Filling multiples of embedded curves and quantifying nonorientability

Robert Young New York University

December 2017

Filling multiples of embedded curves

If T is an integral 1-cycle (i.e., union of oriented closed curves) in \mathbb{R}^n , let FA(T) (*filling area*) be the minimal area of an integral 2-chain with boundary T.

Filling multiples of embedded curves

If T is an integral 1-cycle (i.e., union of oriented closed curves) in \mathbb{R}^n , let FA(T) (*filling area*) be the minimal area of an integral 2-chain with boundary T.

How is FA(T) related to FA(2T)?

For all T, $FA(2T) \leq 2FA(T)$.

For all T, $FA(2T) \leq 2FA(T)$.

▶ n = 2: If T is a curve in \mathbb{R}^2 , then FA(2T) = 2FA(T).

For all T, $FA(2T) \leq 2FA(T)$.

▶ n = 2: If T is a curve in \mathbb{R}^2 , then FA(2T) = 2FA(T).

n = 3: If T is a curve in ℝ³, then FA(2T) = 2FA(T).
(Federer, 1974)

For all T, $FA(2T) \leq 2FA(T)$.

• n = 2: If T is a curve in \mathbb{R}^2 , then FA(2T) = 2FA(T).

▶ n = 3: If T is a curve in \mathbb{R}^3 , then FA(2T) = 2FA(T). (Federer, 1974)

• n = 4: There is a curve $T \in \mathbb{R}^4$ such that

 $FA(2T) \leq 1.52 FA(T)$

(L. C. Young, 1963)

Let K be a Klein bottle

Let K be a Klein bottle and let T be the sum of 2k + 1 loops in alternating directions.

 T can be filled with k bands and one extra disc D

•
$$FA(T) \approx \frac{\text{area } K}{2} + \text{area } D$$

- T can be filled with k bands and one extra disc D
- $FA(T) \approx \frac{\operatorname{area} K}{2} + \operatorname{area} D$
- 2T can be filled with 2k + 1 bands
- $FA(2T) \approx area K$

- T can be filled with k bands and one extra disc D
- $FA(T) \approx \frac{\text{area } K}{2} + \text{area } D$
- 2T can be filled with 2k + 1 bands
- ► FA(2T) ≈ area K— less than 2 FA(T) by 2 area D!

The main theorem

Q: Is FA(2T) bounded below by a function of FA(T)?

- Q: Is FA(2T) bounded below by a function of FA(T)? Theorem (Y.)
- Yes! For any d, n, there is a c > 0 such that if T is a d-cycle in \mathbb{R}^n , then $FA(2T) \ge c FA(T)$.

Proving the theorem in dimension 0

Strategy: If B is a filling of 2T, then "half of B" fills T.

Proving the theorem in dimension 0

Strategy: If B is a filling of 2T, then "half of B" fills T.

Proving the theorem in dimension 0

Strategy: If B is a filling of 2T, then "half of B" fills T.

What does "half" mean?

Consider the mod-2 cycle $B \mod 2$.

What does "half" mean?

Consider the mod-2 cycle $B \mod 2$.

Then $B \mod 2$ is an orientable closed curve with orientation P.

What does "half" mean?

Consider the mod-2 cycle $B \mod 2$.

Then $B \mod 2$ is an orientable closed curve with orientation P.

Let T be a cycle

Let T be a cycle and suppose that

 $\partial B = 2T$.

filling of 2T

Let T be a cycle and suppose that

 $\partial B = 2T$.

Then

 $\partial B \equiv 0 \pmod{2}$,

so $B \mod 2$ is a cycle.

Let T be a cycle and suppose that

 $\partial B = 2T$.

Then

 $\partial B \equiv 0 \pmod{2}$,

so $B \mod 2$ is a cycle. If P is an integral cycle such that $B \equiv P \pmod{2}$ (a *pseudo-orientation* of B)

pseudo-orientation

Let T be a cycle and suppose that

 $\partial B = 2T$.

Then

 $\partial B \equiv 0 \pmod{2}$,

so $B \mod 2$ is a cycle. If P is an integral cycle such that $B \equiv P \pmod{2}$ (a *pseudo-orientation* of B), then

$$B + P \equiv 0 \pmod{2}$$
$$\frac{B + P}{2} = \frac{2T + 0}{2} = T.$$

The Klein bottle, again

Nonorientability

If A is a mod-2 cycle, define the *nonorientability* of A by

 $NO(A) = \inf\{\max P \mid P \text{ is an integral cycle and } P \equiv A \pmod{2}\}$

This measures how hard it is to "lift" A to an integral cycle.

Nonorientability

If A is a mod-2 cycle, define the *nonorientability* of A by

 $NO(A) = \inf\{\max P \mid P \text{ is an integral cycle and } P \equiv A \pmod{2}\}$

This measures how hard it is to "lift" A to an integral cycle. If $\partial B = 2T$, then

$$\mathsf{FV}(T) \leq \frac{\mathsf{mass}\,B + \mathsf{NO}(B \bmod 2)}{2}$$

So, to prove that $FV(T) \lesssim FV(2T)$, it suffices to show: Theorem

If A is a mod-2 d-cycle in \mathbb{R}^n , then $NO(A) \leq mass A$.

Corollaries

This lets us prove some basic facts about currents and flat chains.

If k > 0 is a positive integer, the multiply-by-k map f(T) = kT on the space of integral flat chains is an embedding with closed image.

Corollaries

This lets us prove some basic facts about currents and flat chains.

- If k > 0 is a positive integer, the multiply-by-k map f(T) = kT on the space of integral flat chains is an embedding with closed image.
- If T is a mod-k current, then T ≡ T_Z (mod k) for some integral current T_Z. Consequently, mod-k currents are a quotient of the integral currents.

Theorem If A is a mod-2 d-cycle in \mathbb{R}^n , then NO(A) $\leq \max A$.

Theorem

If A is a mod-2 d-cycle in \mathbb{R}^n , then $NO(A) \lesssim mass A$.

Strategy:

Find a mod-2 (d + 1)-chain such that $A = \partial F$.

Theorem

If A is a mod-2 d-cycle in \mathbb{R}^n , then $NO(A) \lesssim mass A$.

Strategy:

- Find a mod-2 (d + 1)-chain such that $A = \partial F$.
- ► Typically, F is non-orientable. Cut F into orientable pieces to get a lift F_Z of F with integer coefficients.

Theorem

If A is a mod-2 d-cycle in \mathbb{R}^n , then $NO(A) \lesssim mass A$.

Strategy:

- Find a mod-2 (d + 1)-chain such that $A = \partial F$.
- ► Typically, F is non-orientable. Cut F into orientable pieces to get a lift F_Z of F with integer coefficients.
- Then $P = \partial F_{\mathbb{Z}}$ is a pseudo-orientation of A.

Theorem

If A is a mod-2 d-cycle in \mathbb{R}^n , then $NO(A) \lesssim mass A$.

Strategy:

- Find a mod-2 (d + 1)-chain such that $A = \partial F$.
- ► Typically, F is non-orientable. Cut F into orientable pieces to get a lift F_Z of F with integer coefficients.
- Then $P = \partial F_{\mathbb{Z}}$ is a pseudo-orientation of A.
- ► The difference mass P mass A measures how much of F we had to cut.

If A is codimension 1, then A is the boundary of a top-dimensional chain F:

Codimension 1

If A is codimension 1, then A is the boundary of a top-dimensional chain F:

F is orientable, so A is orientable and NO(A) = mass(A).

Example: the immersed Klein bottle

A Klein bottle immersed in \mathbb{R}^3 has an inside and an outside

Example: the immersed Klein bottle

A Klein bottle immersed in \mathbb{R}^3 has an inside and an outside

Example: the immersed Klein bottle

A Klein bottle immersed in \mathbb{R}^3 has an inside and an outside

so it is orientable!

Results in low codimension

Proposition Every (n-1)-cycle in \mathbb{R}^n is orientable, i.e., NO(A) = mass(A).

Results in low codimension

Proposition

Every (n-1)-cycle in \mathbb{R}^n is orientable, i.e., NO(A) = mass(A).

Corollary (Federer)

If T is an integral (n-2)-cycle in \mathbb{R}^n , then FV(2T) = 2 FV(T).

Results in low codimension

Proposition

Every (n-1)-cycle in \mathbb{R}^n is orientable, i.e., NO(A) = mass(A).

Corollary (Federer)

If T is an integral (n-2)-cycle in \mathbb{R}^n , then FV(2T) = 2 FV(T). What about higher codimensions?

Let A be a mod-2 cellular d-cycle of mass V

Fill A with a mod-2 chain F

- Fill A with a mod-2 chain F
- F is a sum of $V^{(d+1)/d}$ cubes, each with side length ~ 1

- Fill A with a mod-2 chain F
- F is a sum of $V^{(d+1)/d}$ cubes, each with side length ~ 1
- Orient the cubes at random to get $F_{\mathbb{Z}}$

- Fill A with a mod-2 chain F
- F is a sum of $V^{(d+1)/d}$ cubes, each with side length ~ 1
- Orient the cubes at random to get $F_{\mathbb{Z}}$
- $\partial F_{\mathbb{Z}}$ is a pseudo-orientation

- Fill A with a mod-2 chain F
- F is a sum of $V^{(d+1)/d}$ cubes, each with side length ~ 1
- Orient the cubes at random to get $F_{\mathbb{Z}}$
- $\partial F_{\mathbb{Z}}$ is a pseudo-orientation
- $\mathsf{NO}(A) \lesssim \mathsf{mass} \, \partial F_{\mathbb{Z}} \sim V^{(d+1)/d}$

Bigger cubes

Total boundary: $V^{(d+1)/d}$

Bigger cubes

Total boundary: $V^{(d+1)/d}$

Total boundary: much less

 \sim V squares each with perimeter \sim 1

 \sim V squares each with perimeter \sim 1

 \sim V/2 squares each with perimeter ~ 2

Sketch:

- ► Approximate A at ~ log V scales, then connect the approximations.
- We use cubes with total boundary $\sim V$ at each scale.
- Since there are $\sim \log V$ scales, we conclude:

Proposition (Guth-Y.)

If A is a cellular mod-2 cycle with volume V, then it has a pseudo-orientation P such that mass $P \lesssim V \log V$.

Sketch:

- ► Approximate A at ~ log V scales, then connect the approximations.
- We use cubes with total boundary $\sim V$ at each scale.
- Since there are $\sim \log V$ scales, we conclude:

Proposition (Guth-Y.)

If A is a cellular mod-2 cycle with volume V, then it has a pseudo-orientation P such that mass $P \lesssim V \log V$.

How do we get rid of the log factor?

Getting rid of the log factor

Getting rid of the log factor

 Choosing orientations randomly is wasteful when A is close to a plane

Getting rid of the log factor

- Choosing orientations randomly is wasteful when A is close to a plane
- But what if A is never close to a plane?

Dealing with complexity

How do we prove the proposition for sets that are close to fractals?

Dealing with complexity

How do we prove the proposition for sets that are close to fractals?

Show that adding topological complexity adds extra area

Dealing with complexity

How do we prove the proposition for sets that are close to fractals?

- Show that adding topological complexity adds extra area
- Prove the theorem when A has "low complexity"

Definition (David-Semmes)

A set $E \subset \mathbb{R}^k$ is uniformly rectifiable if and only if E has a corona decomposition. (Roughly, for all but a few balls B, the intersection $B \cap E$ is close to the graph of a Lipschitz function with small Lipschitz constant.)

Sketch of proof

Proposition

Every mod-2 cellular d-cycle A can be written as a sum

$$A = \sum_{i} A_{i}$$

of mod-2 cellular d-cycles with uniformly rectifiable support such that

$$\sum$$
 mass $A_i \leq C$ mass A .

Sketch of proof

Proposition

Every mod-2 cellular d-cycle A can be written as a sum

$$A = \sum_{i} A_{i}$$

of mod-2 cellular d-cycles with uniformly rectifiable support such that

$$\sum$$
 mass $A_i \leq C$ mass A .

Proposition

Any mod-2 cellular d-cycle A with uniformly rectifiable support has a pseudo-orientation P with

mass
$$P \leq C$$
 mass A .

Open questions

► Is $FV(T) \ge FV(T)$?

Open questions

- Is $FV(T) \ge FV(T)$?
- More generally,

$$\frac{\mathsf{FV}(kT)}{k} \ge c_k \,\mathsf{FV}(T).$$

Can the c_k be chosen uniformly?

Open questions

- Is $FV(T) \ge FV(T)$?
- More generally,

$$\frac{\mathsf{FV}(kT)}{k} \ge c_k \,\mathsf{FV}(T).$$

Can the c_k be chosen uniformly?

What does this tell us about the geometry of surfaces embedded in ℝⁿ by a bilipschitz map?