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Objects of interest

F a finite field, X ⊂ Pn
F

a smooth projective
variety, d = dim(X ).

(defined by
homogeneous
polynomials with
coefficients in F).

Examples :
I X = E is an elliptic curve;

Higher dimensions:
I X = A is an abelian variety;
I X ⊂ Pn

F is a cubic hypersurface
f (x0, . . . xn) = 0 with f
homogeneous of degree 3.

Question: what objects one can associate to X?
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Subvarieties of smaller dimension

Look at all Y ⊂ X
irreducibles of
dimension d − i .
A cycle is a formal
linear combination
of such Y ’s:
The group of
cycles of
codimension i is

Z i (X ) = ⊕ZY

too huge!

Equivalence relations:
I For X = C a curve and i = 1 define :∑

ajPj ∼rat 0 iff
∑

ajPj = div(f )

for some function f on C .
I In general : similar, ∼rat is generated

by∑
ajYj ∼rat 0 if

∑
ajYj = div(f )

for some function f on W ⊂ X of
dimension d − i + 1(better : the
normalization of W ).
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Chow groups

Recall:
I Z i (X ) = ⊕ZY

I ∼rat is generated by∑
ajYj ∼rat 0 if∑
ajYj = div(f ).

Chow groups :
CH i (X ) = Z i (X )/ ∼rat ;
write [Y ] ∈ CH i (X ) for
the class of Y .

Examples:
I i = 0 : CH0(X ) = Z[X ].
I i = 1 :

CH1(X ) =
divisors/divisors of functions =
PicX .

I i = dimX , write
CHd(X ) = CH0(X ) zero-cycles.

In general difficult to determine!
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Cohomology

Notation : X̄ is the base change of X to an algebraic closure F̄ of F.
Étale cohomology groups : H i

ét(X ,Z/`), H i
ét(X , µ

⊗ j
n ), H i

ét(X̄ , µ
⊗ j
n )

H i
ét(X ,Z`(j)) = lim←−r

H i
ét(X , µ

⊗ j
`r ),

H i
ét(X ,Q`(j)) = H i

ét(X ,Z`(j))⊗Q` (n, ` are prime to the
characteristic of F).Properties :
1. H i

ét(X , µ
⊗ j
n ) are finite, H i

ét(X ,Z`(j)) are Z`-modules of finite
type (resp. with X̄ ); H i

ét(X̄ ,Z`) have no torsion for almost all
` (Gabber, difficult);

2. Hochschild-Serre spectral sequence relates X and X̄ :
0→ H1(G ,H i−1

ét (X̄ ,Z`(j))→ H i
ét(X ,Z`(j))→ H i

ét(X̄ ,Z`(j))G → 0

3. there is a cycle class map CH i (X )⊗ Z` → H2i
ét(X ,Z`(i)).
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Computing cohomology

I H2d
ét (X̄ , µ⊗ d

n )
'→ Z/n; H i

ét(X̄ , µ
⊗ j
n ) = 0, i > 2n; H i

ét(X̄ , µ
⊗ j
n )

and H2d−i
ét (X̄ , µ

⊗ (d−j)
n ) are dual (resp. with Q`-coefficients).

I H i
ét(Pn

F̄, µ
⊗ j
r ) =

{
µ
⊗ j− i

2
r i even, i ≤ 2n

0 i otherwise.

I X ⊂ Pn is a hypersurface. Same formulas as above for X̄ , but
for i = d :

Hd
ét(X̄ , µ

⊗ j
r ) = Hd

ét(Pn
F̄, µ
⊗ j
r )⊕ Hd

ét(X̄ , µ
⊗ j
r )′,

Hd
ét(X̄ , µ

⊗ j
r )′ is of HUGE rank (deg X−1)d+2+(−1)d (deg X−1)

deg X .
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Computing cohomology

In general :

Theorem (D.Madore and F. Orgogozo) There exists
an algorithm which allows to compute the groups
H i
ét(X̄ ,Z/`) (so that the étale cohomology groups are

computable in the sense of Church-Turing.)
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Cycle class maps
Recall: we have c i : CH i (X )⊗ Z` → H2i

ét(X ,Z`(i)).

Other versions :
I tensoring with Q` : c iQ`

: CH i (X )⊗Q` → H2i
ét(X ,Q`(i));

I geometric version : G = Gal(F/F) = Ẑ the absolute Galois
group, generated by Frobenius

c̄ iQ`
: CH i (X )⊗Q` → H2i

ét(X̄ ,Q`(i))G

I another geometric version :

cl iQ`
: CH i (X̄ )⊗Q` →

⋃
H2i
ét(X̄ ,Q`(i))H

where the union is over all open subgroups H ⊂ G .
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The cycle class maps allow to relate the Chow groups (defined in a
more geometric way, but difficult to compute) and étale
cohomology groups (which are probably easier to understand.)

Conjecture (J. Tate) The cycle class map
c̄ iQ`

: CH i (X )⊗Q` → H2i
ét(X̄ ,Q`(i))G is surjective (for

any ` and i).

Still widely open, even for i = 1 (for divisors).

Integral versions : understand if we have the surjectivity with
Z`-coefficients (counterexamples exist).

Remark: using Weil conjectures, one can show that the map
H2i
ét(X ,Q`(i))→ H2i

ét(X̄ ,Q`(i))G is an isomorphism (in fact the
kernel H1(G ,H2i−1

ét (X̄ ,Z`(i)) of the map with Z`-coefficients is
finite). So that we can identify c iQ`

and c̄ iQ`
.
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More conjectures

I (follows from Bass conjecture) the Chow groups CH i (X ) are
of finite type;

I the kernel of Z i (X )→ H2i
ét(X ,Z`(i)) consists of classes

numerically equivalent to zero, i.e. having zero intersection
with any cycle of complimentary dimension (Tate); with
Q`-coefficients rational and numerical equivalence coincide
(Beilinson conjecture), so that c iQ`

is also injective
(conjecturally).

Alena Pirutka CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields



More conjectures

I (follows from Bass conjecture) the Chow groups CH i (X ) are
of finite type;

I the kernel of Z i (X )→ H2i
ét(X ,Z`(i)) consists of classes

numerically equivalent to zero, i.e. having zero intersection
with any cycle of complimentary dimension (Tate); with
Q`-coefficients rational and numerical equivalence coincide
(Beilinson conjecture), so that c iQ`

is also injective
(conjecturally).

Alena Pirutka CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields



More conjectures

I (follows from Bass conjecture) the Chow groups CH i (X ) are
of finite type;

I the kernel of Z i (X )→ H2i
ét(X ,Z`(i)) consists of classes

numerically equivalent to zero, i.e. having zero intersection
with any cycle of complimentary dimension (Tate); with
Q`-coefficients rational and numerical equivalence coincide
(Beilinson conjecture), so that c iQ`

is also injective
(conjecturally).

Alena Pirutka CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields



Zeta functions

If F = Fq is a finite field with q elements, define

Z (X ,T ) = exp(
∑
n≥1

|X (Fqn)|T
n

n
)

ζ(X , s) = Z (X , q−s),

From Weil conjectures (proved by Deligne), the poles of ζ are on
the lines Res = 0, 1 . . . d .

Tate conjecture, the strong form
ords=iζ(X , s) = −dim(Z i (X )/ ∼num)⊗Q.
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The case of divisors

I One has an exact sequence

0→ PicX ⊗ Z` → H2
ét(X ,Z`(1))→ Hom(Q`/Z`,BrX )→ 0

where the last group has NO torsion : it follows that
PicX ⊗ Z` → H2

ét(X ,Z`(1)) is surjective ⇔
PicX ⊗Q` → H2

ét(X ,Q`(1)) is surjective ⇔ BrX is finite.
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Zero-cycles

Theorem
(J.-L. Colliot-Thélène, J.-J. Sansuc, C.Soulé)
The cycle class induces an isomorphism

CHd(X )⊗ Z`
∼→ H2d(X ,Z`(d)).
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Torsion

I (J.-L. Colliot-Thélène, J.-J. Sansuc, C.Soulé) the torsion
subgroup CH2(X )tors is finite and the map
CH2(X )tors → H4(X ,Z`(2)) is injective.

I could one have that the kernel of the map
CH i (X ){`} → H2i (X ,Z`(i)) is nonzero?
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Known cases of Tate’s conjecture

I Divisors (i = 1) on abelian varieties, precise version:

Hom(A,B)⊗ Z` → HomQ`
(T`(A),T`(B))

(where T`(A) = lim←−r
A[`r ].)

I Note : over a finite field, there exist abelian varieties with
’exotic’ Tate classes : not coming (by cup-product) from H1.

I K3 surfaces in caracteristic different from 2 (F. Charles, D.
Maulik, K. Madapusi Pera), examples : X ⊂ P3 a quartic; X a
double cover w2 = f6(x , y , z) with f6 of degree 6.

I some other specific varieties.
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Products

I Divisors (i = 1) for X rationally dominated by products of
abelian varieties and curves (in fact, Tate conjecture holds for
i = 1 on X × Y iff it holds for i = 1 for X and for Y ).

I Example : a0x
n
0 + a1x

n
1 + a2x

n
2 + a3x

n
3 = 0 is dominated by the

product of a0x
n
0 + a1x

n
1 = yn and a2x

n
2 + a3x

n
3 = zn.

I Remark 1: for curves Pic (X × Y ) = Pic (X )⊕ PicY ⊕Hom(JX , JY )

(similar formula in higher dimension).
I Remark 2, reductions : if E ,E ′ are two elliptic curves over a

number field k , then there are infinitely many places where the
reductions of E and E ′ are geometrically isogeneous (F.
Charles). In particular, for a given elliptic curve E over k
either E is supersingular at infinitely many places, or has
complex multiplication at inifinitely many places.
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Integral versions

Goal : understand the surjectivity of
I c i : CH i (X )⊗ Z` → H2i

ét(X ,Z`(i)).
I c̄ i : CH i (X )⊗ Z` → H2i

ét(X̄ ,Z`(i))G

I cl i : CH i (X̄ )⊗ Z` →
⋃
H2i
ét(X̄ ,Z`(i))H , where the union is

over all open subgroups H ⊂ G .

None of these maps need be surjective!
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Topological obstructions

(Atiyah-Hirzebrich, Totaro, Pirutka-Yagita, Kameko, Antieau)

There are examples where

cl2 : CH2(X̄ )⊗ Z` →
⋃

H4
ét(X̄ ,Z`(2))H

is not surjective;
and even

cl i : CH2(X̄ )⊗ Z` →
⋃

H4
ét(X̄ ,Z`(2))H/torsion

is not surjective.
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Sketch
I One can define cohomological operations on H∗ét(X ), some of

them (Q1) should vanish on classes of algebraic cycles
(Voevodsky);

I We understand completely H∗(G ) for G = (Z/`)n, so that we
easily find classes not in kerQ1.

I How to produce an algebraic variety from G?
I (Totaro) Consider quotients U/G where G acts freely on a

quasi-projective U. Then one can take X = U/G for U "big
enough". Then one can find classes not in kerQ1 for such X .

I With more work one can produce a projective variety (by some
hyperplane sections).

I for non-torsion classes: take exceptional G (such as G2,F4,E8)
containing (Z/`)3.
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Algebraic obstructions
I For i = 2, one can understand (i.e. express differently) the

torsion in the cokernel of
c2 : CH2(X )⊗ Z` → H4

ét(X ,Z`(2)).

(B. Kahn, J.-L.
Colliot-Thélène)

I Associate to X its field of functions F(X ), then one has Galois
cohomology groups H i (F(X ),Z/`) (or with µ⊗j` coefficients).

I Define the unramified elements in these cohomology groups :
ξ ∈ H i (F(X ),Z/`) having no residus (there are formulas to
compute) for all valuations on F(X ) (discrete rank one) :

H i
nr (F(X ),Z/`) = {ξ is unramified}

(or with µ⊗j` ; by llimit, with Q`/Z`(j) coefficients).
I Then Coker(c2)tors = H3

nr (F(X ),Q`/Z`(2)) if this last group
is finite.
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Function fields

I In general F(X ) is difficult to understand!

I But : if Q is a quadric (defined by a homogeneous equiation of
degree 2) over some field K , then the maps
H i (K ,Z/2)→ H i (K (Q),Z/2) are quite well understood
(starting by work of Arason).

I This can be used when X has a map X → Y with generic
fiber a quadric.
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Fibrations in quadrics, dimensions 3 or 4

I (Parimala-Suresh) For S a smooth surface, X → S with
generic fiber a conic, one has H3

nr (F(X ),Z/2) = 0.

If S is
geometrically ruled then CH2(X )⊗ Z` → H4

ét(X ,Z`(2)) is
surjective.

I We do not know what happens in dimension 4.
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Fibrations in quadrics, dimension 5
One can produce X → P2

F with generic fiber a quadric of dimension
3, such that H3

nr (F(X ),Z/2) 6= 0 (Pirutka),

this uses computations
of residues and Arason’s results.
For such X :

I the maps CH2(X )⊗ Z` → H4
ét(X ,Z`(2)) and

CH2(X )⊗ Z` → H4
ét(X̄ ,Z`(2))G , ` = 2, are not surjective;

I Equation of the generic fiber (a quadric with coefficients in
F(x , y) = F(P2)):

x2
0 − ax2

1 − fx2
2 + afx2

3 + g1g2x
2
4 = 0,

with a ∈ F non-square, f = x/y and gi are fractions of
products of 8 linear forms (configuration is specific to get
residues we want!)
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Examples : cubic curves

E ⊂ P2
F is an elliptic curve.

We have
I 0→ E (F)→ PicE → Z→ 0, where the first map is

P 7→ P − OE .
I PicE ⊗ Z`

'→ H2
ét(E ,Z`(1)).
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Examples : cubic threefolds

X ⊂ P4
F.

I For X̄ we have only even degree cohomology groups, which are
Z`. By Hochschild-Serre,
H2i
ét(X ,Z`(i))

∼→ H2i
ét(X̄ ,Z`(i))G ' Z`, 0 ≤ i ≤ 3.

I CH0(X )⊗ Z`
∼→ H0

ét(X ,Z`) (clear),
I CH0(X )⊗ Z`

∼→ H6
ét(X ,Z`(3)) = Z` (any irreducible variety

over a finite field has a zero-cycle of degree one, by Lang-Weil
estimates)

I CH1(X )⊗Z`
∼→ H2

ét(X ,Z`(1)) (take the class of a hyperlane);
I CH2(X )⊗ Z`

∼→ H4
ét(X ,Z`(2)) (some linear combination of

lines will have 1 as a class : apply Lang-Weil for the Fano
variety of lines).
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Examples : cubic surfaces

X ⊂ P3
F

I Similarly, we have CH0(X )⊗ Z`
∼→ H4

ét(X ,Z`(2)) ' Z`.
I We understand X̄ (it is a blow up of P2 in 6 points), so that

Pic X̄ ∼→ H2
ét(X̄ ,Z`(1)) ' Z7

` (generated by the class of a line
and exceptional curves).

I From the discussion on divisors it follows easily that
PicX ⊗ Z`

∼→ H2
ét(X ,Z`(1)) ⊂ Z7

` . (but for different cubics
surfaces one can get different submodules of Z7

` ).
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Examples : cubic fourfolds

X ⊂ P5
F.

I Similarly, for all i = 0, 1, 3, 4 we have
CH i (X )⊗ Z`

∼→ H2i
ét(X ,Z`(i)) ' Z`.

I Recall: the group H4
ét(X̄ ,Z`(2)) is huge! We know :

I Tate conjecture for CH2(X ) (F. Charles);
I an integral version : CH2(X̄ )⊗ Z` →

⋃
H4

ét(X̄ ,Z`(2))H is
surjective (F. Charles - A.Pirutka);

I but we still do not know if CH2(X )⊗ Z` → H4
ét(X ,Z`(2)) is

surjective...
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The End

Alena Pirutka CNRS, École Polytechnique

Algebraic cycles on varieties over finite fields


