Filling invariants for lattices in symmetric spaces

Robert Young
(joint work with Enrico Leuzinger)

New York University
September 2016
This work was partly supported by a Sloan Research Fellowship, by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada, and by NSF grant DMS-1612061.

Conjecture (Thurston, Gromov, Leuzinger-Pittet, Bestvina-Eskin-Wortman)
In a nonuniform lattice in a rank-k symmetric space, spheres with dimension $\leq k-2$ have polynomial filling volume, but there are ($k-1$)-dimensional spheres with exponential filling volume.

Conjecture (Thurston, Gromov, Leuzinger-Pittet,

 Bestvina-Eskin-Wortman)In a nonuniform lattice in a rank-k symmetric space, spheres with dimension $\leq k-2$ have polynomial filling volume, but there are $(k-1)$-dimensional spheres with exponential filling volume.

Theorem (Leuzinger-Y.)
If Γ is a nonuniform lattice in a symmetric space of rank $k \geq 2$ and $n<k$, then

$$
\begin{gathered}
\mathrm{F} \mathrm{~V}_{\Gamma}^{n}(V) \approx V^{\frac{n}{n-1}} \\
\mathrm{~F} V_{\Gamma}^{k}(V) \gtrsim \exp \left(V^{\frac{1}{k-1}}\right) .
\end{gathered}
$$

Filling invariants: Measuring connectivity

Let X be an $(n-1)$-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$
\operatorname{FV}^{n}(\alpha)=\inf _{\substack{\beta \in C_{n}(X) \\ \partial \beta=\alpha}} \operatorname{mass} \beta
$$

Filling invariants: Measuring connectivity

Let X be an $(n-1)$-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$
\operatorname{FV}^{n}(\alpha)=\inf _{\substack{\beta \in C_{n}(X) \\ \partial \beta=\alpha}} \operatorname{mass} \beta
$$

$$
\mathrm{FV}_{X}^{n}(V)=\sup _{\substack{\alpha \in C_{n-1}(X) \\ \operatorname{mass}(\alpha) \leq V}} \mathrm{FV}^{n}(\alpha)
$$

Filling invariants: Measuring connectivity

Let X be an $(n-1)$-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$
\begin{gathered}
\mathrm{FV}^{n}(\alpha)=\inf _{\substack{\beta \in C_{n}(X) \\
\partial \beta=\alpha}} \operatorname{mass} \beta . \\
\mathrm{FV}_{X}^{n}(V)=\sup _{\substack{\alpha \in C_{n-1}(X) \\
\operatorname{mass}(\alpha) \leq V}} \mathrm{FV}^{n}(\alpha) .
\end{gathered}
$$

- $\mathrm{FV}_{X}^{2}(n)$ is also known as the homological Dehn function

Filling invariants: Measuring connectivity

Let X be an $(n-1)$-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$
\begin{gathered}
\mathrm{FV}^{n}(\alpha)=\inf _{\substack{\beta \in C_{n}(X) \\
\partial \beta=\alpha}} \operatorname{mass} \beta . \\
\mathrm{FV}_{X}^{n}(V)=\sup _{\substack{\alpha \in C_{n-1}(X) \\
\operatorname{mass}(\alpha) \leq V}} \mathrm{FV}^{n}(\alpha) .
\end{gathered}
$$

- $\mathrm{FV}_{X}^{2}(n)$ is also known as the homological Dehn function
- $\mathrm{FV}_{\mathbb{R}^{2}}^{2}(2 \pi r)=\pi r^{2}$

Filling invariants: Measuring connectivity

Let X be an $(n-1)$-connected simplicial complex or manifold and let $\alpha \in C_{n-1}(X)$ be a cycle. Define

$$
\begin{gathered}
\mathrm{FV}^{n}(\alpha)=\inf _{\substack{\beta \in C_{n}(X) \\
\partial \beta=\alpha}} \operatorname{mass} \beta . \\
\mathrm{FV}_{X}^{n}(V)=\sup _{\substack{\alpha \in C_{n-1}(X) \\
\operatorname{mass}(\alpha) \leq V}} \mathrm{FV}^{n}(\alpha) .
\end{gathered}
$$

- $\mathrm{FV}_{X}^{2}(n)$ is also known as the homological Dehn function
- $\mathrm{FV}_{\mathbb{R}^{2}}^{2}(2 \pi r)=\pi r^{2}$
$-\mathrm{FV}_{\mathbb{R}^{k}}^{n}\left(r^{n-1}\right)=C_{n} r^{n}$ for $k \geq n$ (i.e., $\left.\mathrm{FV}_{\mathbb{R}^{k}}^{n}(V)=C_{n} V^{\frac{n}{n-1}}\right)$

Filling invariants as geometric group invariants

If X and Y are bilipschitz equivalent, then there is a $C>0$ such that

$$
\mathrm{FV}_{X}^{n}\left(C^{-1} V\right) \lesssim \mathrm{FV}_{Y}^{n}(V) \lesssim \mathrm{FV}_{X}^{n}(C V) .
$$

Filling invariants as geometric group invariants

If X and Y are bilipschitz equivalent, then there is a $C>0$ such that

$$
\mathrm{FV}_{X}^{n}\left(C^{-1} V\right) \lesssim \mathrm{FV}_{Y}^{n}(V) \lesssim \mathrm{FV}_{X}^{n}(C V)
$$

Theorem (Gromov, Epstein-Cannon-Holt-Levy-Paterson-Thurston)
If X and Y are quasi-isometric and are, for instance, manifolds with bounded curvature or simplicial complexes with bounded degree, then FV_{X}^{n} and FV_{Y}^{n} are the same up to constants.

Filling invariants as geometric group invariants

If X and Y are bilipschitz equivalent, then there is a $C>0$ such that

$$
\mathrm{FV}_{X}^{n}\left(C^{-1} V\right) \lesssim \mathrm{FV}_{Y}^{n}(V) \lesssim \mathrm{FV}_{X}^{n}(C V)
$$

Theorem (Gromov, Epstein-Cannon-Holt-Levy-Paterson-Thurston)
If X and Y are quasi-isometric and are, for instance, manifolds with bounded curvature or simplicial complexes with bounded degree, then FV_{X}^{n} and FV_{Y}^{n} are the same up to constants. In particular, if G is a group acting geometrically on an n-connected space X, we can define $\mathrm{FV}_{G}^{n}=\mathrm{FV}_{X}^{n}$ (up to constants).

Examples: negative curvature

Small $F V^{2}$ is equivalent to negative curvature.

- If X has pinched negative curvature, then we can fill curves using geodesics. These discs have area linear in the length of their boundary, so $\mathrm{FV}^{2}(n) \sim n$.

Examples: negative curvature

Small $F V^{2}$ is equivalent to negative curvature.

- If X has pinched negative curvature, then we can fill curves using geodesics. These discs have area linear in the length of their boundary, so $\mathrm{FV}^{2}(n) \sim n$.
- In fact, G is a group with sub-quadratic Dehn function (FV ${ }^{2} \npreceq n^{2}$) if and only if G is δ-hyperbolic (Gromov).

Examples: nonpositive curvature and quadratic bounds

Nonpositive curvature implies quadratic Dehn function:

- If X has nonpositive curvature, we can fill curves with geodesics, but the discs may have quadratically large area.

Examples: nonpositive curvature and quadratic bounds

Nonpositive curvature implies quadratic Dehn function:

- If X has nonpositive curvature, we can fill curves with geodesics, but the discs may have quadratically large area.
- But the class of groups with quadratic Dehn functions is extremely rich; it includes Thompson's group (Guba), many solvable groups (Leuzinger-Pittet, de Cornulier-Tessera), some nilpotent groups (Gromov, Sapir-Ol'shanskii, others), lattices in symmetric spaces (Druțu, Y., Cohen, others), and many more.

Examples: higher dimensions

- (Lang, Bonk-Schramm) If G is δ-hyperbolic, then $\mathrm{FV}_{X}^{n}(V) \lesssim V$ for all n.

Examples: higher dimensions

- (Lang, Bonk-Schramm) If G is δ-hyperbolic, then $\mathrm{FV}_{X}^{n}(V) \lesssim V$ for all n.
- (Gromov, Wenger) If X is complete and nonpositively curved, then $\mathrm{FV}_{X}^{n}(V) \lesssim V^{\frac{n}{n-1}}$ for all n.

Examples: higher dimensions

- (Lang, Bonk-Schramm) If G is δ-hyperbolic, then $\mathrm{FV}_{X}^{n}(V) \lesssim V$ for all n.
- (Gromov, Wenger) If X is complete and nonpositively curved, then $\mathrm{FV}_{X}^{n}(V) \lesssim V^{\frac{n}{n-1}}$ for all n.
- But subsets of nonpositively curved spaces can have stranger behavior!

Sol_{3} and Sol_{5}

$$
\mathrm{Sol}_{3}=\left\{\left.\left(\begin{array}{ccc}
e^{t} & 0 & x \\
0 & e^{-t} & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, t \in \mathbb{R}\right\}
$$

Sol_{3} and Sol_{5}

$$
\begin{gathered}
\mathrm{Sol}_{3}=\left\{\left.\left(\begin{array}{ccc}
e^{t} & 0 & x \\
0 & e^{-t} & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, t \in \mathbb{R}\right\} \\
\text { Sol }_{5}=\left\{\left.\left(\begin{array}{cccc}
e^{t_{1}} & 0 & 0 & x \\
0 & e^{t_{2}} & 0 & y \\
0 & 0 & e^{t_{3}} & z \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \sum t_{i}=0\right\}
\end{gathered}
$$

Sol_{3} and Sol_{5}

$$
\mathrm{Sol}_{3}=\left\{\left.\left(\begin{array}{ccc}
e^{t} & 0 & x \\
0 & e^{-t} & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, t \in \mathbb{R}\right\}
$$

has $F V^{2} \approx e^{n}$. (Gromov)

$$
\text { Sol }_{5}=\left\{\left.\left(\begin{array}{cccc}
e^{t_{1}} & 0 & 0 & x \\
0 & e^{t_{2}} & 0 & y \\
0 & 0 & e^{t_{3}} & z \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \sum t_{i}=0\right\}
$$

has $\mathrm{FV}^{2} \approx n^{2}$. (Gromov, Leuzinger-Pittet)

Sol_{3} and Sol_{5}

$$
\begin{aligned}
\mathrm{Sol}_{3} & \subset\left\{\left(\begin{array}{ccc}
e^{a} & 0 & x \\
0 & e^{b} & y \\
0 & 0 & 1
\end{array}\right)\right\} \\
& \cong\left\{\left(\begin{array}{cc}
e^{a} & x \\
0 & 1
\end{array}\right)\right\} \times\left\{\left(\begin{array}{cc}
e^{b} & y \\
0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2}
\end{aligned}
$$

Sol_{3} and Sol_{5}

$$
\begin{aligned}
\text { Sol }_{3} & \subset\left\{\left(\begin{array}{ccc}
e^{a} & 0 & x \\
0 & e^{b} & y \\
0 & 0 & 1
\end{array}\right)\right\} \\
& \cong\left\{\left(\begin{array}{cc}
e^{a} & x \\
0 & 1
\end{array}\right)\right\} \times\left\{\left(\begin{array}{cc}
e^{b} & y \\
0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2} \\
\text { Sol }_{5} & \subset\left\{\left(\begin{array}{cccc}
e^{a} & 0 & 0 & x \\
0 & e^{b} & 0 & y \\
0 & 0 & e^{c} & z \\
0 & 0 & 0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2}
\end{aligned}
$$

Sol_{3} and Sol_{5}

$$
\begin{aligned}
\text { Sol }_{3} & \subset\left\{\left(\begin{array}{ccc}
e^{a} & 0 & x \\
0 & e^{b} & y \\
0 & 0 & 1
\end{array}\right)\right\} \\
& \cong\left\{\left(\begin{array}{cc}
e^{a} & x \\
0 & 1
\end{array}\right)\right\} \times\left\{\left(\begin{array}{cc}
e^{b} & y \\
0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2} \\
\text { Sol }_{5} & \subset\left\{\left(\begin{array}{cccc}
e^{a} & 0 & 0 & x \\
0 & e^{b} & 0 & y \\
0 & 0 & e^{c} & z \\
0 & 0 & 0 & 1
\end{array}\right)\right\}=\mathbb{H}^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2}
\end{aligned}
$$

But Sol_{5} has spheres which are exponentially difficult to fill!

Larger ranks

In general,

- Sol $_{2 k-1} \subset\left(\mathbb{H}^{2}\right)^{k}$

Larger ranks

In general,

- Sol $_{2 k-1} \subset\left(\mathbb{H}^{2}\right)^{k}$
- i.e., Sol ${ }_{2 k-1}$ is a subset of a symmetric space of rank k

Larger ranks

In general,

- Sol $_{2 k-1} \subset\left(\mathbb{H}^{2}\right)^{k}$
- i.e., $\mathrm{Sol}_{2 k-1}$ is a subset of a symmetric space of rank k
- So Sol $2_{2 k-1}$ contains $(k-1)$-spheres (intersections with flats) with exponentially large filling area (Gromov)

Larger ranks

In general,

- Sol $_{2 k-1} \subset\left(\mathbb{H}^{2}\right)^{k}$
- i.e., $\mathrm{Sol}_{2 k-1}$ is a subset of a symmetric space of rank k
- So Sol $2_{2 k-1}$ contains $(k-1)$-spheres (intersections with flats) with exponentially large filling area (Gromov)
- But there are plenty of lower-dimensional surfaces to fill lower-dimensional spheres, so $\mathrm{FV}^{n}(V) \approx V^{\frac{n}{n-1}}$ when $n<k$ (Y.)

The main theorem

Theorem (Leuzinger-Y.)
If Γ is a nonuniform lattice in a symmetric space X of rank $k \geq 2$ and $n<k$, then

$$
\begin{gathered}
\mathrm{FV}_{\Gamma}^{n}(V) \approx V^{\frac{n}{n-1}} \\
\mathrm{FV}_{\Gamma}^{k}(V) \gtrsim \exp \left(V^{\frac{1}{k-1}}\right) .
\end{gathered}
$$

The main theorem

Theorem (Leuzinger-Y.)
If Γ is a nonuniform lattice in a symmetric space X of rank $k \geq 2$ and $n<k$, then

$$
\begin{gathered}
\mathrm{F} V_{\Gamma}^{n}(V) \approx V^{\frac{n}{n-1}} \\
\mathrm{FV}_{\Gamma}^{k}(V) \gtrsim \exp \left(V^{\frac{1}{k-1}}\right) .
\end{gathered}
$$

- A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume

The main theorem

Theorem (Leuzinger-Y.)
If Γ is a nonuniform lattice in a symmetric space X of rank $k \geq 2$ and $n<k$, then

$$
\begin{gathered}
\mathrm{F} V_{\Gamma}^{n}(V) \approx V^{\frac{n}{n-1}} \\
\mathrm{~F} V_{\Gamma}^{k}(V) \gtrsim \exp \left(V^{\frac{1}{k-1}}\right) .
\end{gathered}
$$

- A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume
- When rank $X \geq 2$, all lattices come from arithmetic constructions

The main theorem

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space X of rank $k \geq 2$ and $n<k$, then

$$
\begin{gathered}
\mathrm{F} \mathrm{~V}_{\Gamma}^{n}(V) \approx V^{\frac{n}{n-1}} \\
\mathrm{~F} \mathrm{~V}_{\Gamma}^{k}(V) \gtrsim \exp \left(V^{\frac{1}{k-1}}\right) .
\end{gathered}
$$

- A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume
- When rank $X \geq 2$, all lattices come from arithmetic constructions, e.g.:
- $\mathrm{SL}_{n}(\mathbb{Z})$ acting on the symmetric space $\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n)$

The main theorem

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space X of rank $k \geq 2$ and $n<k$, then

$$
\begin{gathered}
\mathrm{F} \mathrm{~V}_{\Gamma}^{n}(V) \approx V^{\frac{n}{n-1}} \\
\mathrm{~F} \mathrm{~V}_{\Gamma}^{k}(V) \gtrsim \exp \left(V^{\frac{1}{k-1}}\right) .
\end{gathered}
$$

- A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume
- When rank $X \geq 2$, all lattices come from arithmetic constructions, e.g.:
- $\mathrm{SL}_{n}(\mathbb{Z})$ acting on the symmetric space $\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n)$
- $\mathrm{SL}_{2}(\mathbb{Z}[\sqrt{2}])$ acting on $\mathbb{H}^{2} \times \mathbb{H}^{2}$ (a Hilbert modular group)

The main theorem

Theorem (Leuzinger-Y.)

If Γ is a nonuniform lattice in a symmetric space X of rank $k \geq 2$ and $n<k$, then

$$
\begin{gathered}
\mathrm{F} \mathrm{~V}_{\Gamma}^{n}(V) \approx V^{\frac{n}{n-1}} \\
\mathrm{~F} \mathrm{~V}_{\Gamma}^{k}(V) \gtrsim \exp \left(V^{\frac{1}{k-1}}\right) .
\end{gathered}
$$

- A lattice in a symmetric space is a group that acts on the space with a quotient of finite volume
- When rank $X \geq 2$, all lattices come from arithmetic constructions, e.g.:
- $\mathrm{SL}_{n}(\mathbb{Z})$ acting on the symmetric space $\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n)$
- $\mathrm{SL}_{2}(\mathbb{Z}[\sqrt{2}])$ acting on $\mathbb{H}^{2} \times \mathbb{H}^{2}$ (a Hilbert modular group)
- A nonuniform lattice is a lattice that acts with noncompact quotient

Lattices act on subsets of X

If Γ is a nonuniform lattice, the quotient $\Gamma \backslash X$ has cusps.

Lattices act on subsets of X

If Γ is a nonuniform lattice, the quotient $\Gamma \backslash X$ has cusps. Cutting out the cusps corresponds to cutting out horoballs in X.
Lemma
If Γ is a nonuniform lattice, then there is an r_{0} such that for $r \geq r_{0}, \Gamma$ acts geometrically on a set $X(r) \subset X$ such that $X(r)$ is contractible and approximates the r-neighborhood of Γ. We can write $X(r)=X \backslash \bigcup_{i} H_{i}$, where the H_{i} are a collection of horoballs in X.

Low dimensions

Dimension 1:

- (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2, then $d_{\Gamma}(x, y) \approx d_{X\left(r_{0}\right)}(x, y) \approx d_{G}(x, y)$ for all $x, y \in \Gamma$.

Low dimensions

Dimension 1:

- (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2, then $d_{\Gamma}(x, y) \approx d_{X\left(r_{0}\right)}(x, y) \approx d_{G}(x, y)$ for all $x, y \in \Gamma$.
Dimension 2:
- (Leuzinger-Pittet) If Γ is an irreducible lattice in a symmetric space G of rank 2, then it has exponential Dehn function.

Low dimensions

Dimension 1:

- (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2, then $d_{\Gamma}(x, y) \approx d_{X\left(r_{0}\right)}(x, y) \approx d_{G}(x, y)$ for all $x, y \in \Gamma$.
Dimension 2:
- (Leuzinger-Pittet) If Γ is an irreducible lattice in a symmetric space G of rank 2, then it has exponential Dehn function.
- (Druțu) If Γ is an irreducible lattice of \mathbb{Q}-rank 1 in a symmetric space X of rank ≥ 3, then $\mathrm{FV}_{\Gamma}^{2}(n) \lesssim n^{2}$.

Low dimensions

Dimension 1:

- (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2, then $d_{\Gamma}(x, y) \approx d_{X\left(r_{0}\right)}(x, y) \approx d_{G}(x, y)$ for all $x, y \in \Gamma$.
Dimension 2:
- (Leuzinger-Pittet) If Γ is an irreducible lattice in a symmetric space G of rank 2, then it has exponential Dehn function.
- (Druțu) If Γ is an irreducible lattice of \mathbb{Q}-rank 1 in a symmetric space X of rank ≥ 3, then $\mathrm{FV}_{\Gamma}^{2}(n) \lesssim n^{2}$.
- (Y.) $\mathrm{FV}_{\mathrm{SL}_{\rho}(\mathbb{Z})}^{2}(n) \lesssim n^{2}$ when $p \geq 5$ (i.e., rank ≥ 4).

Low dimensions

Dimension 1:

- (Lubotzky-Mozes-Raghunathan) If X has rank ≥ 2, then $d_{\Gamma}(x, y) \approx d_{X\left(r_{0}\right)}(x, y) \approx d_{G}(x, y)$ for all $x, y \in \Gamma$.
Dimension 2:
- (Leuzinger-Pittet) If Γ is an irreducible lattice in a symmetric space G of rank 2, then it has exponential Dehn function.
- (Druțu) If Γ is an irreducible lattice of \mathbb{Q}-rank 1 in a symmetric space X of rank ≥ 3, then $\mathrm{FV}_{\Gamma}^{2}(n) \lesssim n^{2}$.
- (Y.) $\mathrm{FV}_{\mathrm{SL}_{p}(\mathbb{Z})}^{2}(n) \lesssim n^{2}$ when $p \geq 5$ (i.e., rank ≥ 4).
- (Cohen) $\mathrm{FV}_{\mathrm{SP}_{p}(\mathbb{Z})}^{2}(n) \lesssim n^{2}$ when $p \geq 5$ (i.e., rank ≥ 5).

Higher dimensions

Dimension > 2:

- (Epstein-Cannon-Holt-Levy-Paterson-Thurston) If $\Gamma=S L_{k+1}(\mathbb{Z})$, then $\mathrm{FV}_{\Gamma}^{k}\left(r^{k-1}\right) \gtrsim \exp r$.

Higher dimensions

Dimension >2 :

- (Epstein-Cannon-Holt-Levy-Paterson-Thurston) If $\Gamma=S L_{k+1}(\mathbb{Z})$, then $F V_{\Gamma}^{k}\left(r^{k-1}\right) \gtrsim \exp r$.
- (Wortman) If Γ is an irreducible lattice in a semisimple group G of rank k and its relative root system is not G_{2}, F_{4}, E_{8}, or $B C_{n}$, then

$$
\mathrm{FV}_{\Gamma}^{k}\left(r^{k-1}\right) \gtrsim \exp r .
$$

Higher dimensions

Dimension > 2 :

- (Epstein-Cannon-Holt-Levy-Paterson-Thurston) If $\Gamma=S L_{k+1}(\mathbb{Z})$, then $\mathrm{FV}_{\Gamma}^{k}\left(r^{k-1}\right) \gtrsim \exp r$.
- (Wortman) If Γ is an irreducible lattice in a semisimple group G of rank k and its relative root system is not G_{2}, F_{4}, E_{8}, or $B C_{n}$, then

$$
\mathrm{FV}_{\Gamma}^{k}\left(r^{k-1}\right) \gtrsim \exp r
$$

- (Bestvina-Eskin-Wortman) If Γ is an irreducible lattice in a semisimple group G which is a product of n simple groups, then FV_{Γ}^{k} is bounded by a polynomial for $k<n$.

Higher dimensions

Dimension > 2 :

- (Epstein-Cannon-Holt-Levy-Paterson-Thurston) If $\Gamma=S L_{k+1}(\mathbb{Z})$, then $\mathrm{FV}_{\Gamma}^{k}\left(r^{k-1}\right) \gtrsim \exp r$.
- (Wortman) If Γ is an irreducible lattice in a semisimple group G of rank k and its relative root system is not G_{2}, F_{4}, E_{8}, or $B C_{n}$, then

$$
\mathrm{FV}_{\Gamma}^{k}\left(r^{k-1}\right) \gtrsim \exp r
$$

- (Bestvina-Eskin-Wortman) If Γ is an irreducible lattice in a semisimple group G which is a product of n simple groups, then FV_{Γ}^{k} is bounded by a polynomial for $k<n$.
- (Leuzinger-Y.) If Γ is an irreducible lattice of \mathbb{Q}-rank 1 in a symmetric space X of rank k, then $\mathrm{FV}_{\Gamma}^{n}\left(r^{n-1}\right) \lesssim r^{n}$ for $n<k$.

A flat in $\mathrm{SL}_{3}(\mathbb{R})$

A flat in $\mathrm{SL}_{3}(\mathbb{R})$

Lower bounds using random flats

Results of Kleinbock and Margulis imply:
Lemma (see Kleinbock-Margulis)
There is a $c>1$ such that if $x \in X$ and $\rho=d(x, \Gamma)$, then there is a flat E passing through x such that the sphere $S_{E}(c \rho) \subset E$ of radius $c \rho$ satisfies

$$
S_{E}(x, c \rho) \subset X(c \log \rho+c)
$$

Lower bounds using random flats

Results of Kleinbock and Margulis imply:
Lemma (see Kleinbock-Margulis)
There is a $c>1$ such that if $x \in X$ and $\rho=d(x, \Gamma)$, then there is a flat E passing through x such that the sphere $S_{E}(c \rho) \subset E$ of radius $c \rho$ satisfies

$$
S_{E}(x, c \rho) \subset X(c \log \rho+c)
$$

This sphere has filling volume $\approx e^{\rho}$,

Lower bounds using random flats

Results of Kleinbock and Margulis imply:

Lemma (see Kleinbock-Margulis)

There is a $c>1$ such that if $x \in X$ and $\rho=d(x, \Gamma)$, then there is a flat E passing through x such that the sphere $S_{E}(c \rho) \subset E$ of radius $c \rho$ satisfies

$$
S_{E}(x, c \rho) \subset X(c \log \rho+c)
$$

This sphere has filling volume $\approx e^{\rho}$, and it can be retracted to a sphere that lies in $X\left(r_{0}\right)$ at a cost of increasing the area by $\exp (c \log \rho+c) \approx \rho^{c}$.

Lower bounds using random flats

Results of Kleinbock and Margulis imply:

Lemma (see Kleinbock-Margulis)

There is a $c>1$ such that if $x \in X$ and $\rho=d(x, \Gamma)$, then there is a flat E passing through x such that the sphere $S_{E}(c \rho) \subset E$ of radius $c \rho$ satisfies

$$
S_{E}(x, c \rho) \subset X(c \log \rho+c)
$$

This sphere has filling volume $\approx e^{\rho}$, and it can be retracted to a sphere that lies in $X\left(r_{0}\right)$ at a cost of increasing the area by $\exp (c \log \rho+c) \approx \rho^{c}$.
Corollary

$$
\operatorname{FV}_{\Gamma}^{k}\left(\rho^{k-1+c}\right) \approx e^{\rho}
$$

Upper bounds

Lemma (Y.)

Since $\operatorname{dim}_{A N} X<\infty$, we can prove upper bounds on FV_{Γ}^{n} by constructing a collection of simplices with vertices in Γ.

Upper bounds

Lemma (Y.)

Since $\operatorname{dim}_{A N} X<\infty$, we can prove upper bounds on FV_{Γ}^{n} by constructing a collection of simplices with vertices in Γ.
Sketch of proof

- If $\alpha: S^{n-1} \rightarrow X$ is a sphere, it has a filling β with mass $\beta=\mathrm{FV}^{\mathrm{n}}(\alpha)$.

Upper bounds

Lemma (Y.)

Since $\operatorname{dim}_{A N} X<\infty$, we can prove upper bounds on FV_{Γ}^{n} by constructing a collection of simplices with vertices in Γ.
Sketch of proof

- If $\alpha: S^{n-1} \rightarrow X$ is a sphere, it has a filling β with mass $\beta=\mathrm{FV}^{n}(\alpha)$.
- By results of Lang and Schlichenmaier, we can triangulate β efficiently.

Upper bounds

Lemma (Y.)

Since $\operatorname{dim}_{A N} X<\infty$, we can prove upper bounds on FV_{Γ}^{n} by constructing a collection of simplices with vertices in Γ.
Sketch of proof

- If $\alpha: S^{n-1} \rightarrow X$ is a sphere, it has a filling β with mass $\beta=\mathrm{FV}^{n}(\alpha)$.
- By results of Lang and Schlichenmaier, we can triangulate β efficiently.
- We can use a triangulation of β as a "template" for assembling the simplices.

Upper bounds

Lemma (Y.)

Since $\operatorname{dim}_{A N} X<\infty$, we can prove upper bounds on FV_{Γ}^{n} by constructing a collection of simplices with vertices in Γ.
Sketch of proof

- If $\alpha: S^{n-1} \rightarrow X$ is a sphere, it has a filling β with mass $\beta=\mathrm{FV}^{n}(\alpha)$.
- By results of Lang and Schlichenmaier, we can triangulate β efficiently.
- We can use a triangulation of β as a "template" for assembling the simplices.
How do we construct random simplices?

Filling using random flats

Lemma (see Kleinbock-Margulis)

There is a $c>1$ such that if $x, y \in \Gamma, \rho=d(x, y)$, and m is the midpoint of x and y, then there is a flat E passing through m such that $d(x, E)<1, d(y, E)<1$, and $E \backslash B(m, c \rho)$ is "equidistributed" in X. For example, for all $R>c \rho$,
$E \cap(B(m, R) \backslash B(m, c \rho)) \subset X(c+c \log R \log \log R)$.

Filling using random flats

Lemma (see Kleinbock-Margulis)

There is a $c>1$ such that if $x, y \in \Gamma, \rho=d(x, y)$, and m is the midpoint of x and y, then there is a flat E passing through m such that $d(x, E)<1, d(y, E)<1$, and $E \backslash B(m, c \rho)$ is "equidistributed" in X. For example, for all $R>c \rho$,

$$
E \cap(B(m, R) \backslash B(m, c \rho)) \subset X(c+c \log R \log \log R) .
$$

Corollary

If $\alpha: S^{n-1} \rightarrow X\left(r_{0}\right)$ and $V=\operatorname{mass} \alpha$,

$$
\mathrm{FV}_{X(c+c \log V)}^{n}(\alpha) \lesssim V^{\frac{n}{n-1}}
$$

Using the retraction $X(c+c \log V) \rightarrow X\left(r_{0}\right)$,

$$
F V_{\Gamma}^{n}(V) \approx V^{c+\frac{n}{n-1}}
$$

Bootstrapping

A filling is made of random flats:

Bootstrapping

A filling is made of random flats:

- Cut out the parts of E that lie in a thin part.

Bootstrapping

A filling is made of random flats:

- Cut out the parts of E that lie in a thin part.
- Replace them with a disc of polynomial area.

Bootstrapping

A filling is made of random flats:

- Cut out the parts of E that lie in a thin part.
- Replace them with a disc of polynomial area.
- The result is a filling that lies in $X\left(r_{0}\right)$ and has volume $\approx V^{\frac{n}{n-1}}$.

