Quantifying simple connectivity: an introduction to the Dehn function

Robert Young University of Toronto

Dec. 2011

One answer: Making existence problems quantitative.

One answer: Making existence problems quantitative.

A closed manifold has closed geodesics. (Lusternik-Fet) Q: What's the length of the shortest closed geodesic?

One answer: Making existence problems quantitative.

A closed manifold has closed geodesics. (Lusternik-Fet)
 Q: What's the length of the shortest closed geodesic?
 A: Gromov's systolic inequality

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet)
 Q: What's the length of the shortest closed geodesic?
 A: Gromov's systolic inequality
- A map $f : X \to Y$ is homotopic to a cellular map \overline{f} . *Q*: How big is $\overline{f}(X)$?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet)
 Q: What's the length of the shortest closed geodesic?
 A: Gromov's systolic inequality
- A map $f : X \to Y$ is homotopic to a cellular map \overline{f} . Q: How big is $\overline{f}(X)$?
 - A: The Federer-Fleming deformation theorem

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet)
 Q: What's the length of the shortest closed geodesic?
 A: Gromov's systolic inequality
- A map $f : X \to Y$ is homotopic to a cellular map \overline{f} . *Q: How big is* $\overline{f}(X)$?

A: The Federer-Fleming deformation theorem

 A compact metric space can be covered by finitely many metric balls.

Q: How many?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet)
 Q: What's the length of the shortest closed geodesic?
 A: Gromov's systolic inequality
- A map $f : X \to Y$ is homotopic to a cellular map \overline{f} . *Q*: How big is $\overline{f}(X)$?

A: The Federer-Fleming deformation theorem

- A compact metric space can be covered by finitely many metric balls.
 - Q: How many?
 - A: Hausdorff measure and Hausdorff dimension

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet)
 Q: What's the length of the shortest closed geodesic?
 A: Gromov's systolic inequality
- A map $f : X \to Y$ is homotopic to a cellular map \overline{f} . *Q*: How big is $\overline{f}(X)$?

A: The Federer-Fleming deformation theorem

 A compact metric space can be covered by finitely many metric balls.

Q: How many?

A: Hausdorff measure and Hausdorff dimension

If X is simply connected, then every curve in X bounds a disc. Q: How big is the filling?

One answer: Making existence problems quantitative.

- A closed manifold has closed geodesics. (Lusternik-Fet)
 Q: What's the length of the shortest closed geodesic?
 A: Gromov's systolic inequality
- A map $f: X \to Y$ is homotopic to a cellular map \overline{f} . *Q*: How big is $\overline{f}(X)$?

A: The Federer-Fleming deformation theorem

 A compact metric space can be covered by finitely many metric balls.

Q: How many?

A: Hausdorff measure and Hausdorff dimension

- If X is simply connected, then every curve in X bounds a disc. Q: How big is the filling?
 - A: The Dehn function

Measuring simple connectivity: The Dehn function

Let X be a simply-connected simplicial complex or manifold and let $\alpha: S^1 \to X$ be a closed curve. Define

$$\delta(\alpha) = \inf_{\substack{\beta: D^2 \to X \\ \beta|_{S^1} = \alpha}} \operatorname{area} \beta.$$

Measuring simple connectivity: The Dehn function

Let X be a simply-connected simplicial complex or manifold and let $\alpha: S^1 \to X$ be a closed curve. Define

$$\delta(\alpha) = \inf_{\substack{\beta: D^2 \to X \\ \beta|_{S^1} = \alpha}} \operatorname{area} \beta.$$

$$\delta_X(n) = \sup_{\substack{\alpha: S^1 \to X \\ \ell(\alpha) \le n}} \delta(\alpha).$$

Measuring simple connectivity: The Dehn function

Let X be a simply-connected simplicial complex or manifold and let $\alpha: S^1 \to X$ be a closed curve. Define

$$\delta(\alpha) = \inf_{\substack{\beta: D^2 \to X \\ \beta|_{S^1} = \alpha}} \operatorname{area} \beta.$$

$$\delta_X(n) = \sup_{\substack{\alpha: S^1 \to X \\ \ell(\alpha) \le n}} \delta(\alpha).$$

In the case of \mathbb{R}^2 , the circle has maximal area for a given perimeter, so $\delta_{\mathbb{R}^2}(2\pi r) = \pi r^2$.

The word problem: how do you recognize the identity?

Let
$$G = \langle g_1, \ldots, g_n \mid r_1, \ldots, r_m \rangle$$
.

The word problem: how do you recognize the identity?

Let $G = \langle g_1, \ldots, g_n | r_1, \ldots, r_m \rangle$. **The word problem:** If *w* is a product of generators (a word), how can we tell if it represents the identity? Any two words representing the same group element can be transformed into each other by:

Application of a relation:

$$wr_i^{\pm 1}w' \leftrightarrow ww'$$

Free insertion/reduction:

$$wg_i^{\pm 1}g_i^{\mp 1}w' \leftrightarrow ww'$$

Any two words representing the same group element can be transformed into each other by:

Application of a relation:

$$wr_i^{\pm 1}w' \leftrightarrow ww'$$

Free insertion/reduction:

$$wg_i^{\pm 1}g_i^{\mp 1}w' \leftrightarrow ww'$$

Q: How many steps does this take?

The Dehn function of a group

If w represents the identity, define

 $\delta(w) = \#$ of applications of relations to reduce w

and

$$\delta_G(n) = \max_{\substack{\ell(w) \le n \\ w = G^1}} \delta(w).$$

Example: \mathbb{Z}^2

Let $\mathbb{Z}^2 = \langle x, y \mid [x, y] \rangle$. Going from *xy* to *yx* takes one application of the relation:

$$xy \rightarrow (yxy^{-1}x^{-1})xy \rightarrow yx.$$

So if $w = x^2y^2x^{-2}y^{-2}$, then w represents the identity and $\delta(w) = 4$. Similarly, $\delta(x^ny^nx^{-n}y^{-n}) = n^2$.

Example: \mathbb{Z}^2

Let $\mathbb{Z}^2 = \langle x, y \mid [x, y] \rangle$. Going from *xy* to *yx* takes one application of the relation:

$$xy \rightarrow (yxy^{-1}x^{-1})xy \rightarrow yx.$$

So if $w = x^2y^2x^{-2}y^{-2}$, then w represents the identity and $\delta(w) = 4$. Similarly, $\delta(x^ny^nx^{-n}y^{-n}) = n^2$. This implies that $\delta_{\mathbb{Z}^2}(4n) \ge n^2$; in fact, $\delta_{\mathbb{Z}^2}(4n) = n^2$.

Example: \mathbb{Z}^2

Let $\mathbb{Z}^2 = \langle x, y \mid [x, y] \rangle$. Going from *xy* to *yx* takes one application of the relation:

$$xy \rightarrow (yxy^{-1}x^{-1})xy \rightarrow yx.$$

So if $w = x^2y^2x^{-2}y^{-2}$, then w represents the identity and $\delta(w) = 4$. Similarly, $\delta(x^ny^nx^{-n}y^{-n}) = n^2$. This implies that $\delta_{\mathbb{Z}^2}(4n) \ge n^2$; in fact, $\delta_{\mathbb{Z}^2}(4n) = n^2$.

Theorem (Gromov)

When G acts geometrically (properly discontinuously, cocompactly, by isometries) on a space X, the Dehn function of G and of X are the same up to constants.

Fundamental groups of surfaces

Fundamental groups of surfaces

$$G = \langle a, b, c, d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} \rangle$$

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$w = \dots dc^{-1}d^{-1}ab\dots$$

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$w = \dots dc^{-1}d^{-1}ab\dots$$

2. Apply a relation to shorten it.

$$w = \ldots c^{-1} ba \ldots$$

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$w = \dots dc^{-1}d^{-1}ab\dots$$

2. Apply a relation to shorten it.

$$w = \ldots c^{-1} b a \ldots$$

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$w = \dots dc^{-1}d^{-1}ab\dots$$

2. Apply a relation to shorten it.

$$w = \ldots c^{-1} ba \ldots$$

3. Repeat.

Let w be a word.

1. Look for a subword that consists of more than half of the octagon

$$w = \dots dc^{-1}d^{-1}ab\dots$$

2. Apply a relation to shorten it.

$$w = \ldots c^{-1} ba \ldots$$

3. Repeat.

If this reduces w to the trivial word, it represents the identity; otherwise, it doesn't.

The universal cover is the hyperbolic plane

Any closed path of edges (and thus any word that represents the identity) must contain most of an octagon.

Theorem (Gromov, Lysenok, Cannon)

- Dehn's algorithm solves the word problem
- ► G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Theorem (Gromov, Lysenok, Cannon)

If G is a finitely presented group, the following are equivalent:

- Dehn's algorithm solves the word problem
- ► G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Theorem (Gromov)

- G is word-hyperbolic
- $\delta_G(n) \sim n$

Theorem (Gromov, Lysenok, Cannon)

If G is a finitely presented group, the following are equivalent:

- Dehn's algorithm solves the word problem
- ► G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Theorem (Gromov)

- G is word-hyperbolic
- $\delta_G(n) \sim n$
- ► $\delta_G(n) \lesssim n^2$

Theorem (Gromov, Lysenok, Cannon)

If G is a finitely presented group, the following are equivalent:

- Dehn's algorithm solves the word problem
- ► G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Theorem (Gromov)

- G is word-hyperbolic
- ► $\delta_G(n) \sim n$
- $\delta_G(n) \lesssim n^2$
- Geodesics diverge exponentially

Theorem (Gromov, Lysenok, Cannon)

If G is a finitely presented group, the following are equivalent:

- Dehn's algorithm solves the word problem
- ► G is word-hyperbolic (i.e., triangles in the Cayley graph are thin)

Theorem (Gromov)

- G is word-hyperbolic
- ► $\delta_G(n) \sim n$
- ► $\delta_G(n) \lesssim n^2$
- Geodesics diverge exponentially
- Several other definitions

- Any negatively curved space has Dehn function bounded by *n*.
- Any non-positively curved space has Dehn function bounded by n².

- Any negatively curved space has Dehn function bounded by *n*.
- Any non-positively curved space has Dehn function bounded by n².
- For any integer c ≥ 2, there's a nilpotent group with Dehn function growing like n^c.

- Any negatively curved space has Dehn function bounded by *n*.
- Any non-positively curved space has Dehn function bounded by n².
- For any integer c ≥ 2, there's a nilpotent group with Dehn function growing like n^c.
- ► The Baumslag-Solitar group (a, b | a⁻¹ba = b²) has exponential Dehn function.

- Any negatively curved space has Dehn function bounded by *n*.
- Any non-positively curved space has Dehn function bounded by n².
- For any integer c ≥ 2, there's a nilpotent group with Dehn function growing like n^c.
- ► The Baumslag-Solitar group (a, b | a⁻¹ba = b²) has exponential Dehn function.
- There are groups with two generators and one relation which have Dehn function larger than any tower of exponentials.

- Any negatively curved space has Dehn function bounded by *n*.
- Any non-positively curved space has Dehn function bounded by n².
- For any integer c ≥ 2, there's a nilpotent group with Dehn function growing like n^c.
- ► The Baumslag-Solitar group (a, b | a⁻¹ba = b²) has exponential Dehn function.
- There are groups with two generators and one relation which have Dehn function larger than any tower of exponentials.
- ▶ If G has unsolvable word problem, then δ_G is larger than any computable function.

$$\mathsf{Sol}_3 = \left\{ \left. \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, t \in \mathbb{R} \right\}$$

has exponential Dehn function.

$$\mathsf{Sol}_3 = \left\{ \left. \begin{pmatrix} e^t & 0 & x \\ 0 & e^{-t} & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, t \in \mathbb{R} \right\}$$

has exponential Dehn function.

$$\mathsf{Sol}_3 \subset \left\{ \begin{pmatrix} e^a & 0 & x \\ 0 & e^b & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \cong \left\{ \begin{pmatrix} e^a & x \\ 0 & 1 \end{pmatrix} \right\} \times \left\{ \begin{pmatrix} e^b & y \\ 0 & 1 \end{pmatrix} \right\} = \mathsf{Hyp}^2 \times \mathsf{Hyp}^2$$

$$\mathsf{Sol}_5 = \left\{ \begin{pmatrix} e^{t_1} & 0 & 0 & x \\ 0 & e^{t_2} & 0 & y \\ 0 & 0 & e^{t_3} & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \middle| \sum t_i = 0 \right\}$$

has quadratic Dehn function.

$$\mathsf{Sol}_5 \subset \left\{ \begin{pmatrix} e^a & 0 & 0 & x \\ 0 & e^b & 0 & y \\ 0 & 0 & e^c & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\} = \mathsf{Hyp}^2 \times \mathsf{Hyp}^2 \times \mathsf{Hyp}^2$$

$$\mathsf{Sol}_5 = \left\{ \begin{pmatrix} e^{t_1} & 0 & 0 & x \\ 0 & e^{t_2} & 0 & y \\ 0 & 0 & e^{t_3} & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \middle| \sum t_i = 0 \right\}$$

has quadratic Dehn function.

$$\mathsf{Sol}_5 \subset \left\{ \begin{pmatrix} e^a & 0 & 0 & x \\ 0 & e^b & 0 & y \\ 0 & 0 & e^c & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\} = \mathsf{Hyp}^2 \times \mathsf{Hyp}^2 \times \mathsf{Hyp}^2$$

But has spheres which are exponentially difficult to fill!

Open questions

Similar geometry shows up in semisimple groups. (e.g., Druţu, Bux-Wortman, Y.) What can you say about them?

Open questions

- Similar geometry shows up in semisimple groups. (e.g., Druţu, Bux-Wortman, Y.) What can you say about them?
- Filling spheres and cycles rather than curves?

Open questions

- Similar geometry shows up in semisimple groups. (e.g., Druţu, Bux-Wortman, Y.) What can you say about them?
- Filling spheres and cycles rather than curves?
- Other groups?