
On-line Bin-Stretching �Yossi Azary Oded RegevzAbstractWe are given a sequence of items that can be packed into m unit size bins. In theclassical bin packing problem we �x the size of the bins and try to pack the items inthe minimum number of such bins. In contrast, in the bin-stretching problem we �xthe number of bins and try to pack the items while stretching the size of the bins asleast as possible. We present two on-line algorithms for the bin-stretching problem thatguarantee a stretching factor of 5=3 for any number m of bins. We then combine thetwo algorithms and design an algorithm whose stretching factor is 1:625 for any m.The analysis for the performance of this algorithm is tight. The best lower bound forany algorithm is 4=3 for any m � 2. We note that the bin-stretching problem is alsoequivalent to the classical scheduling (load balancing) problem in which the value of themakespan (maximum load) is known in advance.Keywords. On-line algorithms, approximation algorithms, bin-stretching, load bal-ancing, scheduling, bin-packing.1 IntroductionThe on-line bin-stretching problem is de�ned as follows. We are given a sequence of itemsthat can be packed intom bins of unit size. We are asked to pack them in an on-line fashionminimizing the stretching factor of the bins. In other words, our goal is to stretch the sizesof the bins as least as possible to �t the sequence of items. Bin-stretching is somewhatrelated to the bin-packing problem [10, 13, 18]. In both cases all the items are to be packedin bins of a certain size. However, in bin-packing the goal is to minimize the number ofbins while in bin-stretching the number of bins is �xed and the goal is to minimize thestretching factor of the bins. Hence, results for bin packing do not seems to imply resultsfor the bin-stretching problem.A bin-stretching algorithm is de�ned to have a stretching factor � if for every sequence�A Preliminary version of this paper appears in the proceedings of RANDOM'98, 1998.yDepartment of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:azar@math.tau.ac.il. Research supported in part by the Israel Science Foundation and by the US-IsraelBinational Science Foundation (BSF).zDepartment of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:odedr@math.tau.ac.il 1



of items that can be assigned to m bins of a unit size, the the algorithm assigns the itemsto m bins of size of at most �.The motivation for our problem comes from the following �le allocation problem. Con-sider a case in which a set of �les are stored on a system of m servers, each of some unitcapacity. The �les are sent one by one to a remote system of m servers in some order. Theonly information the remote system has on the �les is that they were originally stored onm servers of unit capacity. Our goal is to design an algorithm that can assign the arrivingsequence of �les on the remote system with the minimum capacity required. An algorithmfor our problem whose stretching factor is � can assign the sequence of jobs to servers ofcapacity �.It is also natural to view the bin-stretching problem as scheduling (load balancing)problem. In the classical on-line scheduling (load balancing) problem there are m identicalmachines and n jobs arriving one by one. Each job has some weight and should be assignedto a machine upon its arrival. The makespan (load) of a machine is the sum of the weightsof the jobs assigned to it. The objective of an assignment algorithm is to minimize themakespan (maximum load) over all machines. In the bin-stretching problem we have theadditional information that the optimal load is some known value and the goal is to minimizethe maximum load given this information.It is clear that an upper bound for the classical scheduling (load balancing) problemis also an upper bound for the bin-stretching problem since we may ignore the knowledgeof the optimal makespan (load). The classical scheduling problem was �rst introduced byGraham [14, 15] who showed that the greedy algorithm has a performance ratio of exactly2� 1m where m is the number of machines. Better algorithms and lower bounds are shownin [7, 8, 9, 11, 12, 19, 21]. Recently, Albers [1] designed an algorithm whose performanceratio is 1:923 and improved the lower bound to 1:852.The only previous result on bin-stretching is for two machines (bins). Kellerer et al. [20]showed that the performance ratio is exactly 4=3 for two machines. Form > 2 there were noalgorithms for bin-stretching that achieve a better performance than those for scheduling.In this paper we provide for the �rst time algorithms for bin-stretching on arbitrary numberof machines (bins) that achieve better bounds than the scheduling/load-balancing results.Speci�cally, we show the following results:� Two algorithms for the bin-stretching problem whose stretching factor is 5=3 for anynumber m of machines (bins).� An improved algorithm which combines the above two algorithms whose stretchingfactor is 1:625 for any number m of machines (bins). Our analysis for the stretchingfactor of this algorithm is tight (for large m).� For a �xed number m � 3 we get an upper bound 5m�13m+1 which is better than 1:625for m � 20.� Also, we easily extend the lower bound of 4=3 on the stretching factor of any deter-ministic algorithm for m = 2 for any number m � 2.2



Observe that the additional information that bin-stretching has over the scheduling problemreally helps in improving the performance of the algorithms. Moreover, our upper bounds forthe bin-stretching problem are lower than the lower bounds for the classical load balancingproblem for all m � 2 and this fact separates the two problems.Note that the notion of stretching factor has been already used for various problems and,in particular, for scheduling. A paradigm that is used for attacking many of the o�-lineand on-line problems is to design algorithms that know an upper bound on the value ofthe optimal algorithm. Binary search for the optimal value is used in the o�-line setting.In fact, this is the way that scheduling is reduced to bin-stretching by the polynomialapproximation scheme of [17]. This paradigm is also used for the related machines model [16]which corresponds to bins of di�erent sizes. In the on-line case the paradigm of stretchingfactor is used with a doubling technique. Reducing the case of unknown optimal value toknown optimal value results in loosing a factor of 4 [2]. The notion of stretching factorhas also been used in the temporary jobs model where jobs arrive and depart at arbitrarytimes [3, 4, 5, 6].2 NotationLetM be a set of machines (bins) and J a sequence of jobs (items) that have to be assignedto the machines (bins). Each job j has an associated weight, wj � 0. As job j arrives itmust be permanently assigned to one of the machines. An assignment algorithm selects amachine i for each arriving job j. Whenever we speak about time j we mean the state ofthe system after the jth job is assigned. Let li(j) denote the load on machine i at time j,i.e., the sum of the weights of all the jobs on machine i at time j. The cost of an assignmentalgorithm A on a sequence of n jobs J is de�ned as the maximum load over all machines,or, CA(J) = maxi2M li(n).The objective of an on-line bin-stretching algorithm is to minimize the stretching factor�; i.e., the cost of a sequence of jobs given that the optimal o�-line assignment algorithm(that knows the sequence of jobs in advance) assigns them at a unit cost. This is unlikethe classical on-line scheduling (load balancing) problems where the optimal cost is notknown in advance and the performance is measured by the regular competitive ratio whichis de�ned as the supremum of the ratio between the cost of the on-line assignment and thecost of the optimal o�-line assignment.We say that a sequence of jobs can be assigned to m machines by an optimal o�-linealgorithm if it can be assigned with a unit cost. We note some simple properties of suchsequences of jobs. First, the weight of all jobs must be at most 1 since a job that is largerthan 1 cannot be assigned by any algorithm without creating a load larger than 1. Second,the sum of weights of all jobs in a sequence of jobs is at most m, the number of machines.That follows from the fact that the optimal o�-line algorithm can assign jobs with totalweight of at most 1 to each machine. 3



3 Two algorithms with 5=3 stretching factorIn this section we present two algorithms with a stretching factor of 5=3 for the on-linebin-stretching problem. These are actually two families of algorithms. For each family weprove the same 5=3 upper bound.We start with a simple algorithm with a stretching factor of 2: put each arriving jobon an arbitrary machine such that the resulting load on that machine will not exceed 2.Obviously, if the algorithm does not fail to �nd such machine it has a stretching factor of 2by de�nition. In order to show that such a machine is always available we notice that theremust be a machine whose load is at most 1. Otherwise, all the machines have loads largerthan 1 which contradicts the fact that the optimal solution has maximal load 1. Since theweight of each job is at most 1, each arriving job can be assigned to some machine whichimplies that the algorithm never fails.Our algorithms use a threshold � to classify machines according to their loads. Anappropriate choice of � will lead as described later to an algorithm whose stretching factoris 1 + �.De�nition 3.1 A machine is said to be short if its load is at most �. Otherwise, it is tall.At the arrival time of job j, we de�ne three disjoint sets of machines based on the currentload and the job's weight.De�nition 3.2 When job j arrives, 1 � j � n, de�ne the following three disjoint sets:� S�1 (j) = fi 2M j li(j � 1) + wj � �g� S�2 (j) = fi 2M j li(j � 1) � �; � < li(j � 1) + wj � 1 + �g� S�3 (j) = fi 2M j li(j � 1) > �; li(j � 1) + wj � 1 + �gThe set S1 is of machines that are short and remain short if the current job is placed onthem. The second set S2 is of machines that are short but become tall if the job is placedon them. The last set S3 is of machines that are tall but remain below 1 + � if the job isplaced on them. Note that there may be machines which are not in any of the sets. Weomit the indices j and � when they are clear from the context.Using this de�nition we can now describe the two algorithms:ALG1�: When job j arrives:� Put the job on any machine from the set S3 or S1 but not on an empty machine fromS1 if there is a non-empty machine from S1.� If S1 = S3 = � then put the job on the least loaded machine from the set S2.� If S1 = S2 = S3 = � then report failure.ALG2�: When job j arrives: 4



Figure 1: S1, S2 and S3� Put the job on any machine from the set S1.� If S1 = � then put the job on any machine from the set S3.� If S1 = S3 = � then put the job on the least loaded machine from the set S2.� If S1 = S2 = S3 = � then report failure.Notice that these two algorithms are actually families of algorithms. In the �rst algo-rithm we are free to choose how to select a machine from S3 and whether we put a job ona machine from S1 or from S3. In the second algorithm we are free to choose how to selecta machine from S1 and from S3.Note that since the algorithms assign job j only to machines from the sets S1(j), S2(j)and S3(j), their stretching factor is at most 1+� as long as they do not fail. For 1 � i � 3 letJi be the set of jobs j assigned to a machine in Si(j) at their arrival time by the algorithm.
Figure 2: J1, J2 and J3Theorem 3.3 ALG1� above never fails for � � 2=3. Therefore, for � = 2=3 it has astretching factor of 5=3.Theorem 3.4 ALG2� above never fails for � � 2=3. Therefore, for � = 2=3 it has astretching factor of 5=3. 5



In order to prove the above theorems we assume by contradiction that ALG1� or ALG2�fail on the last job of some sequence of n + 1 jobs and that this sequence can be assignedby an optimal algorithm. We start with the following simple lemmas:Lemma 3.5 At time n all the machines are tall and there are at least two machines whoseload is less than 1.Proof: At time n, when the last job arrives, the three sets, S1, S2 and S3 are empty. Hence,li(n) + wn+1 > 1 + � for all 1 � i � m. Since the weight of each job is at most 1,li(n) > 1 + � � wn+1 � � for all 1 � i � m. Thus, all the machines are tall. Assume bycontradiction that except a machine i, all the machines have loads of 1 or more. When thelast job comes, li(n) + wn+1 > 1 + � > 1 and since all other machines also have loads of 1or more it implies that the sum of all loads is above m which contradicts the fact that thesequence of jobs can be assigned by an optimal algorithm.Corollary 3.6 The last job is larger than �.Proof: At time n, when the last job arrives, there is a machine i whose load is less than 1 bylemma 3.5. Since the algorithm fails to assign the last job, 1 + wn+1 > 1 + � or wn+1 > �.To utilize some of our lemmas for the improved algorithm we use a more general for-mulation. Consider a subset M 0 � M of machines. We de�ne the notion of composedalgorithm D(ALG;M 0) where ALG is ALG1� or ALG2� on a sequence of jobs I and a setof machinesM as follows: The algorithm decides on an arbitrary set I 0 � I and assigns it toa machine inM 0 and it assigns the rest of the jobs to a machine inM�M 0. The assignmentof jobs I 0 is done by running algorithm ALG on the set of machinesM 0. However, the jobsin I � I 0 are assigned to a machine in M �M 0 in any arbitrary way. Moreover, we makeno assumption on the sequence I , for example, the optimal algorithm may not be able toassign them in M without exceeding a load of 1 (in particular, jobs of weight larger than 1may exist).Note that D(ALG;M 0) is the same as ALG for M 0 = M . We already proved that ifALG1� or ALG2� fail on the n+1 job of sequence J of jobs then at time n all the machinesare tall and there are two machines whose load is less than 1. Meanwhile, for the composedalgorithms we assume that after a sequence of n jobs I was assigned by D(ALG;M 0) all themachines from the set M 0 are tall and two of them have loads below 1. This assumptionis used until (including) lemma 3.13. Also, we assume that 0 � � � 1 unless otherwisespeci�ed.De�ne the raising job ki of machine i 2M 0 as the job that raises machine i from beingshort to being tall. More formally, li(ki) > � and li(ki � 1) � �. The raising jobs are wellde�ned since we assumed that all machines from M 0 are tall. Rename the indices of themachines in M 0 to 1; : : : ; m0 such that k1 < k2 < : : : < km0 i.e., the order of the machinesin M 0 is according to the time the machines crossed �. From now on, all the indices areaccording the the new order. Note that the set of the raising job is J2. Denote by s1, s2the two machines in M 0 (s1 < s2) whose load is less than 1 at time n.Lemma 3.7 If at time n, the load of some machine i 2M 0 is at most l then wki0 > 1+ �� l6



for i0 > i; i0 2M 0.Proof: Both ALG1� and ALG2� assign jobs to machines from S2 only if the two other setsare empty. By de�nition of ki0 , at time ki0 � 1, job ki0 arrived and was assigned to machinei0. By the de�nitions of S2 and ki0 , machine i0 was in the set S2(ki0) and therefore the setsS1(ki0) and S3(ki0) were empty. Machine i was already tall at that time since i < i0. Thisimplies that at time ki0 � 1 machine i was not in S2(ki0). Hence li(ki0 � 1) + wi > 1 + � orwi > 1 + �� li(ki0 � 1) � 1 + � � li(n) � 1 + � � l.Since we assumed the load of machine s1 is at most 1 at time n, the lemma aboveimplies:Corollary 3.8 Jobs ki for s1 < i � m0 are larger than �.Let fi = li(ki � 1) for 1 � i � m0. This is the load of each machine just before it wasraised by the raising job.
Figure 3: The series fi. Only machines fromM 0 are shown for clarity.Lemma 3.9 For i0 > i, both in M 0, fi � li0(ki � 1) � fi0 .Proof: At time ki � 1 the load of machine i is fi by de�nition. At this time, by de�nitionof ki, machine i is in the set S2 which means that S1 and S3 are empty. Thus, at the sametime, each machine i0 > i must be in S2 or not in any of the sets. Note that if the loadof machine i0 is below fi at time ki � 1 then it is in S2(ki) since machine i, whose load ishigher, is in S2(ki). Therefore, the load of machine i0 is at least fi since both algorithmschoose the least loaded machine from S2. Machine i0 is still short so its load is at most fi0 .Corollary 3.10 The series fi , 1 � i � m0, is non-decreasing.Lemma 3.11 For i � s2, fi < 1� �.Proof: According to corollary 3.8, wks2 > �. Since the load of machine s2 is below 1 attime n, 1 > ls2(n) � ls2(ks2) = ls2(ks2 � 1) + wks2 = fs2 + wks2 :7



Therefore, fs2 < 1� wks2 < 1� �:By corollary 3.10, fi < 1� � for i � s2.Note that up to now our proof was not speci�c to one of the algorithms. Now we focusour attention on the �rst algorithm. Recall that we still assume that the set of jobs I isassigned by algorithm D(ALG1�;M 0) or D(ALG2�;M 0) to the set of machines M .Lemma 3.12 At any time of the activity of D(ALG1�;M 0), there is at most one non emptymachine in M 0 whose load is at most �2 .Proof: Assume by contradiction that at a certain time there are two such machines. Let jbe the �rst job that its assignment created two such machines. Thus, job j arrived and wasplaced on an empty machine i2 while another non empty machine i1 had a load of at most�2 . Clearly wj � �2 and li1(j � 1) + wj � �. Therefore i1 2 S1(j) and job j should havebeen assigned to i1.Lemma 3.13 Assume � � 2=3 and D(ALG1�;M 0) assigns a set of n jobs I to a set ofmachines M . Then the weight of each job ki, 1 � i � m0, is more than �.Proof: We have already seen in corollary 3.8 that jobs ki for s1 < i � m0 are larger than �.Now we show that jobs ki for i � s1 are also larger than �.By lemma 3.11, fs1 and fs2 are both below 1 � �. According to lemma 3.9, fs1 �ls2(ks1 � 1) � fs2 . Recall that the load of machine s1 at time ks1 � 1 is fs1 . At that time,the loads of machines s1 and s2 are below 1� � � �2 . Thus, by lemma 3.12, the less loadedmachine, s1, is empty, or ls1(ks1 � 1) = fs1 = 0. By corollary 3.10, fi = 0 for all machinesi � s1. A small fi implies that machine i has a large raising job. More formally, for i � s1:wki = li(ki)� li(ki � 1) = li(ki)� 0 > �:Now we are ready to complete the proof of theorem 3.3. Assume that ALG1� fails on then+ 1 job of a sequence J of jobs. After the n jobs have been assigned, all the machines aretall and there are two machines whose load is less than 1 by lemma 3.5. We take M 0 =Mand therefore I 0 = I where I is the set of jobs J without the last job. The previouslyde�ned series ki is now de�ned over all machines since we took M 0 = M . By lemma 3.13,for � � 2=3, this implies that there are m jobs larger than �. Corollary 3.6 shows thatthe last job is also larger than �. We showed there are m + 1 jobs larger than �. Thiscontradicts the fact that the number of jobs of weight larger than 1=2 is at most m sincethe optimal algorithm can assign at most one such job to each machine. This completesthe proof of theorem 3.3.The proof of theorem 3.4, i.e. ALG2� has the same stretching factor, is in subsection 7.1of the Appendix. 8



4 Improved AlgorithmIn this section we present an improved algorithm whose stretching factor is 1:625. Theimproved algorithm combines both of the previous algorithms into a single algorithm.At the arrival time of job j we de�ne �ve disjoint sets of machines based on the currentload and the job's weight.De�nition 4.1 When job j arrives, 1 � j � n, de�ne the following �ve sets:� S�11(j) = fi 2M j li(j � 1) + wj � �; li(j � 1) + wj � 2�� 1g� S�12(j) = fi 2M j li(j � 1) + wj � �; li(j � 1) � 2�� 1; li(j � 1) + wj > 2�� 1g� S�13(j) = fi 2M j li(j � 1) + wj � �; li(j � 1) > 2�� 1g� S�2 (j) = fi 2M j li(j � 1) � �; � < li(j � 1) + wj � 1 + �g� S�3 (j) = fi 2M j li(j � 1) > �; li(j � 1) + wj � 1 + �gNote that the previously de�ned S1 is split into three sets according to a low thresholdof 2��1. We still use the notation S1 for the union of these three sets. We omit the indicesj and � when they are clear from the context. The sets J1, J2 and J3 are de�ned as in theprevious section.Improved Algorithm: When job j arrives:� Put the job on a machine from the set S1 according to:{ Put the job on any machine from the set S13 or S11 but not on an empty machinefrom the set S11 if there is a non-empty machine from the set S11.{ If S11 = S13 = � then put the job on the least loaded machine from the set S12.� If S1 = � then put the job on the earliestmachine from the set S3, that is, the machinethat was the �rst to cross the threshold � from all machines in S3.� If S1 = S3 = � then put the job on the least loaded machine from the set S2.� If S1 = S2 = S3 = � then report failure.This improved algorithm is contained in the family of ALG2� presented in the lastsection. Our algorithm, however, de�nes the methods used in placing jobs on machinesfrom the sets S1 and S3. The way we choose a machine from S1 is by the method presentedin ALG1�. In choosing a machine from S3 we prefer the earliest machine according to theorder of crossing the threshold. The proof of the theorem below appears in subsection 7.2of the Appendix.Theorem 4.2 The improved algorithm above never fails for 5=8 � � � 2=3. Thus, for� = 5=8 it has a stretching factor of 13=8. 9



5 Fixed number of machinesIn this section we present an improvement to ALG1� when m is �xed. For m � 5 we showthat � can be slightly reduced without causing the algorithm to fail. In order to improve theperformance also for m = 3; 4 we use an algorithm called ALG12� which is the intersectionof ALG1� and ALG2�. For m = 2 we use a simple algorithm that has a 4=3 stretchingfactor.The proof of the theorem below appears in subsection 7.3 of the Appendix.Theorem 5.1 For m � 5, ALG1� never fails for 2m�23m+1 � � � 2=3. Therefore, for m � 5, itsstretching factor is 5m�13m+1 .We overcome the m � 5 limitation by introducing the following algorithm.ALG12�: When job j arrives:� Put the job on any machine from the set S1 but not on an empty machine from S1 ifthere is a non-empty machine from S1.� If S1 = � then put the job on any machine from the set S3.� If S1 = S3 = � then put the job on the least loaded machine from the set S2.� If S1 = S2 = S3 = � then report failure.This algorithm is actually a family of algorithms since we have some freedom in choosinga machine. Notice that this family is the intersection of the two families of algorithms,ALG1� and ALG2�. Our proof which appears in subsection 7.4 combines both of themethods used in the proofs of these two algorithms.Theorem 5.2 The algorithm for small m above never fails for min(23 ; m�1m+1) � � � 2m�23m+1 form � 3. Therefore, for m � 3, its stretching factor is 5m�13m+1 .Next, we prove that for two machines the following simple algorithm has a stretchingfactor of 4=3: Put each job on machine 1 if the resulting load is at most 43 and, otherwise,put the job on machine 2.Theorem 5.3 The simple algorithm for m = 2 has a stretching factor of 4=3.Proof: Consider the �rst job j from a set of n jobs that cannot be assigned to the �rstmachine. If at time j � 1 the load of the �rst machine is above 2=3 then all jobs j; : : : ; ncan be assigned to the second machine since the sum of the weights of all jobs is at most2. Otherwise, job j is larger than 2=3. Thus, the weight of all jobs except j sum up to atmost 4=3 and can be assigned to the �rst machine.10



6 Lower BoundsIn this section we prove a general lower bound of 4=3 on the stretching factor of deterministicalgorithms for any number of machines. We show a lower bound of 5=3 � � for arbitrarysmall � for the family of ALG1� and a lower bound of 13=8 � � for arbitrary small � onthe stretching factor of our improved algorithm. Note that it is impossible to show a lowerbound of 5=3� � for ALG2� since the improved algorithm is in that family. In these twocases we assume the number of machines is large enough. The details of all the lower boundsare in the Appendix.References[1] S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. on Theoryof Computing, pages 130{139, 1997.[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing withapplications to machine scheduling and virtual circuit routing. In Proc. 25th ACMSymposium on the Theory of Computing, pages 623{631, 1993. Also in Journal of theACM 44:3 (1997) pp. 486{504.[3] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtualcircuits with unknown duration. In Proc. 5th ACM-SIAM Symposium on DiscreteAlgorithms, pages 321{327, 1994.[4] Y. Azar, A. Broder, and A. Karlin. On-line load balancing. In Proc. 33rd IEEE Sym-posium on Foundations of Computer Science, pages 218{225, 1992. Also in TheoreticalCompute Science 130 (1994) pp. 73-84.[5] Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical ma-chines. In 5th Israeli Symp. on Theory of Computing and Systems, pages 119{125,1997.[6] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. On-line loadbalancing of temporary tasks. In Proc. Workshop on Algorithms and Data Structures,pages 119{130, August 1993.[7] Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. New algorithms for an ancient schedulingproblem. In Proc. 24th ACM Symposium on Theory of Algorithms, pages 51{58, 1992.To appear in Journal of Computer and System Sciences.[8] B. Chen, A. van Vliet, and G. Woeginger. A lower bound for randomized on-linescheduling algorithms. Information Processing Letters, 51:219{222, 1994.[9] B. Chen, A. van Vliet, and G. J. Woeginger. New lower and upper bounds for on-linescheduling. Operations Research Letters, 16:221{230, 1994.11



[10] E. G. Co�man, M. R. Garey, and D. S. Johnson. Approximation algorithms for binpacking: a survey. In D. Hochbaum, editor, Approximation algorithms. 1996.[11] U. Faigle, W. Kern, and G. Turan. On the performance of online algorithms forpartition problems. Acta Cybernetica, 9:107{119, 1989.[12] G. Galambos and G. J. Woeginger. An on-line scheduling heuristic with better worstcase ratio than graham's list scheduling. SIAM J. Computing, 22:349{355, 1993.[13] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman andCompany, San Francisco, 1979.[14] R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System TechnicalJournal, 45:1563{1581, 1966.[15] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,17:263{269, 1969.[16] D. Hochbaum and D. Shmoys. A polynomial approximation scheme for schedulingon uniform processors: Using the dual approximation approach. SIAM Journal onComputing, 17(3):539{551, 1988.[17] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for schedul-ing problems: Theoretical and practical results. J. of the ACM, 34(1):144{162, January1987.[18] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge,MA, 1973.[19] D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient schedulingproblem. In Proc. of the 5th ACM-SIAM Symposium on Discrete Algorithms, pages132{140, 1994.[20] H. Kellerer, V. Kotov, M. G. Speranza, and Zs. Tuza. Semi on-line algorithms for thepartition problem. Operations Research Letters. To appear.[21] J. Sgall. On-line scheduling on parallel machines. Technical Report Technical ReportCMU-CS-94-144, Carnegie-Mellon University, Pittsburgh, PA, USA, 1994.
12



7 Appendix7.1 Upper bound for ALG2�We prove theorem 3.4. We show that there are many large jobs here as in the proof oftheorem 3.3. We �rst assume that � � 1=2.De�nition 7.1 Let s0 be the smallest non-negative integer such that wki > � for all i > s0.
Figure 4: Machine s0Note that s0 is always de�ned and 0 � s0 � m. As a matter of fact, 1 � s0. Otherwise,the m jobs ki are larger than � and by corollary 3.6 the last job is also larger than �. Thisis a contradiction since we assumed � � 1=2 and as we saw before, there are at most mjobs larger than 1=2.Lemma 7.2 fi < 1� � for all 1 � i � s0.Proof: By corollary 3.8, all jobs ki for i > s1 are larger than � and therefore, from thede�nition of s0, s0 � s1. By lemma 3.11, fi � 1� � for i � s0.Lemma 7.3 For all 1 � i � m, the weight of every job from the sets J2 and J3 that arrivedbefore ki is larger than � � fi. Job ki itself is also larger than � � fi.Proof: Consider a job j that arrived before ki and is in one of the sets J2 and J3. By thedescription of ALG2�, the fact that the job was assigned to a machine from the sets S2 orS3 means that the set S1 was empty when job j arrived. At that time, the load of machinei is at most fi since ki has not arrived yet and therefore wj > �� fi. Job ki is the raisingjob and therefore must also be larger than the di�erence between fi and the threshold �.Lemma 7.4 Each machine i < s0 either contains a job that is larger than 1� fs0 or two jobseach is larger than � � fs0 . Machine s0 itself contains a job that is larger than �� fs0 .Proof: Fix a certain i < s0. At time ks0 � 1 machine i is already tall since i < s0. Byde�nition of s0, the weight of ks0 is at most �. At time ks0�1 the sets S1 and S3 are emptysince the job ks0 is assigned to a machine in S2. In particular, machine i is not in S3. Thus,at time ks0 � 1, the load of machine i is larger than 1 + �� wks0 � 1.13



If the raising job of machine i also raised it above 1 then by corollary 3.10 the weightof the raising job must be larger than 1� fi � 1 � fs0 . Otherwise, there was another jobthat arrived after the raising job which raised the machine above 1. Those two jobs arrivedbefore ks0 and by lemma 7.3 they are both larger than �� fs0 .Lemma 7.5 Assume that there are n1 jobs larger than � and other n2 jobs larger than 1� �such that 1=2 � � � 2=3. Then n1 + n22 � m.Proof: The optimal algorithm can assign to one machine at most one job that is larger than� or at most two jobs each is larger than 1 � �. The n1 jobs are assigned to n1 machinesand the remainingm�n1 machines can hold at most 2 jobs, each is larger than 1��. Thisimplies that 2(m� n1) � n2, or n1 + n22 � m.Now we complete the proof of theorem 3.4. Assume that ALG2� fails. By lemma 3.5at time n all the machines are tall and there are two machines whose load is below 1. Byde�nition of s0, all jobs ki for i > s0 are larger than �. Lemma 7.2 implies that fs0 < 1��.Therefore, by lemma 7.4, each machine i < s0 either contains a job that is larger than � ortwo jobs each is larger than �� (1��) = 2�� 1 and machine s0 contains a job larger than2�� 1. The last job is larger than � by corollary 3.6.Thus we proved that there are certain numbersm1 and m2 such that m1+m2 = m andthere are m1+ 1 jobs larger than � and 2m2� 1 jobs larger than 2�� 1. For � � 2=3, thiscontradicts lemma 7.5 with a choice of � = 2=3 sincem1 + 1 + 2m2 � 12 = m1 +m2 + 12 > m:7.2 Upper bound for the improved algorithmWe prove theorem 4.2. From now on, we assume 1=2 � � � 2=3. Since our algorithm is aspecial case of ALG2� we can use the lemmas in the previous section. As before, we beginby assuming the algorithm fails on the last job of some sequence of n+1 jobs, J . Accordingto lemma 3.5 at time n there are two machines whose load is less than 1, denoted s1 ands2, and all machines are tall which implies that we can de�ne an order on the machines andrename them according to that order. The series ki and the series fi are de�ned as before.Note that by this order the earliest machine in S3 is the one with the minimal index.Lemma 7.6 As long as the load of a certain tall machine i is at most l, all arriving jobs in thesets J2 and J3 that are assigned to machines i0 > i are larger than 1 + �� l.Proof: Take a certain job j 2 J2 assigned to a machine i0 > i. It was placed on a machinein S2 and therefore the set S3 was empty when it arrived. In particular, i =2 S3 and sincemachine i is tall, wj > 1 + � � li(j � 1) � 1 + � � l. In case job j is in J3, we know thealgorithm placed it on the earliest machine from the set S3. Since i < i0, machine i was notin the set S3 and as before, wj > 1 + �� l.Recall that s0 is the minimum index such that wki > � for all i > s0 and 1 � s0 � m.Lemma 7.7 fs0 > 2�� 1. 14



Proof: Assume by contradiction that fs0 � 2�� 1. By de�nition of s0, all jobs ki for i > s0are larger than �. According to lemma 7.4 every machine i < s0 either contains a job thatis larger than 1�(2��1) = 2(1��) � � or two jobs each is larger than ��(2��1) = 1��and machine s0 contains a job that is larger than 1 � �. The last job is larger than � bycorollary 3.6. Since 1=2 � � � 2=3 this contradicts lemma 7.5.De�nition 7.8 De�ne the following three disjoint sets of machines that include all machinesexcept s0:� M1 = fi 2M j fi � 2�� 1g� M2 = fi 2M j i < s0; fi > 2�� 1g� M3 = fi 2M j i > s0g
Figure 5: The sets M1, M2, M3 and R.Lemma 7.9 Assuming that � � 5=8, every machine from the set R =M2[fs0g[M3 containsa job that is larger than 2�� 1 in J1.Proof: Let i1 be the �rst machine in the set R. We look on the set of jobs I = f1; : : : ; ki1�1gand a subset of jobs I 0 � I that are assigned to a machine in R. Notice that I 0 � J1 sinceuntil time ki1 � 1 all machines from R are short. Thus, it is enough to show that everymachine from R contains a job in I 0 that is larger than 2�� 1.We prove that for the set I our improved algorithm is a scale down by 1 � � of analgorithm in the familyD(ALG1�; R) for � = 2��11�� . Recall that an algorithm in the familyD(ALG1�; R) only speci�es the method used in placing jobs to machines fromR. The scaledown by 1� � of ALG1� de�nes the three scaled down sets of S�1 , S�2 and S�3 . Notice thatthe three scaled down sets are exactly S�11, S�12 and S�13 used in the improved algorithm.Since the improved algorithm assigns all the jobs in I 0 to one of the sets S�11, S�12 or S�13 itis equivalent to a scaled down version of D(ALG1�; R).15



By de�nition 7.8, fi1 > 2��1 and by lemma 3.9, at time ki1�1 the load of each machinefrom the set R is also above 2� � 1 = �(1� �). According to corollary 3.8, s0 � s1 < s2and therefore both s1 and s2 are in R. Lemma 3.11 implies that at time ki1 � 1 the loadsof both machines s1 and s2 are below 1 � � = 1(1 � �). Thus, both of the scaled downassumption of lemma 3.13 hold here. Thus, by lemma 3.13 we conclude that there is a jobof weight larger than �(1� �) = 2�� 1 from the set I 0 in every machine from the set R.De�nition 7.10 A job is said to be of type 1 if it is larger than �. Jobs of type 2 are largerthan 1� � and type 3 are larger than 2�� 1.Using this de�nition, lemma 7.9 implies that every machine from the set R contains ajob of type 3 in J1. Next we prove that there are additional large jobs in the sets J2 and J3.We consider in lemma 7.11 and lemma 7.12 two possible cases according to the minimumload of machines of M1 at time ks0 � 1.Lemma 7.11 Assume that at time ks0 � 1 there is a machine from the set M1 whose load isat most 2�. Then every machine must hold the following large jobs from the sets J2 and J3:� All machines in M1 contain one of the following:a. A job that is larger than 2(1� �),b. Two jobs, the �rst of type 1 and the second of type 3,c. Two jobs of type 2,d. At most one machine contains two jobs: the �rst of type 2 and the second of type 3.� Each machine from the set M2 either contains a job of type 1 or two jobs of type 2.� Machine s0 contains a job of type 2.� All machines in M3 contain a job of type 1.Proof: First, the raising jobs of machines from the set M3 are of type 1 by the de�nition ofthe set. Denote by is a machine from the set M1 whose load is at most 2� at time ks0 � 1.By de�nition of s0, ks0 < � and thus at time ks0 � 1 the loads of all machines i < s0 arealready larger than 1. Fix a certain i 2 M2. Since i < s0, by time ks0 � 1 the load ofmachine i is already above 1. If it is raised above 1 by its raising job, then the raising jobis larger than 1� (1��) = � by lemma 7.2. Otherwise, it is raised above 1 by at least twojobs. These two jobs arrive before ks0 and therefore the load of machine is is still below 2�at their arrival time. Since is 2 M1, is < i and by lemma 7.6 both of the jobs are largerthan 1 + � � 2� = 1� �. When job ks0 arrived, the load of machine is was still below 2�and by the same lemma, wks0 > 1� �.Next we look on machines from the set M1. As before, at time ks0 � 1 the loads of allmachines i < s0 are already larger 1. If a certain machine i was raised by its raising jobabove 1 then it satis�es case a since the weight of its raising job is wki > 1� fi � 2(1� �)by de�nition 7.8. All other machines are raised above 1 by at least two jobs. The secondjob entered before ks0 and by lemma 7.3 and lemma 3.11 its weight is above 2� � 1 i.e., it16



is of type 3. If a machine contains a raising job that is larger than � (of type 1) then itsatis�es case b.We are left with a set of machines that are raised to 1 by at least two jobs, with theraising job's weight being at most �. Let i2 be the last machine from this set assuming it isnot empty. Thus, as the raising job ki2 arrives, the loads of all previous machines are alreadyabove 1 since wki2 � �. That means that both the raising and the second jobs of all previousmachines have already arrived and they are larger than �� fi1 � �� (2�� 1) = 1� � bylemma 7.3. Hence, they satisfy case c. The only machine that may not satisfy a, b or c isi2. It contains two jobs, by lemma 7.3 the raising job, ki2 , is of type 2 and the second is oftype 3 since it entered before ks0 . Thus, it satis�es case d.Note that all jobs in the proof are from the sets J2 and J3, as required.Lemma 7.12 Assume that at time ks0�1 the loads of all machines from the set M1 are morethan 2�. Every machine must hold the following large jobs from the sets J2 and J3:� All machines in M1 contain one of the following:a. Two jobs that the sum of their weights is above one,b. Three jobs, one of type 1 and two of type 3,c. Three jobs, two of type 2 and one of type 3,d. At most one machine contains three jobs: one of type 2 and two of type 3.� Each machine from the set M2 either contains a job of type 1 or two jobs of type 3.� Machine s0 contains a job of type 3.� All machines in M3 contain a job of type 1.Proof: All jobs from the sets J2 and J3 that arrived before ks0 are of type 3 according tolemma 7.3. This fact will be used throughout the proof.The raising job of all machines from the set M3 is of type 1 by de�nition of the set.If a machine in M2 is raised above 1 by its raising job then the raising job is of type 1.Otherwise, there are at least two jobs, both arriving before ks0 and therefore both are oftype 3. The raising job of machine s0 is also of type 3.We assumed that at time ks0 � 1 the loads of all machines from the set M1 are above2�. Notice that fi � 2�� 1 for all i 2M1 and therefore the raising job itself cannot raise amachine fromM1 above 2�. In case there are two jobs that raise a machine above 2� thenthe sum of their weights is above 1 which satis�es case a. All other machines in M1 areraised above 2� by at least three jobs. The �rst is the raising job and at least two otherjobs from J3, all arriving before ks0 . If the raising job of some machines is of type 1 themachine satis�es case b since the two other jobs are of type 3.We are left with a set of machines that contain a job in the set J2 whose weight is atmost � and at least two jobs from the set J3. Let i2 be the last machine from the aboveset, assuming it is not empty. Since wki2 < �, the loads of all previous machines are above17



1 when ki2 arrives. Fix a certain machine i < i2. Since the weight of its raising job is atmost � and (2� � 1) + � � 1, it cannot raise the machine above 1. Therefore, machine icontains at least two jobs that arrive before ki2 and by lemma 7.3 they are both larger than�� (2�� 1) = 1� �. As before, the third job is of type 3 and therefore machine i satis�escase c. Machine i2 itself contains a raising job of type 2 since fi2 � 2� � 1 and two otherjobs of type 3.Note that as in the previous proof, all the indicated jobs are from the sets J2 and J3.Next we prove that the combinations of jobs presented in the previous lemmas togetherwith the last job cannot be assigned by an optimal algorithm. The number and types ofjobs are taken from lemmas 7.9, 7.11 and 7.12 as indicated in parenthesis.Lemma 7.13 Each of the following two sets of jobs cannot be assigned by an optimal algorithmassuming 5=8 � � � 2=3:� m1 times a job that is larger than 2(1� �), (M1, case a)m2 times a job of type 1 and a job of type 3, (M1, case b)m3 times two jobs of type 2, (M1, case c)m4 � 1 times a job of type 2 and a job of type 3, (M1, case d)m5 times a job of type 1, (M2, �rst case)m6 times two jobs of type 2, (M2, second case)a job of type 2, (s0)m7 times a job of type 1, (M3)m5 +m6 + 1 +m7 times a job of type 3, (R, jobs from J1)a job of type 1, (the last job)such that m1 +m2 +m3 +m4 +m5 +m6 + 1 +m7 = m.� m1 times two jobs that the sum of their weights is above 1, (M1, case a)m2 times a job of type 1 and two jobs of type 3, (M1, case b)m3 times two jobs of type 2 and a job of type 3, (M1, case c)m4 � 1 times a job of type 2 and two jobs of type 3, (M1, case d)m5 times a job of type 1, (M2, �rst case)m6 times two jobs of type 3, (M2, second case)a job of type 3, (s0)m7 times a job of type 1, (M3)m5 +m6 + 1 +m7 times a job of type 3, (R, jobs from J1)a job of type 1, (the last job)such that m1 +m2 +m3 +m4 +m5 +m6 + 1 +m7 = m.Proof: We begin by determining all the combinations of jobs of types 1,2,3 an optimalalgorithm can assign to a single machine. The optimal algorithm can assign a job of type 1with at most one job of type 3. It can assign two jobs of type 2 to a single machine, but noother job can be assigned with them. Another possibility is to assign only one job of type2 and at most two jobs of type 3 with it. It can assign at most 3 jobs of type 3 to a singlemachine. 18



We �rst prove that the �rst set cannot be assigned by the optimal algorithm. Sincejobs larger than 2(1� �) cannot be assigned together with any of the other jobs, m �m1machines are left for the other jobs. The other jobs are m2 +m5 +m7 + 1 jobs of type 1,2m3+m4+2m6+1 jobs of type 2 andm2+m4+m5+m6+m7+1 jobs of type 3. Each machinecan hold at most one job of type 1. A machine that holds a job of type 1 can hold at most onejob of type 3 and no jobs of type 2. That leavesm�m1�(m2+m5+m7+1) = m3+m4+m6machines that are supposed to hold at least 2m3 + m4 + 2m6 + 1 jobs of type 2 andm2 +m4 +m5 +m6 +m7 + 1 � (m2 +m5 +m7 + 1) = m4 +m6 jobs of type 3. In casem4 = 0 we reach a contradiction because the number of jobs of type 2 in more than twicethe number of machines and each machine can hold at most two jobs of type 2. In casem4 = 1, the number of jobs of type 2 is exactly twice the number of machines. That meanseach machine holds 2 jobs of type 2. However, the number of jobs of type 3 is at least 1but none of the machines can hold a job of type 3 since it already holds two jobs of type 2.This completes the proof of the �rst case.Next we prove that the second set cannot be assigned by the optimal algorithm. Webegin by showing that the m1 pairs of jobs that the sum of their weight is above 1 can beignored. More formally, assume that a set of jobs J contains two jobs, j1 and j2 that thesum of their weights is above 1. We show that if J can be assigned by an optimal algorithmtom machines then the set of jobs J�(fj1g[fj2g) can be assigned by an optimal algorithmto m � 1 machines. Consider the assignment of the set J . Denote by i1 and i2 the twomachines to which j1 and j2 are assigned. i1 6= i2 since the sum of their weights is above1. Thus, the sum of the weights of the other jobs in i1 and i2 is less than 1 and can beassigned to one machine.The last paragraph implies that if the entire set of jobs can be assigned by the optimalalgorithm to m machines then the set of jobs without the m1 pairs of jobs can be assignedto m�m1 machines. There are m2 +m5 +m7 + 1 jobs of type 1, 2m3 +m4 jobs of type 2and 2m2+m3+ 2m4+m5+ 3m6+m7 + 2 jobs of type 3 that are supposed to be assignedto m � m1 machines. Each machine can hold at most one job of type 1. Together withthat job, only one job of type 3 can be assigned. That leaves 2m3 + m4 jobs of type 2and at least m2 +m3 + 2m4 + 3m6 + 1 jobs of type 3 that are supposed to be assigned tom�m1 � (m2 +m5 +m7 + 1) = m3 +m4 +m6 machines. Out of these machines assumem0 machines contain two jobs of type 2 and all other machines contain at most one job oftype 2. Obviously, 0 � m0 � b2m3+m42 c = m3. The m0 machines cannot hold any otherjob so we are left with 2m3 + m4 � 2m0 jobs of type 2 and m2 + m3 + 2m4 + 3m6 + 1jobs of type 3 that are supposed to be assigned to m3 +m4 +m6 �m0 machines. Thesemachines hold at most one job of type 2, and thus 2m3 +m4 � 2m0 machines hold a job oftype 2. The optimal algorithm can assign at most two jobs of type 3 with the job of type2 so we are left with m2 +m3 + 2m4 + 3m6 + 1 � 2(2m3 +m4 � 2m0) jobs of type 3 andm3+m4+m6�m0� (2m3+m4� 2m0) machines. Since each machine can hold up to threejobs of type 3,3(m3+m4+m6�m0� (2m3+m4�2m0)) � m2+m3+2m4+3m6+1�2(2m3+m4�2m0)3m6 � 3m3 + 3m0 � m2 � 3m3 + 3m6 + 4m0 + 10 � m2 + 1 +m019



which is impossible since all the variables are non-negative.Now we complete the proof of theorem 4.2. Assume that the improved algorithm fails.Note that the jobs of lemma 7.9 are from the set J1 while jobs of lemmas 7.11 and 7.12 arefrom J2 and J3 and thus, they are disjoint. Therefore, one of the two cases of lemma 7.13occurs. That contradicts the assumption that the algorithm fails.7.3 Upper bound for ALG1� for �xed m � 5We prove theorem 5.1. Our proof is very similar to the original proof of theorem 3.3 withsome minor changes. Again, we begin by assuming the algorithm fails on the last job ofsome sequence of n+ 1 jobs. By lemma 3.5, all the machines are tall at time n and we cande�ne the jobs ki for 1 � i � m and the series fi. The following lemma somewhat improveslemma 3.5:Lemma 7.14 At time n there are two machines whose load is below 1� �m�1 .Proof: Assume by contradiction that the loads of all machines except machine i are at least1� �m�1 . Since the algorithm failed when job n + 1 arrived, li(n) + wn+1 > 1 + � and thetotal load of all machines is above 1 + �+ (m� 1)(1� �m�1 ) = m which is a contradiction.Let s1 and s2 be two machines whose load is below 1 � �m�1 . According to lemma 3.7all jobs ki for i > s1 are larger than �+ �m�1 . In particular wks2 > �+ �m�1 . Since the loadof machine s2 is below 1� �m�1 at time n,1� �m� 1 > ls2(n) � ls2(ks2) = ls2(ks2 � 1) + wks2 = fs2 + wks2 :Therefore, fs2 < 1� �m� 1 � wks2 < 1� �� 2�m� 1and by corollary 3.10 fi < 1� �� 2�m�1 for all i � s2.According to lemma 3.9, at time ks1 � 1, the load of machine s2 was at most fs2 butmore than the load of machine s1. Therefore, at that time, the loads of both machines arebelow 1� � � 2�m�1 and by our choice of �, this is at most �2 . By lemma 3.12 this impliesthat fi = 0 for i � s1. Therefore, the raising jobs of machines i, for 1 � i � s1, is largerthan �.We proved that all the m raising jobs are larger than �. The last job is also larger than� by corollary 3.6. Note that � � 2m�23m+1 � 1=2 form � 5. Thus, we reached a contradiction.7.4 Upper bound for ALG12� for �xed m � 3We prove theorem 5.2. Assume the algorithm fails on the last job of some sequence of n+1jobs. By lemma 7.14, at time n there are two machines whose load is below 1� �m�1 . Let s120



and s2 be two machines (s1 < s2) whose load is below 1� �m�1 . By the discussion followinglemma 7.14 all jobs ki for i > s1 are larger than � + �m�1 and fi = 0 for i � s1.The next lemma improves corollary 3.6:Lemma 7.15 The last job is larger than � + �m�1 .Proof: By lemma 7.14, at time n there was a machine i whose load is less than 1 � �m�1 .Since the algorithm failed to assign the last job 1� �m�1+wn+1 > 1+� or wn+1 > �+ �m�1 .De�nition 7.16 Let s0 be the smallest non-negative integer such that wki > �+ �m�1 for alli > s0.Note that the de�nition of s0 is slightly di�erent from the original de�nition. As before,s0 is always de�ned and 0 � s0 � m. If s0 = 0 then there are m jobs of weight larger than� + �m�1 . The last job is also larger than � + �m�1 by lemma 7.15. This is a contradictionsince we found m+ 1 jobs larger than � + �m�1 > 1=2 for our choice of m and �.By de�nition of s0, s0 � s1 and therefore fs0 = 0. Now we present an improvement tolemma 7.4.Lemma 7.17 Each machine i < s0 either contains a job that is larger than 1� �m�1 or twojobs each is larger than �. Machine s0 itself contains a job that is larger than �.Proof: Fix a machine i < s0. Since wks0 < �+ �m�1 , at time ks0 � 1, the load of machine iwas already larger than 1 + �� (�+ �m�1 ) = 1� �m�1 � � by our choice of �. This impliesthat machine i is tall before job ks0 arrives. If the raising job of machine i raised it above1� �m�1 then it is larger than 1� �m�1 since fi = 0. Otherwise, there are at least two jobs,one from the set J2 and the other from J3 that both arrived before ks0 . By lemma 7.3, thisimplies that both of these jobs are larger than �.By our choice of �, 1� �m�1 � �+ �m�1 . Therefore, by de�nition 7.16 and lemmas 7.17,7.15 there are 2m1 � 1 jobs larger than � and m2 + 1 jobs larger than �+ �m�1 for certainnumbers m1, m2 such that m1 +m2 = m. By our choice of � and m, �+ (� + �m�1) � 1.This contradicts lemma 7.5.7.5 General Lower BoundTheorem 7.18 The stretching factor of any deterministic on-line algorithm for the bin-stretchingproblem is at least 4=3 for any number m � 2 of machines.Proof: Look at the following two sets jobs:� m jobs of weight 1=3 and another m jobs of weight 2=3.� m jobs of weight 1=3 and a job of weight 1.Obviously, these two sets can be assigned to m � 2 machines by an optimal o�-linealgorithm. 21



Assume a certain deterministic on-line algorithm receives m jobs of weight 1=3. If thealgorithm assigns the m jobs on m di�erent machines then the algorithm receives a job ofweight 1 as in the second set. Since the loads of all the machines are 1=3, the load of themachine to which the algorithm assigns the last job is 4=3.Otherwise, there is a machine to which the algorithm assigned two jobs of weight 1=3.Then we continue with m jobs of weight 2=3 as in the �rst set. The algorithm can eitherput all the m last jobs on m di�erent machines or put at least two of the last m jobs on asingle machine. In both cases, there is a machine whose load is 4=3.7.6 Lower bound for ALG1�In this section we show that ALG1� does not have a stretching factor of 1 + � for a �xed� < 2=3. For any �xed � < 2=3 we show an example in which the algorithm fails. Thenumber of machines increases as � is closer to 2=3 and therefore the lower bound is validfor a large number of machines. From now on we �x � < 2=3.In phase 1 a sequence of in�nitesimal jobs of total weight �m1 arrives where m1 will bechosen later. By the description of ALG1�, the algorithm �lls each machine up to a loadof � and then continues to the next machine. Therefore, m1 machines have loads of � andall other machines are empty.In phase 2 a sequence of jobs whose weight is �2 + � arrives. We choose a very smallconstant � > 0. Recall that the algorithm assigns a job to a machine in S2 only if S1 = S3 =�. Therefore, the algorithm assigns the �rst m�m1 jobs to the empty m�m1 machines.As the next job arrives, all the machines are in S2 and the algorithm assigns it to the leastloaded machine which is a machine with one job of weight �2 + �. Denote this machine i1.The next few jobs are assigned to i1 since it is in S3 and all other machines are in S2. Thenumber of jobs is so that the load of i1 is at least 1 + � � (�2 + �) = 1 + �2 � �.In phase 3 a sequence of m jobs of weight 12 + �4 arrives. Notice that the minimal loadbefore placing these jobs is �2 + � and therefore the algorithm cannot place two of these jobson the same machine. The algorithm cannot place any of these jobs on machine i1 since1 + �2 � � + 12 + �4 = 32 + 3�4 � � > 1 + �for small �. Thus, the algorithm cannot assign these m jobs.Now we show that the optimal algorithm can assign the same set of jobs for an appro-priate choice of m1. We choose m1 to be the number of excessive jobs of machine i1. It isimportant to see that this number is constant and does not depend on m since it is boundedby 1+��2+� . Note that the number of jobs of size �2 + � is exactly m by our choice of m1. Theoptimal algorithm assigns each machine with a job of weight 12 + �4 and a job of weight�2 + �. This results in a load of12 + �4 + �2 + � = 12 + 3�4 + � < 1on each machine by our choice of � and �. 22



Figure 6: After phase 3This leaves only the in�nitesimal jobs. Their total weight ism1� and therefore constant.Each machine can hold a load of 1 � (12 + 3�4 + �) > 0 in�nitesimal jobs. Since this is apositive constant, we can choose m to be large enough for all the in�nitesimal jobs to �t.7.7 Lower bound for the improved algorithmIn this section we show that the improved algorithm does not have a stretching factor of1+� for a �xed � < 5=8. For any �xed � < 5=8 we show an example in which the algorithmfails. The number of machines increases as � is closer to 5=8 and therefore the lower boundis valid for a large number of machines.In phase 1 a sequence of in�nitesimal jobs of total weight m1(2�� 1) arrives where m1will be chosen later. The algorithm �lls each machine to a load of 2��1 and then continuesto the next machine. Therefore, m1 machines have loads of 2�� 1 and all other machinesare empty.In phase 2 a sequence of jobs of weight � � 12 + � arrives. We choose � > 0 to be avery small constant. The algorithm assigns the �rst m �m1 jobs to the empty machinessince it prefers a machine from S11 over a machine from S12. The next job must cross thelower threshold, and therefore it is assigned to the least loaded machine. The following jobs�ll the machine that crossed the lower threshold until no other job can be assigned to itwithout crossing the upper threshold. We continue with these jobs until m2 machines are�lled.In phase 3 jobs of weight 14 arrive. The �rst m �m2 are assigned to m�m2 di�erentmachines. The next job must cross the upper threshold and therefore it is assigned to theleast loaded machine. We continue until the load of the �rst machine i1 that crossed theupper threshold is above 1 + �� 14 = 34 + �.The minimal load is above � � 14 + � and the maximal load is above 34 + �. In phase4 m jobs of weight 58 arrive. Assigning two of these jobs to the same machine results in aload above �� 14 + �+ 2 � 58 = 1+ �+ � and therefore all jobs must be assigned to di�erent23



Figure 7: After phase 4machines. However, that results in a load of at least 34+�+ 58 > 1+�. Thus, the algorithmfor � < 58 fails.Next we show that by choosing m1 and m2 appropriately, the jobs can be assigned byan optimal algorithm. Each machine in the optimal algorithm assignment contains a job ofweight 58 , a job of weight 14 , a job of weight �� 12 + � and a certain part of the in�nitesimaljobs.There are m�m2 machines which contain one job of size 1=4 except one machine whichcontains several excessive jobs of size 1=4. Clearly, the number of excessive jobs is at most6 since (6 + 1) � 14 > 1 + �. We choose m2 to be this number of excessive jobs.There arem�m1�m2 machines which contain one job of size �� 12+� and m2 machinesthat contain an extra number of these jobs. The number of these excessive jobs is boundedby m2 � ��� 12+� which is constant. We choose m1 to be this number of excessive jobs.Choosingm1 and m2 in that way allows the optimal algorithm to assign one job of eachweight to each machine: one of weight 5=8, one of weight 1=4 and another one of weight� � 12 + �. Therefore, the load of each machine is � + 38 + � < 1, by our choice of �. Thetotal weight of the in�nitesimal jobs is m1(2� � 1) which is constant. We choose m to belarge enough so that this weight of in�nitesimal jobs can be spread over all m machines.The exact number of machines should be at least m1(2��1)1�(�+ 38+�) .
24


