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Abstract

The Freidlin-Wentzell theorem gives the probability of large deviations under small noise.
Very roughly, it gives the probability that a particle undergoing diffusion inside a box,
under very small but positive noise, will eventually hit the boundary of the box in a given
time. Exit always happens at a particular point irrespective of the starting position, and
this point of exit and time to exit can be calculated using the drift and volatility terms.
We present an analogous control version of the theorem, where the goal of the controller is
to keep the particle inside the box, as long as possible.

1. Introduction

Typically stochastic control problems aim to to place bounds on the expectations of linear
or quadratic functions of some underlying stochastic process. Theoretical progress in non-
linear control has been limited, although much has been done in the second half of last
century (see for example the book by Bensoussan (1992)). The use of expectations of
linear and quadratic functions as the objective is more natural as opposed to optimizing the
underlying tail probabilities directly. The latter problem seems theoretically more difficult.
Moreover, diffusions tend to spread out rather quickly so there is little to gain, as far as
applications go, in investigating incremental gains by using control variables and optimizing
the tail probability, especially since the events themselves are rare events.

However, in the small noise case i.e., when the diffusion looks like:

dxεt = b(xεt )dt+
√
εdWt, (1)

where Wt is standard Brownian motion in the plane and ε → 0+ i.e., ε small but remains
positive, the diffusion (mostly) stays in a narrow tube for a long time i.e., it does not spread
out much. Moreover, the probability that such a diffusion exits its bounding box is closely
related to where it exits the box, and surprisingly there is a unique point of exit, irrespective
of the starting point. Furthermore, this unique point of exit is used to explicitly calculate
the time to exit from the given domain (our box). This is the well-known Wentzell-Freidlin
theory (see Freidlin and Wentzell (1991) for a formal treatment). In this short paper, we
investigate a very simple control version of the large deviations theorem in Wentzell-Freidlin
theory (Theorem 1), and its implications to the point of exit and exit time (Lemma 7 and 8).

2. Background and Definitions

We refer the reader to the book Fleming and Rishel (1975) for a background in control
theory and the book Varadhan (2017) for a quick background on large deviations theory and
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Wentzell-Freidlin theory. The book Giaquinta and Hilderbrandt (1996) is a good reference
on variational methods.

Optimal control in the stochastic setting has been extensively studied (see for example
the books Fleming and Rishel (1975) and Bensoussan (1992)). The problem is simply stated
by starting with an Itô process,

dxt = A(t)xt +B(t)θt + C(t))dt+ adWt, t ∈ [0, T ]

where Wt is Brownian motion in Rd with covariance matrix a, θt is adapted to the natural
filtration. The objective is typically to minimize a quadratic cost function of the form:

E
[∫ T

0
(xTt Mxt + θTt Nθt)dt+ xTTMTxT + θTTNT θT

]
.

An explicit solution to the problem is known via dynamic programming and by now it’s
standard in text books. The situation for non-linear control is very different, little is known
systematically. The book Bensoussan (1992) and the references therein, do investigate some
eclectic cases which permit a solution. In particular, they also study a selected case where
the signal has large noise but the observation is required to have small noise. However,
their objective is to approximate the filtered process and is therefore different from ours,
which is to control exit times and bound the probability of exit in the small noise case using
variational methods.

3. Our Result

Notation: Throughout we will let ḟ(t) denote derivative with respect to time and f ′(g(x))
will be used to denote derivative of f with respect to its argument.

We make the following assumptions, some are necessary and others serve to simplify the
presentation. First, we need some smoothness assumptions for our theorem to hold.

Assumption 1 In what follows we will assume that the domain D is smooth, convex and
bounded. The paths u(t), u : [0, T ]→ D are Lipschitz continuous with constant c.1

The following assumption will ensure concavity of a and convexity of the rate functional
in Theorem 1. Although, these assumptions can be relaxed a bit, something similar will be
necessary absent new ideas to prove the required minimax inequality.

Assumption 2 In the following a will denote a 2×2 diagonal matrix in R. For i ∈ {1, 2},
a−1ii : D → R are C∞ with derivatives bounded by c in D, and they are positive, bounded
away from zero and finite. Furthermore, assume that:

1. (a−1ii )
′′

are not positive.

2. a−1 is large enough, i.e., for λ being the minimal eigenvalue of W 1,2(D):

min
D

a−1ii ≥ c
2 + c3λ+ c2λ. (2)

1. As opposed to just Hölder continuous
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The following strong assumption simplifying the drift term b is not conceptually neces-
sary, it can be replaced with assumptions on the norm of derivatives of b, but it simplifies
our presentation greatly.

Assumption 3 We will assume that b ≡ (b1, b2), bi : D → D, is simply the drift of an OU
process with bi(x) := −c′xi, for some suitably small and positive c′.

Our main result is an extension of the large deviation principle underlying the bounds
in Wentzell-Freidlin theory.

Theorem 1 For any positive ε, given an Itô process:

dxεt = −c′xεtdt+
√
εa

1
2 (θ(xεt ))dWt, (3)

where Wt is standard Brownian motion in R2. Define

IT (u, θ) :=
1

2ε

∫ T

0

∑
i∈{1,2}

a−1ii (θ(u(t)))(u̇i(t) + c′ui(t))
2dt, (4)

where we assume θ ≡ (θ1, θ2), θi : R → (0, 1), is Lipschitz continuous with coefficient c.
Then, under Assumptions 1,2 and 3, we have:

lim
ε→0

ε log P (xεT 6∈ D) = − inf
u

u(T )6∈D

sup
θ
IT (u, θ). (5)

The idea behind the above theorem is quite simple: Show that the functional I(u, θ)
is convex in u and concave in θ. This would imply the existence of a saddle point using
Ky Fan’s theorem from game theory. However, proving that a functional is convex is
not easy, especially when it consists of a mix of terms with u̇ and u – this is why the
convexity method in calculus of variations is not as widely useful – most such functionals
do not have much structure in them to work with. In our case, we do have some structure
and we make simplifying assumptions (Assumptions 2 and 3 above) to bring it out. Using
Poincaré inequality we are able to show that our functionals are indeed convex and concave.
This leads to the above large deviation bound. Using this bound and referring to existing
arguments from Wentzell-Freidlin theory, we are able to show bounds in Lemma 7 and 8
that such a controlled process would have a larger exit time. When equilibrium exists, the
expected exit increases from: infy∈∂D inf u,u(0)=x0

u(T )=y

I(u) to infy∈∂D inf u,u(0)=x0,
u(T )=y

supθ I(u, θ). 2

4. Proofs and Calculations

4.1 Existence of Nash equilibrium

We begin by recalling a large deviation inequality implied by the Freidlin-Wentzell theorem.

2. We assume that once the particle penetrates D, it stays there. This is because we need to assume here
and throughout that T is large, larger than the exit time i.e., T → ∞.
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Theorem 2 Freidlin and Wentzell (1991),Varadhan (2017) For any positive ε, given an
Itô process:

dxεt = b(xεt )dt+
√
εa

1
2 (xεt )dWt, (6)

where a (a is positive definite) and b : R2 → R2 are uniformly Lipschitz continuous and Wt

is standard Brownian motion in R2, define the rate function:

IT (u) :=
1

2

∫ T

0

1

ε
〈a−1(u(t))(u̇(t)− b(u(t))), (u̇(t)− b(u(t)))〉dt, (7)

where u̇ is Hoelder continuous, then on the Banach space of smooth functions with bounded
sup-norm, for every open set G and closed set F ,

lim sup
ε→0

ε log P (xεt ∈ F, t ∈ [0, T ]) ≤ − inf
u∈F

IT (u), (8)

lim inf
ε→0

ε log P (xεt ∈ G, t ∈ [0, T ]) ≥ − inf
u∈G

IT (u). (9)

In the case of a smooth closed bounded domain D ⊂ R2, suppose b is such that the
dynamical system u̇(t) = b(u(t)) has a stable fixed point in D. Theorem 2 then says that
the probability of penetration through D in time T asymptotically equals e− infu I(u) (where
we have dropped the time subscript from I for brevity). Moreover, as T →∞, exit always
happens with probability 1, for any positive ε, as long as determinant of a is bounded away
from 0 (see for example Varadhan (2017)).

Consider now a simple parametrization of a in Theorem 2 with function θ : D → (0, 1)2,
so that a(xεt ) in Equation 6 is replaced with a(θ(xεt )) i.e., θ will be our control function.

Remark 3 Note that we restrict our control here to just the volatility term as opposed to
the drift term or both. However, it is possible to consider controlling both the drift and
volatility terms in this framework, as long as some restrictions and trade-offs are followed.
The calculations for the second variation and the inequalities become longer and trickier in
that case and we plan to investigate them in a full version of the paper.

If we wanted to pick a θ so that the probability to exit in time T is minimized and
therefore the time to exit maximized then we would immediately obtain from Theorem 2
an expresison for the probability of exit as:

P(x 6∈ D) ' e− supθ infu Iθ(u). (10)

However, if one closely follows the proofs in Freidlin and Wentzell (1991) or Varadhan
(2017), then this naive bound implies that the particle penetrates D at an expected exit

time ∼ e
1
ε
supθ infu Iθ(u) as opposed to e

1
ε
infu I(u). However, there is room for improvement

in these bounds, and in particular the question is: Can we reverse the sup inf to obtain a
better guarantee under reasonable conditions?

A natural way to reverse the sup inf is to use Ky Fan’s minimax theorem which gives
sufficient conditions for the existence of Nash equilibria in two-person zero-sum games. A
version of the theorem is stated below.
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Theorem 4 Raghavan (1994) Let X,Y be compact convex subsets of locally convex topolog-
ical vector spaces. Let K : X×Y → R be continuous. For any fixed x̄, ȳ, let K(x̄, y) : Y → R
be a convex function and K(x, ȳ) : X → R be a concave function. Then

sup
x∈X

inf
y∈Y

K(x, y) = inf
y∈Y

sup
x∈X

K(x, y).

In order to use Theorem 4, we will need to show that our valuation functional I(u, θ)
is convex with respect to u and concave with respect to θ in D, under the assumptions in
Theorem 1 on the process parameters a and b.

We begin by investigating the convexity of Iθ(u) when θ is kept fixed and u is varied.
Recall from the calculus of variations (see for example Giaquinta and Hilderbrandt (1996))
that the non-negativity of the second variation with respect to u is enough to show convexity
of I. In other words, we need to show:

δ2

∫ T

0

∑
i∈{1,2}

a−1ii (θi(ui(t)))(u̇i(t) + c′ui(t))
2dt

 ≥ 0. (11)

By definition of the second variation, checking convexity then equals verifying that the
second variation of the Lagrangian is non-negative i.e.

∫ T

0
δ2

 ∑
i∈{1,2}

a−1ii (θi(ui(t)))(u̇i(t) + c′ui(t))
2

 dt ≥ 0. (12)

We will verify the case for one coordinate dimension (i = 1), the other case is proved
similarly. Therefore, we have to compute the second variation with repsect to u for the
following three types of terms:

1. δ2(a−111 · θ1)(u1)u̇21,

2. δ2(a−111 · θ1)(u1)b1(u1)2, and

3. δ22(a−111 · θ1)(u1)u̇1.b1(u1).

In all three cases, despite our simplified control setting the expressions involved are
tedious to work with. However, assuming that bi(ui) ≡ −c′ui where c′ is very small allows
us to ignore cases 2 and 3 and concentrate on term 1.

The second variation from term 1 can be written as:

(a−111 · θ1)(u1)φ̇
2 + (a−111 · θ)

′′
(u1)u̇

2
1φ

2 + 2(a−111 · θ)
′
(u1)u̇1φφ̇, (13)

where · denotes composition and φ ∈ C1([0, T ], D) (functions with continuous first deriva-
tives).

In order to show that the integral corresponding to Equation 13 is non-negative, observe
that the first term is positive by positivity of a. We will upper bound the contribution of
the middle term and the last term using Poincaré inequality.

5



Since φ(0) = x0 and φ is assumed to have continuous first derivatives and it’s domain
is bounded, so φ ∈W 1,2

0 , and we can apply Poincaré inequality, to get:∫
φ2dt ≤ λ

∫
φ̇2dt, (14)

where λ is the minimal eigenvalue for the Laplacian in W 1,2
0 ([0, T ], D). Therefore, we can

use it to bound the middle-term in Equation 13.

Moreover, observe that 2φφ̇ ≤ (φ2 + φ̇2), and so we can bound the last term in Equa-
tion 13 using a combination of Poincaré inequality together with our assumptions on a and
θ.

Under the assumption that a is bounded away from zero and is uniformly Lipschitz
continuous with bounded first derivatives i.e. Assumption 2,

‖(a−111 · θ)
′′‖∞ ≤ c, (15)

‖(a−111 · θ)
′‖∞ ≤ c. (16)

Since u is Lipschitz continuous with coefficient c, under Assumptions 1,2 and 3 we have:∫
a−111 (θ(u1))φ̇

2 ≥
∫

(a−111 · θ)
′′
(u1)u̇

2
1φ

2 + 2(a−111 · θ)
′
(u1)u̇1φφ̇. (17)

This is because the coefficients of φ2 and φ̇2 in the RHS integral can be bounded by c3λ
and c2 + c2λ respectively.

Therefore, we have shown the convexity of the second variation of I with respect to u1.

In order to show concavity of the second variation with repsect to θ1, we merely need
to show that ∫

(a−1)
′′
(θ1(u1))φ

2(u̇1 + c′u1)
2dt ≤ 0, (18)

and this follows immediately from our assumption that (a−1)
′′
11 ≤ 0.

A similar set of required inequalities holds in the other coordinate as well, and since we
have assumed that the correlations are zero we have verified the concavity and convexity
conditions of Ky Fan’s minimax theorem. Since our family of functions u and θ are assumed
to be Lipschitz continuous, we also have compactness of underlying spaces, therefore:

sup
θ

inf
u
Iθ(u) = inf

u
sup
θ
Iθ(u). (19)

Remark 5 Although we have assumed the correlation to be zero for simplicity, the calcula-
tions work out when the correlation a−112 is assumed to be positive and constant. When the
correlation is negative and large enough, the second variation is no longer non-negative –
an equilibrium may not exist!

Remark 6 Note that in principle, we have still have excess convexity and concavity under
appropriate assumptions; so we can add a control to b also. It would be an interesting
although lengthier calculation, left for a full version of the article.
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Let θ∗ and u∗ be the equilibrium point, as obtained above. Note that we can find these
quantities by solving two linear Euler-Lagrange equations obtained from the optimization
problems:

inf
u

∫ T

0
δ2

 ∑
i∈{1,2}

a−1ii (θ∗i (ui(t)))(u̇i(t) + c′ui(t))
2

 dt, (20)

sup
θ

∫ T

0
δ2

 ∑
i∈{1,2}

a−1ii (θi(u
∗
i (t)))(u̇

∗
i (t) + c′u∗i (t))

2

 dt. (21)

We have now shown Theorem 1.

4.2 Point of exit

Finally, we compare the point of exit with a control under the assumption of existence of a
Nash equilibrium, to the point of exit without any control. The proof is a straight-forward
modification of the usual proof of the case without control (see for example Varadhan (2017)
or Freidlin and Wentzell (1991)), the only difference being that now our large deviation rate
function and therefore quasi-potential is different. The probability of penetrating D in time
T now becomes:

P(x 6∈ D) ' e− infu supθ I(u,θ). (22)

Lemma 7 Let
V (x) := inf

u,u(0)=x0,
u(T )=x

sup
θ
I(u, θ), (23)

where V (x) is such that it has a unique minimum at y0 on the boundary ∂D. Then irre-
spective of the starting point x0, exit will take place at y0 with probability almost 1.

Similarly, following Freidlin and Wentzell (1991) one can bound the expected time to exit
D as follows.

Lemma 8 The expected time to exit D for our controlled process xεt with start position x0
is

ε logE(τD) ' inf
y∈∂D

V (y, x0), (24)

where V (x) is given by Equation 23.

5. Applications

We provide context for two applications. Further details will appear in a longer version of
this paper.

First, in medicine: Often diseases constitute of interacting families of pathogens. For
example, tumours consist of several kinds of cells. In particular, there is a class of cells
which exhibits the Warburg effect (lactate producers) and those that exhibit the Reverse
Warburg effect (lactate consumers). Each cell type has its own specific drug and the cell
types may switch among themselves slowly. The goal of drugs i.e., the control, is to keep the
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population in check i.e., keep the particle in a box! In theory, one can model the growth of
malignant cells using in vitro data. The existence of a Nash equilibrium, as discussed above,
in such a model would imply that one can keep the population of malignant cells in check
for much longer, if one uses the two specific drugs based on the optimal control strategy
from Equations 20 and 21. We note that optimal control in medical oncology has been been
studied in context of other scenarios (see Schaettler and Ledzewicz (2010)). However, the
case of modelling the effect of different malignant cell types has not been dealt with before.
But it seems relevant and we intend to revisit this case in a longer version of the paper.

Second, in financial economics: Often pairs trading strategies involve continuously trad-
ing a combination two co-integrated securities such that the resulting trade maintains very
small (but non-zero) variance around a mean for a period of time. One wants this period to
be long because it’s in this period that one buys low and sells high (hopefully!). Problems
arise when the portfolio moves too far away from its mean. One solution is to reweigh the
portfolio holdings and therefore variance based on some control variables (see for exam-
ple Fouque et al. (2015) for a related example of applications of optimal control to finance)
to keep its value near the mean – again an instance of keeping a particle in a box!

Surely there are many other such problems and working out the above calculations in
more cases may lead to more real world applications as well.
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