ \left. \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, t \in \mathbb{R} \right\}$$

has $FV^2 \approx e^n$. (Gromov)

$$\mathsf{Sol}_5 = \left\{ \begin{pmatrix} e^{t_1} & 0 & 0 & x \\ 0 & e^{t_2} & 0 & y \\ 0 & 0 & e^{t_3} & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \middle| \sum t_i = 0 \right\}$$

has $FV^2 \approx n^2$. (Gromov, Leuzinger-Pittet)

$$Sol_{3} \subset \left\{ \begin{pmatrix} e^{a} & 0 & x \\ 0 & e^{b} & y \\ 0 & 0 & 1 \end{pmatrix} \right\}$$
$$\cong \left\{ \begin{pmatrix} e^{a} & x \\ 0 & 1 \end{pmatrix} \right\} \times \left\{ \begin{pmatrix} e^{b} & y \\ 0 & 1 \end{pmatrix} \right\} = \mathbb{H}^{2} \times \mathbb{H}^{2}$$

$$Sol_{3} \subset \left\{ \begin{pmatrix} e^{a} & 0 & x \\ 0 & e^{b} & y \\ 0 & 0 & 1 \end{pmatrix} \right\}$$
$$\cong \left\{ \begin{pmatrix} e^{a} & x \\ 0 & 1 \end{pmatrix} \right\} \times \left\{ \begin{pmatrix} e^{b} & y \\ 0 & 1 \end{pmatrix} \right\} = \mathbb{H}^{2} \times \mathbb{H}^{2}$$
$$Sol_{5} \subset \left\{ \begin{pmatrix} e^{a} & 0 & 0 & x \\ 0 & e^{b} & 0 & y \\ 0 & 0 & e^{c} & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\} = \mathbb{H}^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2}$$

$$\begin{aligned} \operatorname{Sol}_{3} &\subset \left\{ \begin{pmatrix} e^{a} & 0 & x \\ 0 & e^{b} & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \\ &\cong \left\{ \begin{pmatrix} e^{a} & x \\ 0 & 1 \end{pmatrix} \right\} \times \left\{ \begin{pmatrix} e^{b} & y \\ 0 & 1 \end{pmatrix} \right\} = \mathbb{H}^{2} \times \mathbb{H}^{2} \\ \operatorname{Sol}_{5} &\subset \left\{ \begin{pmatrix} e^{a} & 0 & 0 & x \\ 0 & e^{b} & 0 & y \\ 0 & 0 & e^{c} & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\} = \mathbb{H}^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2} \end{aligned}$$

But Sol₅ has spheres which are exponentially difficult to fill!

▶
$$\mathsf{Sol}_{2k-1} \subset (\mathbb{H}^2)^k$$

- ▶ $\mathsf{Sol}_{2k-1} \subset (\mathbb{H}^2)^k$
- i.e., Sol_{2k-1} is a subset of a symmetric space of rank k

- $\mathsf{Sol}_{2k-1} \subset (\mathbb{H}^2)^k$
- ▶ i.e., Sol_{2k-1} is a subset of a symmetric space of rank k
- So Sol_{2k−1} contains (k − 1)-spheres (intersections with flats) with exponentially large filling area (Gromov)

- ▶ $\mathsf{Sol}_{2k-1} \subset (\mathbb{H}^2)^k$
- ▶ i.e., Sol_{2k-1} is a subset of a symmetric space of rank k
- So Sol_{2k−1} contains (k − 1)-spheres (intersections with flats) with exponentially large filling area (Gromov)
- ▶ But there are plenty of lower-dimensional surfaces to fill lower-dimensional spheres, so FVⁿ(V) ≈ V^{n/n-1}/_{n-1} when n < k (Y.)

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space X of rank $k \ge 2$ and n < k, then

 $\mathsf{FV}^n_{\Gamma}(V) pprox V^{rac{n}{n-1}}$ $\mathsf{FV}^k_{\Gamma}(V) \gtrsim \exp(V^{rac{1}{k-1}}).$

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space X of rank $k \ge 2$ and n < k, then

$$\mathsf{FV}^n_{\mathsf{\Gamma}}(V) pprox V^{rac{n}{n-1}}$$
 $\mathsf{FV}^k_{\mathsf{\Gamma}}(V) \gtrsim \exp(V^{rac{1}{k-1}}).$

A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space X of rank $k \geq 2$ and n < k, then

$$\mathsf{FV}^n_{\mathsf{\Gamma}}(V) pprox V^{rac{n}{n-1}}$$
 $\mathsf{FV}^k_{\mathsf{\Gamma}}(V) \gtrsim \exp(V^{rac{1}{k-1}}).$

- A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume
- ▶ When rank X ≥ 2, all lattices come from arithmetic constructions

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space X of rank $k \ge 2$ and n < k, then

$$\mathsf{FV}^n_{\mathsf{\Gamma}}(V) pprox V^{rac{n}{n-1}}$$
 $\mathsf{FV}^k_{\mathsf{\Gamma}}(V) \gtrsim \exp(V^{rac{1}{k-1}}).$

- A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume
- When rank X ≥ 2, all lattices come from arithmetic constructions, e.g.:
 - $SL_n(\mathbb{Z})$ acting on the symmetric space $SL_n(\mathbb{R})/SO(n)$

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space X of rank $k \geq 2$ and n < k, then

$$\mathsf{FV}^n_{\mathsf{\Gamma}}(V) pprox V^{rac{n}{n-1}}$$
 $\mathsf{FV}^k_{\mathsf{\Gamma}}(V) \gtrsim \exp(V^{rac{1}{k-1}}).$

- A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume
- ▶ When rank X ≥ 2, all lattices come from arithmetic constructions, e.g.:
 - ▶ $SL_n(\mathbb{Z})$ acting on the symmetric space $SL_n(\mathbb{R})/SO(n)$
 - $SL_2(\mathbb{Z}[\sqrt{2}])$ acting on $\mathbb{H}^2 \times \mathbb{H}^2$ (a Hilbert modular group)

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space X of rank $k \ge 2$ and n < k, then

$$\mathsf{FV}^n_{\mathsf{\Gamma}}(V) pprox V^{rac{n}{n-1}}$$
 $\mathsf{FV}^k_{\mathsf{\Gamma}}(V) \gtrsim \exp(V^{rac{1}{k-1}}).$

- A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume
- ▶ When rank X ≥ 2, all lattices come from arithmetic constructions, e.g.:
 - $SL_n(\mathbb{Z})$ acting on the symmetric space $SL_n(\mathbb{R})/SO(n)$
 - $SL_2(\mathbb{Z}[\sqrt{2}])$ acting on $\mathbb{H}^2 \times \mathbb{H}^2$ (a Hilbert modular group)
- A nonuniform lattice is a lattice that acts with noncompact quotient

Lattices act on subsets of X

If Γ is a nonuniform lattice, the quotient $\Gamma \setminus X$ has cusps.

If Γ is a nonuniform lattice, the quotient $\Gamma \setminus X$ has cusps. Cutting out the cusps corresponds to cutting out horoballs in X.

Lemma

If Γ is a nonuniform lattice, then there is an r_0 such that for $r \ge r_0$, Γ acts geometrically on a set $X(r) \subset X$ such that X(r) is contractible and approximates the r-neighborhood of Γ . We can write $X(r) = X \setminus \bigcup_i H_i$, where the H_i are a collection of horoballs in X.

Dimension 1:

► (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2 , then $d_{\Gamma}(x, y) \approx d_{X(r_0)}(x, y) \approx d_G(x, y)$ for all $x, y \in \Gamma$.

Dimension 1:

• (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2 , then $d_{\Gamma}(x, y) \approx d_{X(r_0)}(x, y) \approx d_G(x, y)$ for all $x, y \in \Gamma$.

Dimension 2:

 (Leuzinger-Pittet) If Γ is an irreducible lattice in a symmetric space G of rank 2, then it has exponential Dehn function.

Dimension 1:

• (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2 , then $d_{\Gamma}(x, y) \approx d_{X(r_0)}(x, y) \approx d_G(x, y)$ for all $x, y \in \Gamma$.

Dimension 2:

- (Leuzinger-Pittet) If Γ is an irreducible lattice in a symmetric space G of rank 2, then it has exponential Dehn function.
- (Druţu) If Γ is an irreducible lattice of Q-rank 1 in a symmetric space X of rank ≥ 3, then FV²_Γ(n) ≤ n².

Dimension 1:

• (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2 , then $d_{\Gamma}(x, y) \approx d_{X(r_0)}(x, y) \approx d_G(x, y)$ for all $x, y \in \Gamma$.

Dimension 2:

- (Leuzinger-Pittet) If Γ is an irreducible lattice in a symmetric space G of rank 2, then it has exponential Dehn function.
- (Druţu) If Γ is an irreducible lattice of Q-rank 1 in a symmetric space X of rank ≥ 3, then FV²_Γ(n) ≤ n².
- ► (Y.) $FV_{SL_p(\mathbb{Z})}^2(n) \lesssim n^2$ when $p \ge 5$ (i.e., rank ≥ 4).

Dimension 1:

► (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2 , then $d_{\Gamma}(x, y) \approx d_{X(r_0)}(x, y) \approx d_G(x, y)$ for all $x, y \in \Gamma$.

Dimension 2:

- (Leuzinger-Pittet) If Γ is an irreducible lattice in a symmetric space G of rank 2, then it has exponential Dehn function.
- (Druţu) If Γ is an irreducible lattice of Q-rank 1 in a symmetric space X of rank ≥ 3, then FV²_Γ(n) ≤ n².
- ► (Y.) $FV_{SL_p(\mathbb{Z})}^2(n) \lesssim n^2$ when $p \ge 5$ (i.e., rank ≥ 4).
- (Cohen) $FV^2_{SP_p(\mathbb{Z})}(n) \lesssim n^2$ when $p \ge 5$ (i.e., rank ≥ 5).

Dimension > 2:

• (Epstein-Cannon-Holt-Levy-Paterson-Thurston) If $\Gamma = SL_{k+1}(\mathbb{Z})$, then $FV_{\Gamma}^{k}(r^{k-1}) \gtrsim \exp r$.

Dimension > 2:

- (Epstein-Cannon-Holt-Levy-Paterson-Thurston) If $\Gamma = SL_{k+1}(\mathbb{Z})$, then $FV_{\Gamma}^{k}(r^{k-1}) \gtrsim \exp r$.
- (Wortman) If Γ is an irreducible lattice in a semisimple group G of rank k and its relative root system is not G_2 , F_4 , E_8 , or BC_n , then

$$\mathsf{FV}^k_{\mathsf{\Gamma}}(r^{k-1})\gtrsim \exp r.$$

Dimension > 2:

- (Epstein-Cannon-Holt-Levy-Paterson-Thurston) If $\Gamma = SL_{k+1}(\mathbb{Z})$, then $FV_{\Gamma}^{k}(r^{k-1}) \gtrsim \exp r$.
- (Wortman) If Γ is an irreducible lattice in a semisimple group G of rank k and its relative root system is not G₂, F₄, E₈, or BC_n, then

$$\mathsf{FV}^k_{\mathsf{\Gamma}}(r^{k-1})\gtrsim \exp r.$$

 (Bestvina-Eskin-Wortman) If Γ is an irreducible lattice in a semisimple group G which is a product of n simple groups, then FV^k_Γ is bounded by a polynomial for k < n.

Dimension > 2:

- (Epstein-Cannon-Holt-Levy-Paterson-Thurston) If $\Gamma = SL_{k+1}(\mathbb{Z})$, then $FV_{\Gamma}^{k}(r^{k-1}) \gtrsim \exp r$.
- (Wortman) If Γ is an irreducible lattice in a semisimple group G of rank k and its relative root system is not G₂, F₄, E₈, or BC_n, then

$$\mathsf{FV}^k_{\mathsf{\Gamma}}(r^{k-1})\gtrsim \exp r.$$

- (Bestvina-Eskin-Wortman) If Γ is an irreducible lattice in a semisimple group G which is a product of n simple groups, then FV^k_Γ is bounded by a polynomial for k < n.
- Leuzinger-Y.) If Γ is an irreducible lattice of Q-rank 1 in a symmetric space X of rank k, then FVⁿ_Γ(rⁿ⁻¹) ≤ rⁿ for n < k.</p>

A flat in $\mathsf{SL}_3(\mathbb{R})$

A flat in $SL_3(\mathbb{R})$

Results of Kleinbock and Margulis imply:

Lemma (see Kleinbock-Margulis)

There is a c > 1 such that if $x \in X$ and $\rho = d(x, \Gamma)$, then there is a flat E passing through x such that the sphere $S_E(c\rho) \subset E$ of radius $c\rho$ satisfies

 $S_E(x,c\rho) \subset X(c\log \rho + c).$

Results of Kleinbock and Margulis imply:

Lemma (see Kleinbock-Margulis)

There is a c > 1 such that if $x \in X$ and $\rho = d(x, \Gamma)$, then there is a flat E passing through x such that the sphere $S_E(c\rho) \subset E$ of radius $c\rho$ satisfies

$$S_E(x,c
ho) \subset X(c\log
ho + c).$$

This sphere has filling volume $pprox e^{
ho}$,

Results of Kleinbock and Margulis imply:

Lemma (see Kleinbock-Margulis)

There is a c > 1 such that if $x \in X$ and $\rho = d(x, \Gamma)$, then there is a flat E passing through x such that the sphere $S_E(c\rho) \subset E$ of radius $c\rho$ satisfies

$$S_E(x,c\rho) \subset X(c\log \rho + c).$$

This sphere has filling volume $\approx e^{\rho}$, and it can be retracted to a sphere that lies in $X(r_0)$ at a cost of increasing the area by $\exp(c \log \rho + c) \approx \rho^c$.

Results of Kleinbock and Margulis imply:

Lemma (see Kleinbock-Margulis)

There is a c > 1 such that if $x \in X$ and $\rho = d(x, \Gamma)$, then there is a flat E passing through x such that the sphere $S_E(c\rho) \subset E$ of radius $c\rho$ satisfies

$$S_E(x,c\rho) \subset X(c\log \rho + c).$$

This sphere has filling volume $\approx e^{\rho}$, and it can be retracted to a sphere that lies in $X(r_0)$ at a cost of increasing the area by $\exp(c \log \rho + c) \approx \rho^c$.

Corollary

$$\mathsf{FV}^k_{\Gamma}(\rho^{k-1+c}) \approx e^{\rho}.$$

Lemma (Y.)

Since dim_{AN} $X < \infty$, we can prove upper bounds on FVⁿ_{Γ} by constructing a collection of simplices with vertices in Γ .

Lemma (Y.)

Since dim_{AN} $X < \infty$, we can prove upper bounds on FVⁿ_{Γ} by constructing a collection of simplices with vertices in Γ .

Sketch of proof

If α : Sⁿ⁻¹ → X is a sphere, it has a filling β with mass β = FVⁿ(α).

Lemma (Y.)

Since dim_{AN} $X < \infty$, we can prove upper bounds on FVⁿ_{Γ} by constructing a collection of simplices with vertices in Γ .

Sketch of proof

- If α : Sⁿ⁻¹ → X is a sphere, it has a filling β with mass β = FVⁿ(α).
- By results of Lang and Schlichenmaier, we can triangulate β efficiently.

Lemma (Y.)

Since dim_{AN} $X < \infty$, we can prove upper bounds on FVⁿ_{Γ} by constructing a collection of simplices with vertices in Γ .

Sketch of proof

- If $\alpha : S^{n-1} \to X$ is a sphere, it has a filling β with mass $\beta = FV^n(\alpha)$.
- By results of Lang and Schlichenmaier, we can triangulate β efficiently.
- We can use a triangulation of β as a "template" for assembling the simplices.

Lemma (Y.)

Since dim_{AN} $X < \infty$, we can prove upper bounds on FVⁿ_{Γ} by constructing a collection of simplices with vertices in Γ .

Sketch of proof

- If $\alpha : S^{n-1} \to X$ is a sphere, it has a filling β with mass $\beta = FV^n(\alpha)$.
- By results of Lang and Schlichenmaier, we can triangulate β efficiently.
- We can use a triangulation of β as a "template" for assembling the simplices.

How do we construct random simplices?

Filling using random flats

Lemma (see Kleinbock-Margulis)

There is a c > 1 such that if $x, y \in \Gamma$, $\rho = d(x, y)$, and m is the midpoint of x and y, then there is a flat E passing through m such that d(x, E) < 1, d(y, E) < 1, and $E \setminus B(m, c\rho)$ is "equidistributed" in X. For example, for all $R > c\rho$,

 $E \cap (B(m,R) \setminus B(m,c\rho)) \subset X(c+c \log R \log \log R).$

Filling using random flats

Lemma (see Kleinbock-Margulis)

There is a c > 1 such that if $x, y \in \Gamma$, $\rho = d(x, y)$, and m is the midpoint of x and y, then there is a flat E passing through m such that d(x, E) < 1, d(y, E) < 1, and $E \setminus B(m, c\rho)$ is "equidistributed" in X. For example, for all $R > c\rho$,

 $E \cap (B(m,R) \setminus B(m,c\rho)) \subset X(c+c \log R \log \log R).$

Corollary

If $\alpha : S^{n-1} \to X(r_0)$ and $V = \max \alpha$,

$$\mathsf{FV}^n_{X(c+c\log V)}(\alpha) \lesssim V^{\frac{n}{n-1}}$$

Using the retraction $X(c + c \log V) \rightarrow X(r_0)$,

$$\mathsf{FV}^n_{\mathsf{\Gamma}}(V) pprox V^{c+rac{n}{n-1}}$$

A filling is made of random flats:

A filling is made of random flats:

• Cut out the parts of *E* that lie in a thin part.

A filling is made of random flats:

- Cut out the parts of E that lie in a thin part.
- Replace them with a disc of polynomial area.

A filling is made of random flats:

- Cut out the parts of E that lie in a thin part.
- Replace them with a disc of polynomial area.
- The result is a filling that lies in $X(r_0)$ and has volume $\approx V^{\frac{n}{n-1}}$.