Quantifying simple connectivity: an introduction to the Dehn function

Robert Young
University of Toronto

Dec. 2011

What is quantitative geometry?

One answer: Making existence problems quantitative.

What is quantitative geometry?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet) Q : What's the length of the shortest closed geodesic?

What is quantitative geometry?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet) Q: What's the length of the shortest closed geodesic? A: Gromov's systolic inequality

What is quantitative geometry?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet) Q: What's the length of the shortest closed geodesic? A: Gromov's systolic inequality
- A map $f: X \rightarrow Y$ is homotopic to a cellular map \bar{f}. Q : How big is $\bar{f}(X)$?

What is quantitative geometry?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet) Q: What's the length of the shortest closed geodesic? A: Gromov's systolic inequality
- A map $f: X \rightarrow Y$ is homotopic to a cellular map \bar{f}. Q : How big is $\bar{f}(X)$?
A: The Federer-Fleming deformation theorem

What is quantitative geometry?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet) Q: What's the length of the shortest closed geodesic?
A: Gromov's systolic inequality
- A map $f: X \rightarrow Y$ is homotopic to a cellular map \bar{f}. Q : How big is $\bar{f}(X)$?
A: The Federer-Fleming deformation theorem
- A compact metric space can be covered by finitely many metric balls.
Q: How many?

What is quantitative geometry?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet) Q: What's the length of the shortest closed geodesic?
A: Gromov's systolic inequality
- A map $f: X \rightarrow Y$ is homotopic to a cellular map \bar{f}. Q : How big is $\bar{f}(X)$?
A: The Federer-Fleming deformation theorem
- A compact metric space can be covered by finitely many metric balls.
Q: How many?
A: Hausdorff measure and Hausdorff dimension

What is quantitative geometry?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet) Q: What's the length of the shortest closed geodesic?
A: Gromov's systolic inequality
- A map $f: X \rightarrow Y$ is homotopic to a cellular map \bar{f}. Q : How big is $\bar{f}(X)$?
A: The Federer-Fleming deformation theorem
- A compact metric space can be covered by finitely many metric balls.
Q: How many?
A: Hausdorff measure and Hausdorff dimension
- If X is simply connected, then every curve in X bounds a disc.

Q: How big is the filling?

What is quantitative geometry?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet) Q: What's the length of the shortest closed geodesic?
A: Gromov's systolic inequality
- A map $f: X \rightarrow Y$ is homotopic to a cellular map \bar{f}. Q : How big is $\bar{f}(X)$?
A: The Federer-Fleming deformation theorem
- A compact metric space can be covered by finitely many metric balls.
Q: How many?
A: Hausdorff measure and Hausdorff dimension
- If X is simply connected, then every curve in X bounds a disc.

Q: How big is the filling?
A: The Dehn function

Measuring simple connectivity: The Dehn function

Let X be a simply-connected simplicial complex or manifold and let $\alpha: S^{1} \rightarrow X$ be a closed curve. Define

$$
\delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\ \beta\right|_{S^{1}}=\alpha}} \text { area } \beta
$$

Measuring simple connectivity: The Dehn function

Let X be a simply-connected simplicial complex or manifold and let $\alpha: S^{1} \rightarrow X$ be a closed curve. Define

$$
\begin{gathered}
\delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\
\beta\right|_{S^{1}}=\alpha}} \text { area } \beta . \\
\delta X(n)=\sup _{\substack{\alpha: S^{1} \rightarrow X \\
\ell(\alpha) \leq n}} \delta(\alpha) .
\end{gathered}
$$

Measuring simple connectivity: The Dehn function

Let X be a simply-connected simplicial complex or manifold and let $\alpha: S^{1} \rightarrow X$ be a closed curve. Define

$$
\begin{gathered}
\delta(\alpha)=\inf _{\substack{\beta:\left.D^{2} \rightarrow X \\
\beta\right|_{S^{1}}=\alpha}} \text { area } \beta . \\
\delta X(n)=\sup _{\substack{\alpha: S^{1} \rightarrow X \\
\ell(\alpha) \leq n}} \delta(\alpha) .
\end{gathered}
$$

In the case of \mathbb{R}^{2}, the circle has maximal area for a given perimeter, so $\delta_{\mathbb{R}^{2}}(2 \pi r)=\pi r^{2}$.

The word problem: how do you recognize the identity?

$$
\text { Let } G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

The word problem: how do you recognize the identity?

Let $G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$.
The word problem: If w is a product of generators (a word), how can we tell if it represents the identity?

Reducing using relations

Any two words representing the same group element can be transformed into each other by:

- Application of a relation:

$$
w r_{i}^{ \pm 1} w^{\prime} \leftrightarrow w w^{\prime}
$$

- Free insertion/reduction:

$$
w g_{i}^{ \pm 1} g_{i}^{\mp 1} w^{\prime} \leftrightarrow w w^{\prime}
$$

Reducing using relations

Any two words representing the same group element can be transformed into each other by:

- Application of a relation:

$$
w r_{i}^{ \pm 1} w^{\prime} \leftrightarrow w w^{\prime}
$$

- Free insertion/reduction:

$$
w g_{i}^{ \pm 1} g_{i}^{\mp 1} w^{\prime} \leftrightarrow w w^{\prime}
$$

Q: How many steps does this take?

The Dehn function of a group

If w represents the identity, define

$$
\delta(w)=\# \text { of applications of relations to reduce } w
$$

and

$$
\delta_{G}(n)=\max _{\substack{\ell(w) \leq n \\ w=\sigma^{1}}} \delta(w) .
$$

Example: \mathbb{Z}^{2}

Let $\mathbb{Z}^{2}=\langle x, y \mid[x, y]\rangle$. Going from $x y$ to $y x$ takes one application of the relation:

$$
x y \rightarrow\left(y x y^{-1} x^{-1}\right) x y \rightarrow y x
$$

So if $w=x^{2} y^{2} x^{-2} y^{-2}$, then w represents the identity and $\delta(w)=4$.
Similarly, $\delta\left(x^{n} y^{n} x^{-n} y^{-n}\right)=n^{2}$.

Example: \mathbb{Z}^{2}

Let $\mathbb{Z}^{2}=\langle x, y \mid[x, y]\rangle$. Going from $x y$ to $y x$ takes one application of the relation:

$$
x y \rightarrow\left(y x y^{-1} x^{-1}\right) x y \rightarrow y x
$$

So if $w=x^{2} y^{2} x^{-2} y^{-2}$, then w represents the identity and $\delta(w)=4$.
Similarly, $\delta\left(x^{n} y^{n} x^{-n} y^{-n}\right)=n^{2}$.
This implies that $\delta_{\mathbb{Z}^{2}}(4 n) \geq n^{2}$; in fact, $\delta_{\mathbb{Z}^{2}}(4 n)=n^{2}$.

Example: \mathbb{Z}^{2}

Let $\mathbb{Z}^{2}=\langle x, y \mid[x, y]\rangle$. Going from $x y$ to $y x$ takes one application of the relation:

$$
x y \rightarrow\left(y x y^{-1} x^{-1}\right) x y \rightarrow y x
$$

So if $w=x^{2} y^{2} x^{-2} y^{-2}$, then w represents the identity and $\delta(w)=4$.
Similarly, $\delta\left(x^{n} y^{n} x^{-n} y^{-n}\right)=n^{2}$.
This implies that $\delta_{\mathbb{Z}^{2}}(4 n) \geq n^{2}$; in fact, $\delta_{\mathbb{Z}^{2}}(4 n)=n^{2}$.
Theorem (Gromov)
When G acts geometrically (properly discontinuously, cocompactly, by isometries) on a space X, the Dehn function of G and of X are the same up to constants.

Fundamental groups of surfaces

Fundamental groups of surfaces

$$
G=\left\langle a, b, c, d \mid a b a^{-1} b^{-1} c d c^{-1} d^{-1}\right\rangle
$$

Dehn's algorithm for the word problem

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$
w=\ldots d c^{-1} d^{-1} a b \ldots
$$

Dehn's algorithm for the word problem

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$
w=\ldots d c^{-1} d^{-1} a b \ldots
$$

2. Apply a relation to shorten it.

$$
w=\ldots c^{-1} b a \ldots
$$

Dehn's algorithm for the word problem

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$
w=\ldots d c^{-1} d^{-1} a b \ldots
$$

2. Apply a relation to shorten it.

$$
w=\ldots c^{-1} b a \ldots
$$

Dehn's algorithm for the word problem

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$
w=\ldots d c^{-1} d^{-1} a b \ldots
$$

2. Apply a relation to shorten it.

$$
w=\ldots c^{-1} b a \ldots
$$

3. Repeat.

Dehn's algorithm for the word problem

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$
w=\ldots d c^{-1} d^{-1} a b \ldots
$$

2. Apply a relation to shorten it.

$$
w=\ldots c^{-1} b a \ldots
$$

3. Repeat.

If this reduces w to the trivial word, it represents the identity; otherwise, it doesn't.

The universal cover is the hyperbolic plane

Any closed path of edges (and thus any word that represents the identity) must contain most of an octagon.

Linear Dehn functions correspond to negative curvature

Theorem (Gromov, Lysenok, Cannon)
If G is a finitely presented group, the following are equivalent:

- Dehn's algorithm solves the word problem
- G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Linear Dehn functions correspond to negative curvature

Theorem (Gromov, Lysenok, Cannon)
If G is a finitely presented group, the following are equivalent:

- Dehn's algorithm solves the word problem
- G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Theorem (Gromov)
If G is a finitely presented group, the following are equivalent:

- G is word-hyperbolic
- $\delta_{G}(n) \sim n$

Linear Dehn functions correspond to negative curvature

Theorem (Gromov, Lysenok, Cannon)
If G is a finitely presented group, the following are equivalent:

- Dehn's algorithm solves the word problem
- G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Theorem (Gromov)
If G is a finitely presented group, the following are equivalent:

- G is word-hyperbolic
- $\delta_{G}(n) \sim n$
- $\delta_{G}(n) \ngtr n^{2}$

Linear Dehn functions correspond to negative curvature

Theorem (Gromov, Lysenok, Cannon)
If G is a finitely presented group, the following are equivalent:

- Dehn's algorithm solves the word problem
- G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Theorem (Gromov)
If G is a finitely presented group, the following are equivalent:

- G is word-hyperbolic
- $\delta_{G}(n) \sim n$
- $\delta_{G}(n) \ngtr n^{2}$
- Geodesics diverge exponentially

Linear Dehn functions correspond to negative curvature

Theorem (Gromov, Lysenok, Cannon)
If G is a finitely presented group, the following are equivalent:

- Dehn's algorithm solves the word problem
- G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Theorem (Gromov)

If G is a finitely presented group, the following are equivalent:

- G is word-hyperbolic
- $\delta_{G}(n) \sim n$
- $\delta_{G}(n) \ngtr n^{2}$
- Geodesics diverge exponentially
- Several other definitions

Examples

- Any negatively curved space has Dehn function bounded by n.
- Any non-positively curved space has Dehn function bounded by n^{2}.

Examples

- Any negatively curved space has Dehn function bounded by n.
- Any non-positively curved space has Dehn function bounded by n^{2}.
- For any integer $c \geq 2$, there's a nilpotent group with Dehn function growing like n^{c}.

Examples

- Any negatively curved space has Dehn function bounded by n.
- Any non-positively curved space has Dehn function bounded by n^{2}.
- For any integer $c \geq 2$, there's a nilpotent group with Dehn function growing like n^{c}.
- The Baumslag-Solitar group $\left\langle a, b \mid a^{-1} b a=b^{2}\right\rangle$ has exponential Dehn function.

Examples

- Any negatively curved space has Dehn function bounded by n.
- Any non-positively curved space has Dehn function bounded by n^{2}.
- For any integer $c \geq 2$, there's a nilpotent group with Dehn function growing like n^{c}.
- The Baumslag-Solitar group $\left\langle a, b \mid a^{-1} b a=b^{2}\right\rangle$ has exponential Dehn function.
- There are groups with two generators and one relation which have Dehn function larger than any tower of exponentials.

Examples

- Any negatively curved space has Dehn function bounded by n.
- Any non-positively curved space has Dehn function bounded by n^{2}.
- For any integer $c \geq 2$, there's a nilpotent group with Dehn function growing like n^{c}.
- The Baumslag-Solitar group $\left\langle a, b \mid a^{-1} b a=b^{2}\right\rangle$ has exponential Dehn function.
- There are groups with two generators and one relation which have Dehn function larger than any tower of exponentials.
- If G has unsolvable word problem, then δ_{G} is larger than any computable function.

$$
\mathrm{Sol}_{3}=\left\{\left.\left(\begin{array}{ccc}
e^{t} & 0 & x \\
0 & e^{-t} & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, t \in \mathbb{R}\right\}
$$

has exponential Dehn function.

$$
\mathrm{Sol}_{3}=\left\{\left.\left(\begin{array}{ccc}
e^{t} & 0 & x \\
0 & e^{-t} & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, t \in \mathbb{R}\right\}
$$

has exponential Dehn function.
$\mathrm{Sol}_{3} \subset\left\{\left(\begin{array}{ccc}e^{a} & 0 & x \\ 0 & e^{b} & y \\ 0 & 0 & 1\end{array}\right)\right\} \cong\left\{\left(\begin{array}{cc}e^{a} & x \\ 0 & 1\end{array}\right)\right\} \times\left\{\left(\begin{array}{cc}e^{b} & y \\ 0 & 1\end{array}\right)\right\}=$ Hyp $^{2} \times$ Hyp 2

$$
\text { Sol }_{5}=\left\{\left.\left(\begin{array}{cccc}
e^{t_{1}} & 0 & 0 & x \\
0 & e^{t_{2}} & 0 & y \\
0 & 0 & e^{t_{3}} & z \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \sum t_{i}=0\right\}
$$

has quadratic Dehn function.

$$
\text { Sol }_{5} \subset\left\{\left(\begin{array}{cccc}
e^{a} & 0 & 0 & x \\
0 & e^{b} & 0 & y \\
0 & 0 & e^{c} & z \\
0 & 0 & 0 & 1
\end{array}\right)\right\}=\mathrm{Hyp}^{2} \times \mathrm{Hyp}^{2} \times \mathrm{Hyp}^{2}
$$

$$
\text { Sol }_{5}=\left\{\left.\left(\begin{array}{cccc}
e^{t_{1}} & 0 & 0 & x \\
0 & e^{t_{2}} & 0 & y \\
0 & 0 & e^{t_{3}} & z \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \sum t_{i}=0\right\}
$$

has quadratic Dehn function.

$$
\text { Sol }_{5} \subset\left\{\left(\begin{array}{cccc}
e^{a} & 0 & 0 & x \\
0 & e^{b} & 0 & y \\
0 & 0 & e^{c} & z \\
0 & 0 & 0 & 1
\end{array}\right)\right\}=\mathrm{Hyp}^{2} \times \mathrm{Hyp}^{2} \times \mathrm{Hyp}^{2}
$$

But has spheres which are exponentially difficult to fill!

Open questions

- Similar geometry shows up in semisimple groups. (e.g., Druțu, Bux-Wortman, Y.) What can you say about them?

Open questions

- Similar geometry shows up in semisimple groups. (e.g., Druțu, Bux-Wortman, Y.) What can you say about them?
- Filling spheres and cycles rather than curves?

Open questions

- Similar geometry shows up in semisimple groups. (e.g., Druțu, Bux-Wortman, Y.) What can you say about them?
- Filling spheres and cycles rather than curves?
- Other groups?

