#### Algebraic cycles on varieties over finite fields

#### Alena Pirutka

CNRS, École Polytechnique

#### May 18, 2015, CIRM, Luminy Arithmétique, Géométrie, Cryptographie et Théorie des Codes



Alena Pirutka

CNRS, École Polytechnique

 $\mathbb{F}$  a finite field,  $X \subset \mathbb{P}^n_{\mathbb{F}}$ a smooth projective variety,  $d = \dim(X)$ .



Alena Pirutka

 $\mathbb{F}$  a finite field,  $X \subset \mathbb{P}_{\mathbb{F}}^n$ a smooth projective variety,  $d = \dim(X)$ . (defined by homogeneous polynomials with coefficients in  $\mathbb{F}$ ).



Alena Pirutka

 $\mathbb{F}$  a finite field,  $X \subset \mathbb{P}_{\mathbb{F}}^n$ a smooth projective variety,  $d = \dim(X)$ . (defined by homogeneous polynomials with coefficients in  $\mathbb{F}$ ).

Examples :

• 
$$X = E$$
 is an elliptic curve;

CNRS. École Polvtechnique

Alena Pirutka



 $\mathbb{F}$  a finite field,  $X \subset \mathbb{P}_{\mathbb{F}}^n$ a smooth projective variety,  $d = \dim(X)$ . (defined by homogeneous polynomials with coefficients in  $\mathbb{F}$ ).

Examples :

X = E is an elliptic curve;
 Higher dimensions:

CNRS. École Polvtechnique

Alena Pirutka

 $\mathbb{F}$  a finite field,  $X \subset \mathbb{P}^n_{\mathbb{F}}$ a smooth projective variety,  $d = \dim(X)$ . (defined by homogeneous polynomials with coefficients in  $\mathbb{F}$ ).

Examples :

- X = E is an elliptic curve;
   Higher dimensions:
- X = A is an abelian variety;

CNRS. École Polvtechnique

Alena Pirutka

 $\mathbb{F}$  a finite field,  $X \subset \mathbb{P}^n_{\mathbb{F}}$ a smooth projective variety,  $d = \dim(X)$ . (defined by homogeneous polynomials with coefficients in  $\mathbb{F}$ ). Examples :

- X = E is an elliptic curve;
   Higher dimensions:
- X = A is an abelian variety;
- X ⊂ P<sup>n</sup><sub>𝒫</sub> is a cubic hypersurface f(x<sub>0</sub>,...x<sub>n</sub>) = 0 with f homogeneous of degree 3.

CNRS, École Polytechnique

 $\mathbb{F}$  a finite field,  $X \subset \mathbb{P}^n_{\mathbb{F}}$ a smooth projective variety,  $d = \dim(X)$ . (defined by homogeneous polynomials with coefficients in  $\mathbb{F}$ ).

Examples :

- X = E is an elliptic curve;
   Higher dimensions:
- X = A is an abelian variety;
- X ⊂ P<sup>n</sup><sub>ℝ</sub> is a cubic hypersurface f(x<sub>0</sub>,...x<sub>n</sub>) = 0 with f homogeneous of degree 3.

CNRS. École Polvtechnique

Question: what objects one can associate to X?

・ ロト・ 御 ト・ 言 ト・ 言 ・ のへ(

CNRS, École Polytechnique

Alena Pirutka

Look at all  $Y \subset X$ irreducibles of dimension d - i. A cycle is a formal linear combination of such Y's: The group of cycles of codimension *i* is

$$Z^i(X) = \oplus \mathbb{Z} Y$$

Alena Pirutka



Look at all  $Y \subset X$ irreducibles of dimension d - i. A cycle is a formal linear combination of such Y's: The group of cycles of codimension *i* is

$$Z^i(X) = \oplus \mathbb{Z} Y$$

too huge!

Alena Pirutka

Algebraic cycles on varieties over finite fields

CNRS. École Polvtechnique

Look at all  $Y \subset X$ irreducibles of dimension d - i. A cycle is a formal linear combination of such Y's: The group of cycles of codimension i is

$$Z^i(X) = \oplus \mathbb{Z} Y$$

too huge!

Equivalence relations:

• For X = C a curve and i = 1 define :

CNRS. École Polvtechnique

$$\sum a_j P_j \sim_{rat} 0$$
 iff

Alena Pirutka

Look at all  $Y \subset X$ irreducibles of dimension d - i. A cycle is a formal linear combination of such Y's: The group of cycles of codimension i is

$$Z^i(X) = \oplus \mathbb{Z} Y$$

too huge!

Equivalence relations:

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff  $\sum a_j P_j = div(f)$ 

CNRS. École Polvtechnique

for some function f on C.

Alena Pirutka

Look at all  $Y \subset X$ irreducibles of dimension d - i. A cycle is a formal linear combination of such Y's: The group of cycles of codimension i is

$$Z^i(X) = \oplus \mathbb{Z} Y$$

too huge!

Alena Pirutka

Equivalence relations:

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff  $\sum a_j P_j = div(f)$ 

for some function f on C.

► In general : similar, ~<sub>rat</sub> is generated by

$$\sum a_j Y_j \sim_{rat} 0$$
 if

CNRS, École Polytechnique

Look at all  $Y \subset X$ irreducibles of dimension d - i. A cycle is a formal linear combination of such Y's: The group of cycles of codimension i is

$$Z^i(X) = \oplus \mathbb{Z} Y$$

too huge!

Equivalence relations:

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff  $\sum a_j P_j = div(f)$ 

for some function f on C.

► In general : similar, ~<sub>rat</sub> is generated by

$$\sum a_j Y_j \sim_{rat} 0$$
 if  $\sum a_j Y_j = div(f)$ 

CNRS, École Polytechnique

for some function f on  $W \subset X$  of dimension d - i + 1

Look at all  $Y \subset X$ irreducibles of dimension d - i. A cycle is a formal linear combination of such Y's: The group of cycles of codimension i is

$$Z^i(X) = \oplus \mathbb{Z} Y$$

too huge!

Alena Pirutka

Equivalence relations:

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff  $\sum a_j P_j = div(f)$ 

for some function f on C.

► In general : similar, ~<sub>rat</sub> is generated by

$$\sum a_j Y_j \sim_{rat} 0$$
 if  $\sum a_j Y_j = div(f)$ 

for some function f on  $W \subset X$  of dimension d - i + 1 (better : the normalization of W).

Recall:

• 
$$Z^i(X) = \oplus \mathbb{Z} Y$$

 $\sim_{rat} \text{ is generated by} \\ \sum_{j=1}^{n} a_j Y_j \sim_{rat} 0 \text{ if} \\ \sum_{j=1}^{n} a_j Y_j = div(f).$ 

CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields

Alena Pirutka

Recall:

► 
$$Z^{i}(X) = \bigoplus \mathbb{Z} Y$$
  
►  $\sim_{rat}$  is generated by  
 $\sum a_{j}Y_{j} \sim_{rat} 0$  if  
 $\sum a_{j}Y_{j} = div(f)$ .

Chow groups :  $CH^{i}(X) = Z^{i}(X) / \sim_{rat};$ write  $[Y] \in CH^{i}(X)$  for the class of Y.

Alena Pirutka



Recall:

$$\blacktriangleright Z^i(X) = \oplus \mathbb{Z} Y$$

► 
$$\sim_{rat}$$
 is generated by  
 $\sum a_j Y_j \sim_{rat} 0$  if  
 $\sum a_j Y_j = div(f)$ .

CNRS, École Polytechnique

Chow groups :  $CH^{i}(X) = Z^{i}(X) / \sim_{rat};$ write  $[Y] \in CH^{i}(X)$  for the class of Y.

Alena Pirutka

Recall:

• 
$$Z^i(X) = \oplus \mathbb{Z} Y$$

$$\sim_{rat} \text{ is generated by} \\ \sum_{j=1}^{n} a_j Y_j \sim_{rat} 0 \text{ if} \\ \sum_{j=1}^{n} a_j Y_j = div(f).$$

Examples:

• 
$$i = 0$$
:  $CH^0(X) = \mathbb{Z}[X]$ .

CNRS, École Polytechnique

Chow groups :  $CH^{i}(X) = Z^{i}(X) / \sim_{rat};$ write  $[Y] \in CH^{i}(X)$  for the class of Y.

Alena Pirutka

Recall:

$$\blacktriangleright Z^i(X) = \oplus \mathbb{Z} Y$$

$$\sim_{rat} \text{ is generated by} \\ \sum_{j=1}^{n} a_j Y_j \sim_{rat} 0 \text{ if} \\ \sum_{j=1}^{n} a_j Y_j = div(f).$$

Examples:

• 
$$i = 0$$
 :  $CH^0(X) = \mathbb{Z}[X]$ .  
•  $i = 1$  :

CNRS, École Polytechnique

Chow groups :  $CH^{i}(X) = Z^{i}(X) / \sim_{rat};$ write  $[Y] \in CH^{i}(X)$  for the class of Y.

Alena Pirutka

Recall:

• 
$$Z^i(X) = \oplus \mathbb{Z} Y$$

► 
$$\sim_{rat}$$
 is generated by  
 $\sum a_j Y_j \sim_{rat} 0$  if  
 $\sum a_j Y_j = div(f)$ .

Examples:

CNRS, École Polytechnique

Chow groups :  $CH^{i}(X) = Z^{i}(X) / \sim_{rat};$ write  $[Y] \in CH^{i}(X)$  for the class of Y.

Alena Pirutka

Recall:

$$\blacktriangleright Z^i(X) = \oplus \mathbb{Z} Y$$

►  $\sim_{rat}$  is generated by  $\sum a_j Y_j \sim_{rat} 0$  if  $\sum a_j Y_j = div(f)$ .

Chow groups :  $CH^{i}(X) = Z^{i}(X) / \sim_{rat};$ write  $[Y] \in CH^{i}(X)$  for the class of Y. Examples:

• 
$$i = 0$$
 :  $CH^0(X) = \mathbb{Z}[X]$ .

$$i = 1$$
:  
 $CH^{1}(X) =$   
divisors/divisors of functions =  
 $\operatorname{Pic} X$ .

• 
$$i = \dim X$$
, write  
 $CH^d(X) = CH_0(X)$  zero-cycles.

CNRS. École Polvtechnique

Alena Pirutka

Recall:

$$\blacktriangleright Z^i(X) = \oplus \mathbb{Z} Y$$

►  $\sim_{rat}$  is generated by  $\sum a_j Y_j \sim_{rat} 0$  if  $\sum a_j Y_j = div(f)$ .

Chow groups :  $CH^{i}(X) = Z^{i}(X) / \sim_{rat};$ write  $[Y] \in CH^{i}(X)$  for the class of Y. Examples:

• 
$$i = 0$$
:  $CH^0(X) = \mathbb{Z}[X]$ .

$$i = 1$$
:  
 $CH^{1}(X) =$   
divisors/divisors of functions =  
 $Pic X$ .

• 
$$i = \dim X$$
, write  
 $CH^d(X) = CH_0(X)$  zero-cycles.

#### In general difficult to determine!

CNRS, École Polytechnique

・ロト・日本・モン・モン・モーションの

CNRS, École Polytechnique

Alena Pirutka

Notation :  $\overline{X}$  is the base change of X to an algebraic closure  $\overline{\mathbb{F}}$  of  $\mathbb{F}$ .



Alena Pirutka

Notation :  $\overline{X}$  is the base change of X to an algebraic closure  $\overline{\mathbb{F}}$  of  $\mathbb{F}$ . Étale cohomology groups :  $H^{i}_{\acute{e}t}(X, \mathbb{Z}/\ell)$ ,  $H^{i}_{\acute{e}t}(X, \mu_{n}^{\otimes j})$ ,  $H^{i}_{\acute{e}t}(\overline{X}, \mu_{n}^{\otimes j})$  $H^{i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) = \varprojlim_{r} H^{i}_{\acute{e}t}(X, \mu_{\ell^{r}}^{\otimes j})$ ,  $H^{i}_{\acute{e}t}(X, \mathbb{Q}_{\ell}(j)) = H^{i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) \otimes \mathbb{Q}_{\ell}$  ( $n, \ell$  are prime to the characteristic of  $\mathbb{F}$ ).

Algebraic cycles on varieties over finite fields

Alena Pirutka

Notation :  $\overline{X}$  is the base change of X to an algebraic closure  $\overline{\mathbb{F}}$  of  $\mathbb{F}$ . Étale cohomology groups :  $H^{i}_{\acute{e}t}(X, \mathbb{Z}/\ell)$ ,  $H^{i}_{\acute{e}t}(X, \mu_{n}^{\otimes j})$ ,  $H^{i}_{\acute{e}t}(\overline{X}, \mu_{n}^{\otimes j})$  $H^{i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) = \lim_{r} H^{i}_{\acute{e}t}(X, \mu_{\ell^{r}}^{\otimes j})$ ,  $H^{i}_{\acute{e}t}(X, \mathbb{Q}_{\ell}(j)) = H^{i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) \otimes \mathbb{Q}_{\ell}$  (*n*,  $\ell$  are prime to the characteristic of  $\mathbb{F}$ ).Properties :

H<sup>i</sup><sub>ét</sub>(X, μ<sup>⊗j</sup><sub>n</sub>) are finite, H<sup>i</sup><sub>ét</sub>(X, ℤ<sub>ℓ</sub>(j)) are ℤ<sub>ℓ</sub>-modules of finite type (resp. with X̄); H<sup>i</sup><sub>ét</sub>(X̄, ℤ<sub>ℓ</sub>) have no torsion for almost all ℓ (Gabber, difficult);

CNRS. École Polvtechnique

Notation :  $\overline{X}$  is the base change of X to an algebraic closure  $\overline{\mathbb{F}}$  of  $\mathbb{F}$ . Étale cohomology groups :  $H^{i}_{\acute{e}t}(X, \mathbb{Z}/\ell)$ ,  $H^{i}_{\acute{e}t}(X, \mu_{n}^{\otimes j})$ ,  $H^{i}_{\acute{e}t}(\overline{X}, \mu_{n}^{\otimes j})$  $H^{i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) = \lim_{r} H^{i}_{\acute{e}t}(X, \mu_{\ell^{r}}^{\otimes j})$ ,  $H^{i}_{\acute{e}t}(X, \mathbb{Q}_{\ell}(j)) = H^{i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) \otimes \mathbb{Q}_{\ell}$  (*n*,  $\ell$  are prime to the characteristic of  $\mathbb{F}$ ).Properties :

H<sup>i</sup><sub>ét</sub>(X, μ<sup>⊗j</sup><sub>n</sub>) are finite, H<sup>i</sup><sub>ét</sub>(X, ℤ<sub>ℓ</sub>(j)) are ℤ<sub>ℓ</sub>-modules of finite type (resp. with X̄); H<sup>i</sup><sub>ét</sub>(X̄, ℤ<sub>ℓ</sub>) have no torsion for almost all ℓ (Gabber, difficult);

CNRS. École Polvtechnique

2. Hochschild-Serre spectral sequence relates X and  $\bar{X}$ :  $0 \to H^1(G, H^{i-1}_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(j)) \to H^i_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) \to H^i_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(j))^G \to 0$ 

Notation :  $\overline{X}$  is the base change of X to an algebraic closure  $\overline{\mathbb{F}}$  of  $\mathbb{F}$ . Étale cohomology groups :  $H^{i}_{\acute{e}t}(X, \mathbb{Z}/\ell)$ ,  $H^{i}_{\acute{e}t}(X, \mu_{n}^{\otimes j})$ ,  $H^{i}_{\acute{e}t}(\overline{X}, \mu_{n}^{\otimes j})$  $H^{i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) = \lim_{r} H^{i}_{\acute{e}t}(X, \mu_{\ell^{r}}^{\otimes j})$ ,  $H^{i}_{\acute{e}t}(X, \mathbb{Q}_{\ell}(j)) = H^{i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) \otimes \mathbb{Q}_{\ell}$  (*n*,  $\ell$  are prime to the characteristic of  $\mathbb{F}$ ).Properties :

- 1.  $H_{\acute{e}t}^{i}(X, \mu_{n}^{\otimes j})$  are finite,  $H_{\acute{e}t}^{i}(X, \mathbb{Z}_{\ell}(j))$  are  $\mathbb{Z}_{\ell}$ -modules of finite type (resp. with  $\bar{X}$ );  $H_{\acute{e}t}^{i}(\bar{X}, \mathbb{Z}_{\ell})$  have no torsion for almost all  $\ell$  (Gabber, difficult);
- 2. Hochschild-Serre spectral sequence relates X and  $\bar{X}$ :  $0 \to H^1(G, H^{i-1}_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(j)) \to H^i_{\acute{e}t}(X, \mathbb{Z}_{\ell}(j)) \to H^i_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(j))^G \to 0$
- 3. there is a cycle class map  $CH^i(X) \otimes \mathbb{Z}_{\ell} \to H^{2i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(i)).$

►  $H^{2d}_{\acute{e}t}(\bar{X}, \mu_n^{\otimes d}) \xrightarrow{\simeq} \mathbb{Z}/n; H^i_{\acute{e}t}(\bar{X}, \mu_n^{\otimes j}) = 0, i > 2n; H^i_{\acute{e}t}(\bar{X}, \mu_n^{\otimes j})$ and  $H^{2d-i}_{\acute{e}t}(\bar{X}, \mu_n^{\otimes (d-j)})$  are dual (resp. with  $\mathbb{Q}_{\ell}$ -coefficients).

CNRS. École Polytechnique

Algebraic cycles on varieties over finite fields

Alena Pirutka

CNRS, École Polytechnique

< 口 > < 同

Algebraic cycles on varieties over finite fields

Alena Pirutka

•  $X \subset \mathbb{P}^n$  is a hypersurface. Same formulas as above for  $\overline{X}$ , but for i = d:

$$\begin{aligned} H^d_{\acute{e}t}(\bar{X},\mu_r^{\otimes j}) &= H^d_{\acute{e}t}(\mathbb{P}^n_{\mathbb{F}},\mu_r^{\otimes j}) \oplus H^d_{\acute{e}t}(\bar{X},\mu_r^{\otimes j})', \\ H^d_{\acute{e}t}(\bar{X},\mu_r^{\otimes j})' \text{ is of HUGE rank } \frac{(\deg X-1)^{d+2}+(-1)^d(\deg X-1)}{\deg X} \end{aligned}$$

CNRS, École Polytechnique

Alena Pirutka

In general :

**Theorem (D.Madore and F. Orgogozo)** There exists an algorithm which allows to compute the groups  $H^i_{\acute{e}t}(\bar{X}, \mathbb{Z}/\ell)$  (so that the étale cohomology groups are computable in the sense of Church-Turing.)

Alena Pirutka

CNRS, École Polytechnique

## Cycle class maps

Recall: we have  $c^i : CH^i(X) \otimes \mathbb{Z}_{\ell} \to H^{2i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(i)).$ 



CNRS, École Polytechnique

Alena Pirutka

#### Cycle class maps

Recall: we have  $c^i : CH^i(X) \otimes \mathbb{Z}_{\ell} \to H^{2i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(i))$ . Other versions :

▶ tensoring with  $\mathbb{Q}_{\ell}$  :  $c^{i}_{\mathbb{Q}_{\ell}}$  :  $CH^{i}(X) \otimes \mathbb{Q}_{\ell} \to H^{2i}_{\acute{e}t}(X, \mathbb{Q}_{\ell}(i))$ ;

CNRS. École Polytechnique

Alena Pirutka

#### Cycle class maps

Recall: we have  $c^i : CH^i(X) \otimes \mathbb{Z}_{\ell} \to H^{2i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(i))$ . Other versions :

- ▶ tensoring with  $\mathbb{Q}_{\ell}$  :  $c^{i}_{\mathbb{Q}_{\ell}}$  :  $CH^{i}(X) \otimes \mathbb{Q}_{\ell} \to H^{2i}_{\acute{e}t}(X, \mathbb{Q}_{\ell}(i))$ ;
- ▶ geometric version : G = Gal(F/F) = 2 the absolute Galois group, generated by Frobenius

$$ar{c}^i_{\mathbb{Q}_\ell}: \mathit{CH}^i(X)\otimes \mathbb{Q}_\ell o \mathit{H}^{2i}_{\acute{e}t}(ar{X}, \mathbb{Q}_\ell(i))^{\mathcal{G}}$$

Algebraic cycles on varieties over finite fields

#### Cycle class maps

Recall: we have  $c^i : CH^i(X) \otimes \mathbb{Z}_{\ell} \to H^{2i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(i))$ . Other versions :

- ▶ tensoring with  $\mathbb{Q}_{\ell}$  :  $c^{i}_{\mathbb{Q}_{\ell}}$  :  $CH^{i}(X) \otimes \mathbb{Q}_{\ell} \to H^{2i}_{\acute{e}t}(X, \mathbb{Q}_{\ell}(i));$
- ▶ geometric version : G = Gal(F/F) = <sup>2</sup>/<sub>∞</sub> the absolute Galois group, generated by Frobenius

$$ar{c}^i_{\mathbb{Q}_\ell}: CH^i(X)\otimes \mathbb{Q}_\ell o H^{2i}_{\acute{e}t}(ar{X}, \mathbb{Q}_\ell(i))^G$$

another geometric version :

$${\it cl}^i_{\mathbb{Q}_\ell}:{\it CH}^i(ar{X})\otimes \mathbb{Q}_\ell o igcup {H}^{2i}_{\acute{e}t}(ar{X},\mathbb{Q}_\ell(i))^H$$

where the union is over all open subgroups  $H \subset G$ .

Alena Pirutka

CNRS, École Polytechnique



Alena Pirutka

**Conjecture (J. Tate)** The cycle class map  $\bar{c}^{i}_{\mathbb{Q}_{\ell}} : CH^{i}(X) \otimes \mathbb{Q}_{\ell} \to H^{2i}_{\acute{e}t}(\bar{X}, \mathbb{Q}_{\ell}(i))^{G}$  is surjective (for any  $\ell$  and i).

CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields

**Conjecture (J. Tate)** The cycle class map  $\bar{c}^{i}_{\mathbb{Q}_{\ell}} : CH^{i}(X) \otimes \mathbb{Q}_{\ell} \to H^{2i}_{\acute{e}t}(\bar{X}, \mathbb{Q}_{\ell}(i))^{G}$  is surjective (for any  $\ell$  and i).

Still widely open, even for i = 1 (for divisors).

CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields

**Conjecture (J. Tate)** The cycle class map  $\bar{c}^{i}_{\mathbb{Q}_{\ell}} : CH^{i}(X) \otimes \mathbb{Q}_{\ell} \to H^{2i}_{\acute{e}t}(\bar{X}, \mathbb{Q}_{\ell}(i))^{G}$  is surjective (for any  $\ell$  and i).

Still widely open, even for i = 1 (for divisors).

**Integral versions** : understand if we have the surjectivity with  $\mathbb{Z}_{\ell}$ -coefficients (counterexamples exist).

*Remark:* using Weil conjectures, one can show that the map  $H^{2i}_{\acute{e}t}(X, \mathbb{Q}_{\ell}(i)) \to H^{2i}_{\acute{e}t}(\bar{X}, \mathbb{Q}_{\ell}(i))^G$  is an isomorphism (in fact the kernel  $H^1(G, H^{2i-1}_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(i))$  of the map with  $\mathbb{Z}_{\ell}$ -coefficients is finite). So that we can identify  $c^i_{\mathbb{Q}_{\ell}}$  and  $\bar{c}^i_{\mathbb{Q}_{\ell}}$ .

# More conjectures

- ▲ ロ ト ▲ 國 ト ▲ 国 ト → 国 - 釣 � (

CNRS, École Polytechnique

Alena Pirutka



 (follows from Bass conjecture) the Chow groups CH<sup>i</sup>(X) are of finite type;





# More conjectures

- (follows from Bass conjecture) the Chow groups CH<sup>i</sup>(X) are of finite type;
- ► the kernel of Z<sup>i</sup>(X) → H<sup>2i</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(i)) consists of classes numerically equivalent to zero, i.e. having zero intersection with any cycle of complimentary dimension (Tate); with Q<sub>ℓ</sub>-coefficients rational and numerical equivalence coincide (Beilinson conjecture), so that c<sup>i</sup><sub>Q<sub>ℓ</sub></sup> is also injective (conjecturally).</sub>

CNRS. École Polvtechnique

# Zeta functions

If  $\mathbb{F} = F_q$  is a finite field with q elements, define

$$Z(X,T) = exp(\sum_{n\geq 1} |X(F_{q^n})| \frac{T^n}{n})$$

$$\zeta(X,s)=Z(X,q^{-s}),$$

From Weil conjectures (proved by Deligne), the poles of  $\zeta$  are on the lines  $Res = 0, 1 \dots d$ .

CNRS. École Polvtechnique

Alena Pirutka

#### Zeta functions

If  $\mathbb{F} = F_q$  is a finite field with q elements, define

$$Z(X,T) = exp(\sum_{n\geq 1} |X(F_{q^n})| \frac{T^n}{n})$$

$$\zeta(X,s)=Z(X,q^{-s}),$$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

CNRS, École Polytechnique

From Weil conjectures (proved by Deligne), the poles of  $\zeta$  are on the lines  $Res = 0, 1 \dots d$ .

Tate conjecture, the strong form  $ord_{s=i}\zeta(X,s) = -dim(Z^{i}(X)/\sim_{num}) \otimes \mathbb{Q}.$ 

Alena Pirutka

## The case of divisors

One has an exact sequence

$$0 
ightarrow \operatorname{Pic} X \otimes \mathbb{Z}_{\ell} 
ightarrow H^2_{\acute{e}t}(X, \mathbb{Z}_{\ell}(1)) 
ightarrow \mathit{Hom}(\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}, \mathit{Br}X) 
ightarrow 0$$

where the last group has NO torsion : it follows that  $\operatorname{Pic} X \otimes \mathbb{Z}_{\ell} \to H^2_{\acute{e}t}(X, \mathbb{Z}_{\ell}(1))$  is surjective  $\Leftrightarrow$  $\operatorname{Pic} X \otimes \mathbb{Q}_{\ell} \to H^2_{\acute{e}t}(X, \mathbb{Q}_{\ell}(1))$  is surjective  $\Leftrightarrow BrX$  is finite.

Alena Pirutka

CNRS, École Polytechnique

# Zero-cycles

#### Theorem

(J.-L. Colliot-Thélène, J.-J. Sansuc, C.Soulé) The cycle class induces an isomorphism

$$CH^d(X)\otimes \mathbb{Z}_\ell \stackrel{\sim}{ o} H^{2d}(X,\mathbb{Z}_\ell(d)).$$

CNRS, École Polytechnique

Alena Pirutka

#### Torsion

- (J.-L. Colliot-Thélène, J.-J. Sansuc, C.Soulé) the torsion subgroup CH<sup>2</sup>(X)<sub>tors</sub> is finite and the map CH<sup>2</sup>(X)<sub>tors</sub> → H<sup>4</sup>(X, Z<sub>ℓ</sub>(2)) is injective.
- could one have that the kernel of the map  $CH^i(X)\{\ell\} \to H^{2i}(X, \mathbb{Z}_{\ell}(i))$  is nonzero?

# Known cases of Tate's conjecture

• Divisors (i = 1) on abelian varieties, precise version:

 $\mathsf{Hom}(A,B)\otimes\mathbb{Z}_\ell o\mathsf{Hom}_{\mathbb{Q}_\ell}(\mathsf{T}_\ell(A),\mathsf{T}_\ell(B))$ 

(where  $T_{\ell}(A) = \varprojlim_r A[\ell^r]$ .)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ かへぐ CNRS. École Polytechnique

Algebraic cycles on varieties over finite fields

# Known cases of Tate's conjecture

• Divisors (i = 1) on abelian varieties, precise version:

$$Hom(A, B) \otimes \mathbb{Z}_{\ell} \to Hom_{\mathbb{Q}_{\ell}}(T_{\ell}(A), T_{\ell}(B))$$

(where  $T_{\ell}(A) = \varprojlim_{r} A[\ell^{r}]$ .)

Note : over a finite field, there exist abelian varieties with 'exotic' Tate classes : not coming (by cup-product) from H<sup>1</sup>.

## Known cases of Tate's conjecture

• Divisors (i = 1) on abelian varieties, precise version:

$$Hom(A, B) \otimes \mathbb{Z}_{\ell} \to Hom_{\mathbb{Q}_{\ell}}(T_{\ell}(A), T_{\ell}(B))$$

(where  $T_{\ell}(A) = \varprojlim_{r} A[\ell^{r}]$ .)

- Note : over a finite field, there exist abelian varieties with 'exotic' Tate classes : not coming (by cup-product) from H<sup>1</sup>.
- K3 surfaces in caracteristic different from 2 (F. Charles, D. Maulik, K. Madapusi Pera), examples : X ⊂ P<sup>3</sup> a quartic; X a double cover w<sup>2</sup> = f<sub>6</sub>(x, y, z) with f<sub>6</sub> of degree 6.
- some other specific varieties.

Divisors (i = 1) for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for i = 1 on X × Y iff it holds for i = 1 for X and for Y).



- Divisors (i = 1) for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for i = 1 on X × Y iff it holds for i = 1 for X and for Y).
- Example :  $a_0x_0^n + a_1x_1^n + a_2x_2^n + a_3x_3^n = 0$  is dominated by the product of  $a_0x_0^n + a_1x_1^n = y^n$  and  $a_2x_2^n + a_3x_3^n = z^n$ .

- Divisors (i = 1) for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for i = 1 on X × Y iff it holds for i = 1 for X and for Y).
- Example :  $a_0x_0^n + a_1x_1^n + a_2x_2^n + a_3x_3^n = 0$  is dominated by the product of  $a_0x_0^n + a_1x_1^n = y^n$  and  $a_2x_2^n + a_3x_3^n = z^n$ .
- ▶ *Remark 1*: for curves  $Pic(X \times Y) = Pic(X) \oplus Pic Y \oplus Hom(J_X, J_Y)$  (similar formula in higher dimension).

Algebraic cycles on varieties over finite fields

- Divisors (i = 1) for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for i = 1 on X × Y iff it holds for i = 1 for X and for Y).
- Example :  $a_0x_0^n + a_1x_1^n + a_2x_2^n + a_3x_3^n = 0$  is dominated by the product of  $a_0x_0^n + a_1x_1^n = y^n$  and  $a_2x_2^n + a_3x_3^n = z^n$ .
- ▶ Remark 1: for curves  $Pic(X \times Y) = Pic(X) \oplus Pic Y \oplus Hom(J_X, J_Y)$  (similar formula in higher dimension).
- Remark 2, reductions : if E, E' are two elliptic curves over a number field k, then there are infinitely many places where the reductions of E and E' are geometrically isogeneous (F. Charles).

Image: A math a math

- Divisors (i = 1) for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for i = 1 on X × Y iff it holds for i = 1 for X and for Y).
- Example :  $a_0x_0^n + a_1x_1^n + a_2x_2^n + a_3x_3^n = 0$  is dominated by the product of  $a_0x_0^n + a_1x_1^n = y^n$  and  $a_2x_2^n + a_3x_3^n = z^n$ .
- ▶ Remark 1: for curves  $Pic(X \times Y) = Pic(X) \oplus Pic Y \oplus Hom(J_X, J_Y)$  (similar formula in higher dimension).
- Remark 2, reductions : if E, E' are two elliptic curves over a number field k, then there are infinitely many places where the reductions of E and E' are geometrically isogeneous (F. Charles). In particular, for a given elliptic curve E over k either E is supersingular at infinitely many places, or has complex multiplication at inifinitely many places.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

## Integral versions

Goal : understand the surjectivity of

- $c^i: CH^i(X)\otimes \mathbb{Z}_\ell \to H^{2i}_{\acute{e}t}(X,\mathbb{Z}_\ell(i)).$
- $\bar{c}^i: CH^i(X)\otimes \mathbb{Z}_\ell \to H^{2i}_{\acute{e}t}(\bar{X},\mathbb{Z}_\ell(i))^G$
- ►  $cl^i : CH^i(\bar{X}) \otimes \mathbb{Z}_{\ell} \to \bigcup H^{2i}_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(i))^H$ , where the union is over all open subgroups  $H \subset G$ .

# Integral versions

Goal : understand the surjectivity of

► 
$$c^i : CH^i(X) \otimes \mathbb{Z}_{\ell} \to H^{2i}_{\acute{e}t}(X, \mathbb{Z}_{\ell}(i)).$$

► 
$$\bar{c}^i : CH^i(X) \otimes \mathbb{Z}_\ell \to H^{2i}_{\acute{e}t}(\bar{X}, \mathbb{Z}_\ell(i))^G$$

►  $cl^i : CH^i(\bar{X}) \otimes \mathbb{Z}_{\ell} \to \bigcup H^{2i}_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(i))^H$ , where the union is over all open subgroups  $H \subset G$ .

CNRS. École Polvtechnique

None of these maps need be surjective!

Topological obstructions

(Atiyah-Hirzebrich, Totaro, Pirutka-Yagita, Kameko, Antieau)



Alena Pirutka

CNRS, École Polytechnique

Topological obstructions

(Atiyah-Hirzebrich, Totaro, Pirutka-Yagita, Kameko, Antieau) There are examples where

$$cl^2: CH^2(\bar{X})\otimes \mathbb{Z}_\ell \to \bigcup H^4_{\acute{e}t}(\bar{X},\mathbb{Z}_\ell(2))^H$$

is not surjective;

CNRS. École Polytechnique

Algebraic cycles on varieties over finite fields

Topological obstructions

(Atiyah-Hirzebrich, Totaro, Pirutka-Yagita, Kameko, Antieau) There are examples where

$${\it cl}^2:{\it CH}^2(ar X)\otimes \mathbb{Z}_\ell o igcup {\it H}^4_{\acute{e}t}(ar X,\mathbb{Z}_\ell(2))^H$$

is not surjective; and even

$$cl^i: CH^2(ar{X})\otimes \mathbb{Z}_\ell o igcup H^4_{\acute{e}t}(ar{X},\mathbb{Z}_\ell(2))^H/torsion$$

is not surjective.

CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields

Alena Pirutka

 One can define cohomological operations on H<sup>\*</sup><sub>ét</sub>(X), some of them (Q<sub>1</sub>) should vanish on classes of algebraic cycles (Voevodsky);

- One can define cohomological operations on H<sup>\*</sup><sub>ét</sub>(X), some of them (Q<sub>1</sub>) should vanish on classes of algebraic cycles (Voevodsky);
- We understand completely  $H^*(G)$  for  $G = (\mathbb{Z}/\ell)^n$ , so that we easily find classes not in  $kerQ_1$ .
- ▶ How to produce an algebraic variety from G?

- One can define cohomological operations on H<sup>\*</sup><sub>ét</sub>(X), some of them (Q<sub>1</sub>) should vanish on classes of algebraic cycles (Voevodsky);
- We understand completely  $H^*(G)$  for  $G = (\mathbb{Z}/\ell)^n$ , so that we easily find classes not in  $kerQ_1$ .
- ► How to produce an algebraic variety from *G*?
- ► (Totaro) Consider quotients U/G where G acts freely on a quasi-projective U. Then one can take X = U/G for U "big enough". Then one can find classes not in kerQ<sub>1</sub> for such X.

- One can define cohomological operations on H<sup>\*</sup><sub>ét</sub>(X), some of them (Q<sub>1</sub>) should vanish on classes of algebraic cycles (Voevodsky);
- We understand completely  $H^*(G)$  for  $G = (\mathbb{Z}/\ell)^n$ , so that we easily find classes not in  $kerQ_1$ .
- ► How to produce an algebraic variety from *G*?
- ► (Totaro) Consider quotients U/G where G acts freely on a quasi-projective U. Then one can take X = U/G for U "big enough". Then one can find classes not in kerQ<sub>1</sub> for such X.
- With more work one can produce a projective variety (by some hyperplane sections).
- For non-torsion classes: take exceptional G (such as G<sub>2</sub>, F<sub>4</sub>, E<sub>8</sub>) containing (ℤ/ℓ)<sup>3</sup>.

▶ For i = 2, one can understand (i.e. express differently) the torsion in the cokernel of

 $c^2: CH^2(X)\otimes \mathbb{Z}_\ell 
ightarrow H^4_{\acute{e}t}(X, \mathbb{Z}_\ell(2)).$ 



Alena Pirutka

- For *i* = 2, one can understand (i.e. express differently) the torsion in the cokernel of
   *c*<sup>2</sup> : *CH*<sup>2</sup>(*X*) ⊗ ℤ<sub>ℓ</sub> → *H*<sup>4</sup><sub>ét</sub>(*X*, ℤ<sub>ℓ</sub>(2)).(B. Kahn, J.-L. Colliot-Thélène)
- Associate to X its field of functions  $\mathbb{F}(X)$ ,

- For *i* = 2, one can understand (i.e. express differently) the torsion in the cokernel of
   *c*<sup>2</sup> : *CH*<sup>2</sup>(*X*) ⊗ Z<sub>ℓ</sub> → *H*<sup>4</sup><sub>ét</sub>(*X*, Z<sub>ℓ</sub>(2)).(B. Kahn, J.-L. Colliot-Thélène)
- ► Associate to X its field of functions F(X), then one has Galois cohomology groups H<sup>i</sup>(F(X), Z/ℓ) (or with µ<sub>ℓ</sub><sup>⊗j</sup> coefficients).



- For i = 2, one can understand (i.e. express differently) the torsion in the cokernel of c<sup>2</sup> : CH<sup>2</sup>(X) ⊗ Z<sub>ℓ</sub> → H<sup>4</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(2)).(B. Kahn, J.-L. Colliot-Thélène)
- ► Associate to X its field of functions F(X), then one has Galois cohomology groups H<sup>i</sup>(F(X), Z/ℓ) (or with µ<sub>ℓ</sub><sup>⊗j</sup> coefficients).
- Define the unramified elements in these cohomology groups : ξ ∈ H<sup>i</sup>(𝔽(X),ℤ/ℓ) having no residus (there are formulas to compute) for all valuations on 𝔽(X) (discrete rank one) :

$$H^i_{nr}(\mathbb{F}(X),\mathbb{Z}/\ell) = \{\xi \text{ is unramified}\}$$

- For *i* = 2, one can understand (i.e. express differently) the torsion in the cokernel of
   *c*<sup>2</sup> : *CH*<sup>2</sup>(*X*) ⊗ ℤ<sub>ℓ</sub> → *H*<sup>4</sup><sub>ét</sub>(*X*, ℤ<sub>ℓ</sub>(2)).(B. Kahn, J.-L. Colliot-Thélène)
- Associate to X its field of functions 𝔅(X), then one has Galois cohomology groups H<sup>i</sup>(𝔅(X), ℤ/ℓ) (or with μ<sub>ℓ</sub><sup>⊗j</sup> coefficients).
- Define the unramified elements in these cohomology groups : ξ ∈ H<sup>i</sup>(𝔽(X),ℤ/ℓ) having no residus (there are formulas to compute) for all valuations on 𝔽(X) (discrete rank one) :

$$H^i_{nr}(\mathbb{F}(X),\mathbb{Z}/\ell) = \{\xi \text{ is unramified}\}$$

(or with  $\mu_{\ell}^{\otimes j}$ ; by llimit, with  $\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(j)$  coefficients).

► Then Coker(c<sup>2</sup>)<sub>tors</sub> = H<sup>3</sup><sub>nr</sub>(𝔅(X), 𝔅<sub>ℓ</sub>/𝔅<sub>ℓ</sub>(2)) if this last group is finite.



• In general  $\mathbb{F}(X)$  is difficult to understand!



Alena Pirutka Algebraic cycles on varieties over finite fields CNRS, École Polytechnique

# Function fields

- In general  $\mathbb{F}(X)$  is difficult to understand!
- But : if Q is a quadric (defined by a homogeneous equiation of degree 2) over some field K, then the maps H<sup>i</sup>(K, ℤ/2) → H<sup>i</sup>(K(Q), ℤ/2) are quite well understood (starting by work of Arason).

# Function fields

- In general  $\mathbb{F}(X)$  is difficult to understand!
- But : if Q is a quadric (defined by a homogeneous equiation of degree 2) over some field K, then the maps H<sup>i</sup>(K, ℤ/2) → H<sup>i</sup>(K(Q), ℤ/2) are quite well understood (starting by work of Arason).

CNRS. École Polvtechnique

► This can be used when X has a map X → Y with generic fiber a quadric.

# Function fields

- In general  $\mathbb{F}(X)$  is difficult to understand!
- But : if Q is a quadric (defined by a homogeneous equiation of degree 2) over some field K, then the maps H<sup>i</sup>(K, ℤ/2) → H<sup>i</sup>(K(Q), ℤ/2) are quite well understood (starting by work of Arason).

CNRS. École Polvtechnique

► This can be used when X has a map X → Y with generic fiber a quadric.

Fibrations in quadrics, dimensions 3 or 4

(Parimala-Suresh) For S a smooth surface, X → S with generic fiber a conic, one has H<sup>3</sup><sub>nr</sub>(𝔅(X), ℤ/2) = 0.

Algebraic cycles on varieties over finite fields

# Fibrations in quadrics, dimensions 3 or 4

• (Parimala-Suresh) For S a smooth surface,  $X \to S$  with generic fiber a conic, one has  $H^3_{nr}(\mathbb{F}(X), \mathbb{Z}/2) = 0.$  If S is geometrically ruled then  $CH^2(X) \otimes \mathbb{Z}_{\ell} \to H^4_{\acute{e}t}(X, \mathbb{Z}_{\ell}(2))$  is surjective.



# Fibrations in quadrics, dimensions 3 or 4

- (Parimala-Suresh) For S a smooth surface,  $X \to S$  with generic fiber a conic, one has  $H^3_{nr}(\mathbb{F}(X), \mathbb{Z}/2) = 0.$  If S is geometrically ruled then  $CH^2(X) \otimes \mathbb{Z}_{\ell} \to H^4_{\acute{e}t}(X, \mathbb{Z}_{\ell}(2))$  is surjective.
- We do not know what happens in dimension 4.

CNRS, École Polytechnique

## Fibrations in quadrics, dimension 5

One can produce  $X \to \mathbb{P}^2_{\mathbb{F}}$  with generic fiber a quadric of dimension 3, such that  $H^3_{nr}(\mathbb{F}(X), \mathbb{Z}/2) \neq 0$  (Pirutka),

CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields

#### Fibrations in quadrics, dimension 5

One can produce  $X \to \mathbb{P}^2_{\mathbb{F}}$  with generic fiber a quadric of dimension 3, such that  $H^3_{nr}(\mathbb{F}(X), \mathbb{Z}/2) \neq 0$  (Pirutka), this uses computations of residues and Arason's results.

For such X :

▶ the maps  $CH^2(X) \otimes \mathbb{Z}_{\ell} \to H^4_{\acute{e}t}(X, \mathbb{Z}_{\ell}(2))$  and  $CH^2(X) \otimes \mathbb{Z}_{\ell} \to H^4_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(2))^G$ ,  $\ell = 2$ , are not surjective;

Algebraic cycles on varieties over finite fields

## Fibrations in quadrics, dimension 5

One can produce  $X \to \mathbb{P}^2_{\mathbb{F}}$  with generic fiber a quadric of dimension 3, such that  $H^3_{nr}(\mathbb{F}(X), \mathbb{Z}/2) \neq 0$  (Pirutka), this uses computations of residues and Arason's results.

For such X :

- ▶ the maps  $CH^2(X) \otimes \mathbb{Z}_{\ell} \to H^4_{\acute{e}t}(X, \mathbb{Z}_{\ell}(2))$  and  $CH^2(X) \otimes \mathbb{Z}_{\ell} \to H^4_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(2))^G$ ,  $\ell = 2$ , are not surjective;
- ► Equation of the generic fiber (a quadric with coefficients in F(x, y) = F(P<sup>2</sup>)):

$$x_0^2 - ax_1^2 - fx_2^2 + afx_3^2 + g_1g_2x_4^2 = 0,$$

< 口 > < 同

with  $a \in \mathbb{F}$  non-square, f = x/y and  $g_i$  are fractions of products of 8 linear forms (configuration is specific to get residues we want!)

 $E \subset \mathbb{P}^2_{\mathbb{F}}$  is an elliptic curve.



Alena Pirutka

#### $E \subset \mathbb{P}^2_{\mathbb{F}}$ is an elliptic curve.We have

• 
$$0 \to E(\mathbb{F}) \to \operatorname{Pic} E \to \mathbb{Z} \to 0$$
, where the first map is  $P \mapsto P - O_E$ .

CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields

$${\it E} \subset \mathbb{P}^2_{\mathbb{F}}$$
 is an elliptic curve.We have

•  $0 \to E(\mathbb{F}) \to \operatorname{Pic} E \to \mathbb{Z} \to 0$ , where the first map is  $P \mapsto P - O_E$ .

• Pic 
$$E \otimes \mathbb{Z}_{\ell} \xrightarrow{\simeq} H^2_{\acute{e}t}(E, \mathbb{Z}_{\ell}(1)).$$

Alena Pirutka



< 口 > < 同

$${\it E} \subset \mathbb{P}^2_{\mathbb{F}}$$
 is an elliptic curve.We have

•  $0 \to E(\mathbb{F}) \to \operatorname{Pic} E \to \mathbb{Z} \to 0$ , where the first map is  $P \mapsto P - O_E$ .

• Pic 
$$E \otimes \mathbb{Z}_{\ell} \xrightarrow{\simeq} H^2_{\acute{e}t}(E, \mathbb{Z}_{\ell}(1)).$$

Alena Pirutka



< 口 > < 同

 $X \subset \mathbb{P}^4_{\mathbb{F}}.$ 



Alena Pirutka

 $X \subset \mathbb{P}^4_{\mathbb{F}}.$ 

For X̄ we have only even degree cohomology groups, which are Z<sub>ℓ</sub>. By Hochschild-Serre, H<sup>2i</sup><sub>ℓ</sub>(X, Z<sub>ℓ</sub>(i)) → H<sup>2i</sup><sub>ℓ</sub>(X̄, Z<sub>ℓ</sub>(i))<sup>G</sup> ≃ Z<sub>ℓ</sub>, 0 ≤ i ≤ 3.

 $X \subset \mathbb{P}^4_{\mathbb{F}}.$ 

- For X̄ we have only even degree cohomology groups, which are Z<sub>ℓ</sub>. By Hochschild-Serre, H<sup>2i</sup><sub>ℓt</sub>(X, Z<sub>ℓ</sub>(i)) → H<sup>2i</sup><sub>ℓt</sub>(X̄, Z<sub>ℓ</sub>(i))<sup>G</sup> ≃ Z<sub>ℓ</sub>, 0 ≤ i ≤ 3.
- $CH^0(X)\otimes \mathbb{Z}_\ell \xrightarrow{\sim} H^0_{\acute{e}t}(X,\mathbb{Z}_\ell)$  (clear),

Algebraic cycles on varieties over finite fields

 $X \subset \mathbb{P}^4_{\mathbb{F}}.$ 

- For X̄ we have only even degree cohomology groups, which are Z<sub>ℓ</sub>. By Hochschild-Serre, H<sup>2i</sup><sub>ℓt</sub>(X, Z<sub>ℓ</sub>(i)) → H<sup>2i</sup><sub>ℓt</sub>(X̄, Z<sub>ℓ</sub>(i))<sup>G</sup> ≃ Z<sub>ℓ</sub>, 0 ≤ i ≤ 3.
- $\blacktriangleright \ CH^0(X)\otimes \mathbb{Z}_\ell \stackrel{\sim}{\rightarrow} H^0_{\acute{e}t}(X,\mathbb{Z}_\ell) \ ({\sf clear}),$
- CH<sub>0</sub>(X) ⊗ Z<sub>ℓ</sub> → H<sup>6</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(3)) = Z<sub>ℓ</sub> (any irreducible variety over a finite field has a zero-cycle of degree one, by Lang-Weil estimates)

CNRS. École Polvtechnique

 $X \subset \mathbb{P}^4_{\mathbb{F}}.$ 

- For X̄ we have only even degree cohomology groups, which are Z<sub>ℓ</sub>. By Hochschild-Serre, H<sup>2i</sup><sub>ℓt</sub>(X, Z<sub>ℓ</sub>(i)) → H<sup>2i</sup><sub>ℓt</sub>(X̄, Z<sub>ℓ</sub>(i))<sup>G</sup> ≃ Z<sub>ℓ</sub>, 0 ≤ i ≤ 3.
- $\blacktriangleright \ CH^0(X)\otimes \mathbb{Z}_\ell \stackrel{\sim}{\rightarrow} H^0_{\acute{e}t}(X,\mathbb{Z}_\ell) \ ({\sf clear}),$
- CH<sub>0</sub>(X) ⊗ Z<sub>ℓ</sub> → H<sup>6</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(3)) = Z<sub>ℓ</sub> (any irreducible variety over a finite field has a zero-cycle of degree one, by Lang-Weil estimates)
- $CH^1(X)\otimes \mathbb{Z}_\ell \xrightarrow{\sim} H^2_{\acute{e}t}(X,\mathbb{Z}_\ell(1))$  (take the class of a hyperlane);

CNRS. École Polvtechnique

 $X \subset \mathbb{P}^4_{\mathbb{F}}.$ 

- For X̄ we have only even degree cohomology groups, which are Z<sub>ℓ</sub>. By Hochschild-Serre, H<sup>2i</sup><sub>ℓt</sub>(X, Z<sub>ℓ</sub>(i)) → H<sup>2i</sup><sub>ℓt</sub>(X̄, Z<sub>ℓ</sub>(i))<sup>G</sup> ≃ Z<sub>ℓ</sub>, 0 ≤ i ≤ 3.
- $\blacktriangleright \ CH^0(X)\otimes \mathbb{Z}_\ell \stackrel{\sim}{\rightarrow} H^0_{\acute{e}t}(X,\mathbb{Z}_\ell) \ ({\sf clear}),$
- CH<sub>0</sub>(X) ⊗ Z<sub>ℓ</sub> → H<sup>6</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(3)) = Z<sub>ℓ</sub> (any irreducible variety over a finite field has a zero-cycle of degree one, by Lang-Weil estimates)
- $CH^1(X)\otimes \mathbb{Z}_\ell \xrightarrow{\sim} H^2_{\acute{e}t}(X,\mathbb{Z}_\ell(1))$  (take the class of a hyperlane);
- CH<sup>2</sup>(X) ⊗ Z<sub>ℓ</sub> → H<sup>4</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(2)) (some linear combination of lines will have 1 as a class : apply Lang-Weil for the Fano variety of lines).

< 口 > < 同

 $X \subset \mathbb{P}^3_{\mathbb{F}}$ 



CNRS, École Polytechnique

Alena Pirutka

 $X \subset \mathbb{P}^3_{\mathbb{F}}$ 

• Similarly, we have  $CH_0(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H^4_{\acute{e}t}(X, \mathbb{Z}_{\ell}(2)) \simeq \mathbb{Z}_{\ell}$ .



Alena Pirutka

 $X \subset \mathbb{P}^3_{\mathbb{F}}$ 

- Similarly, we have  $CH_0(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H^4_{\acute{e}t}(X, \mathbb{Z}_{\ell}(2)) \simeq \mathbb{Z}_{\ell}$ .
- ▶ We understand  $\bar{X}$  (it is a blow up of  $\mathbb{P}^2$  in 6 points), so that  $\operatorname{Pic} \bar{X} \xrightarrow{\sim} H^2_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(1)) \simeq \mathbb{Z}_{\ell}^7$  (generated by the class of a line and exceptional curves).

Algebraic cycles on varieties over finite fields

 $X \subset \mathbb{P}^3_{\mathbb{F}}$ 

- Similarly, we have  $CH_0(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H^4_{\acute{e}t}(X, \mathbb{Z}_{\ell}(2)) \simeq \mathbb{Z}_{\ell}$ .
- ▶ We understand  $\bar{X}$  (it is a blow up of  $\mathbb{P}^2$  in 6 points), so that  $\operatorname{Pic} \bar{X} \xrightarrow{\sim} H^2_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(1)) \simeq \mathbb{Z}^7_{\ell}$  (generated by the class of a line and exceptional curves).
- From the discussion on divisors it follows easily that Pic X ⊗ Z<sub>ℓ</sub> → H<sup>2</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(1)) ⊂ Z<sup>7</sup><sub>ℓ</sub>. (but for different cubics surfaces one can get different submodules of Z<sup>7</sup><sub>ℓ</sub>).

CNRS. École Polvtechnique

 $X \subset \mathbb{P}^5_{\mathbb{F}}$ .



CNRS, École Polytechnique

Alena Pirutka

- $X \subset \mathbb{P}^5_{\mathbb{F}}.$ 
  - Similarly, for all i = 0, 1, 3, 4 we have CH<sup>i</sup>(X) ⊗ Z<sub>ℓ</sub> → H<sup>2i</sup><sub>et</sub>(X, Z<sub>ℓ</sub>(i)) ≃ Z<sub>ℓ</sub>.

Algebraic cycles on varieties over finite fields

 $X \subset \mathbb{P}^5_{\mathbb{F}}.$ 

- Similarly, for all i = 0, 1, 3, 4 we have CH<sup>i</sup>(X) ⊗ Z<sub>ℓ</sub> → H<sup>2i</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(i)) ≃ Z<sub>ℓ</sub>.
- Recall: the group  $H^4_{\acute{e}t}(\bar{X},\mathbb{Z}_\ell(2))$  is huge!

CNRS. École Polytechnique

Algebraic cycles on varieties over finite fields

- $X \subset \mathbb{P}^5_{\mathbb{F}}.$ 
  - Similarly, for all i = 0, 1, 3, 4 we have CH<sup>i</sup>(X) ⊗ Z<sub>ℓ</sub> → H<sup>2i</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(i)) ≃ Z<sub>ℓ</sub>.
  - ▶ Recall: the group  $H^4_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(2))$  is huge! We know :
    - Tate conjecture for  $CH^2(X)$  (F. Charles);

Algebraic cycles on varieties over finite fields

 $X \subset \mathbb{P}^5_{\mathbb{F}}.$ 

- Similarly, for all i = 0, 1, 3, 4 we have CH<sup>i</sup>(X) ⊗ Z<sub>ℓ</sub> → H<sup>2i</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(i)) ≃ Z<sub>ℓ</sub>.
- ▶ Recall: the group  $H^4_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(2))$  is huge! We know :
  - Tate conjecture for  $CH^2(X)$  (F. Charles);
  - ▶ an integral version :  $CH^2(\bar{X}) \otimes \mathbb{Z}_{\ell} \to \bigcup H^4_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(2))^H$  is surjective (F. Charles A.Pirutka);

Algebraic cycles on varieties over finite fields

 $X \subset \mathbb{P}^5_{\mathbb{F}}.$ 

- Similarly, for all i = 0, 1, 3, 4 we have CH<sup>i</sup>(X) ⊗ Z<sub>ℓ</sub> → H<sup>2i</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(i)) ≃ Z<sub>ℓ</sub>.
- ▶ Recall: the group  $H^4_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(2))$  is huge! We know :
  - Tate conjecture for  $CH^2(X)$  (F. Charles);
  - ▶ an integral version :  $CH^2(\bar{X}) \otimes \mathbb{Z}_{\ell} \to \bigcup H^4_{\acute{e}t}(\bar{X}, \mathbb{Z}_{\ell}(2))^H$  is surjective (F. Charles A.Pirutka);
  - but we still do not know if CH<sup>2</sup>(X) ⊗ Z<sub>ℓ</sub> → H<sup>4</sup><sub>ét</sub>(X, Z<sub>ℓ</sub>(2)) is surjective...

CNRS. École Polvtechnique

#### The End





CNRS, École Polytechnique

Alena Pirutka