Algebraic cycles on varieties over finite fields

Alena Pirutka

CNRS, École Polytechnique

May 18, 2015, CIRM, Luminy
Arithmétique, Géométrie, Cryptographie et Théorie des Codes

Objects of interest

\mathbb{F} a finite field, $X \subset \mathbb{P}_{\mathbb{F}}^{n}$
a smooth projective
variety, $d=\operatorname{dim}(X)$.

Objects of interest

\mathbb{F} a finite field, $X \subset \mathbb{P}_{\mathbb{F}}^{n}$
a smooth projective
variety, $d=\operatorname{dim}(X)$.
(defined by
homogeneous
polynomials with
coefficients in \mathbb{F}).

Objects of interest

\mathbb{F} a finite field, $X \subset \mathbb{P}_{\mathbb{F}}^{n}$
a smooth projective
variety, $d=\operatorname{dim}(X)$. (defined by
homogeneous
polynomials with
coefficients in \mathbb{F}).

Examples:

- $X=E$ is an elliptic curve;

Objects of interest

\mathbb{F} a finite field, $X \subset \mathbb{P}_{\mathbb{F}}^{n}$
a smooth projective
variety, $d=\operatorname{dim}(X)$. (defined by
homogeneous
polynomials with
coefficients in \mathbb{F}).

Examples:

- $X=E$ is an elliptic curve; Higher dimensions:

Objects of interest

\mathbb{F} a finite field, $X \subset \mathbb{P}_{\mathbb{F}}^{n}$
a smooth projective
variety, $d=\operatorname{dim}(X)$.
(defined by
homogeneous
polynomials with
coefficients in \mathbb{F}).

Examples:

- $X=E$ is an elliptic curve; Higher dimensions:
- $X=A$ is an abelian variety;

Objects of interest

\mathbb{F} a finite field, $X \subset \mathbb{P}_{\mathbb{F}}^{n}$ a smooth projective variety, $d=\operatorname{dim}(X)$. (defined by
homogeneous
polynomials with
coefficients in \mathbb{F}).

Examples:

- $X=E$ is an elliptic curve; Higher dimensions:
- $X=A$ is an abelian variety;
- $X \subset \mathbb{P}_{\mathbb{F}}^{n}$ is a cubic hypersurface $f\left(x_{0}, \ldots x_{n}\right)=0$ with f homogeneous of degree 3 .

Objects of interest

\mathbb{F} a finite field, $X \subset \mathbb{P}_{\mathbb{F}}^{n}$ a smooth projective
variety, $d=\operatorname{dim}(X)$.
(defined by
homogeneous
polynomials with
coefficients in \mathbb{F}).

Examples:

- $X=E$ is an elliptic curve; Higher dimensions:
- $X=A$ is an abelian variety;
- $X \subset \mathbb{P}_{\mathbb{F}}^{n}$ is a cubic hypersurface $f\left(x_{0}, \ldots x_{n}\right)=0$ with f homogeneous of degree 3 .

Question: what objects one can associate to X ?

Subvarieties of smaller dimension

Subvarieties of smaller dimension

Look at all $Y \subset X$ irreducibles of
dimension $d-i$.
A cycle is a formal
linear combination of such Y 's:
The group of
cycles of codimension i is

$$
Z^{i}(X)=\oplus \mathbb{Z} Y
$$

Subvarieties of smaller dimension

Look at all $Y \subset X$ irreducibles of
dimension $d-i$.
A cycle is a formal
linear combination of such Y 's:
The group of cycles of codimension i is

$$
Z^{i}(X)=\oplus \mathbb{Z} Y
$$

too huge!

Subvarieties of smaller dimension

Look at all $Y \subset X$ irreducibles of dimension $d-i$.
A cycle is a formal
linear combination of such Y 's:
The group of cycles of codimension i is

$$
Z^{i}(X)=\oplus \mathbb{Z} Y
$$

too huge!

Equivalence relations:

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff }
$$

Subvarieties of smaller dimension

Look at all $Y \subset X$ irreducibles of dimension $d-i$.
A cycle is a formal
linear combination of such Y 's:
The group of cycles of codimension i is

$$
Z^{i}(X)=\oplus \mathbb{Z} Y
$$

too huge!

Equivalence relations:

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

Subvarieties of smaller dimension

Look at all $Y \subset X$ irreducibles of dimension $d-i$.
A cycle is a formal
linear combination of such Y 's:
The group of cycles of codimension i is

$$
Z^{i}(X)=\oplus \mathbb{Z} Y
$$

too huge!

Equivalence relations:

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

- In general : similar, $\sim_{r a t}$ is generated by

$$
\sum a_{j} Y_{j} \sim_{r a t} 0 \text { if }
$$

Subvarieties of smaller dimension

Look at all $Y \subset X$ irreducibles of dimension $d-i$.
A cycle is a formal linear combination of such Y 's:
The group of cycles of codimension i is

$$
Z^{i}(X)=\oplus \mathbb{Z} Y
$$

too huge!

Equivalence relations:

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

- In general : similar, $\sim_{r a t}$ is generated by

$$
\sum a_{j} Y_{j} \sim_{r a t} 0 \text { if } \sum a_{j} Y_{j}=\operatorname{div}(f)
$$

for some function f on $W \subset X$ of dimension $d-i+1$

Subvarieties of smaller dimension

Look at all $Y \subset X$ irreducibles of dimension $d-i$.
A cycle is a formal linear combination of such Y 's:
The group of cycles of codimension i is

$$
Z^{i}(X)=\oplus \mathbb{Z} Y
$$

too huge!

Equivalence relations:

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

- In general : similar, $\sim_{r a t}$ is generated by

$$
\sum a_{j} Y_{j} \sim_{r a t} 0 \text { if } \sum a_{j} Y_{j}=\operatorname{div}(f)
$$

for some function f on $W \subset X$ of dimension $d-i+1$ (better: the normalization of W).

Chow groups

Recall:

- $Z^{i}(X)=\oplus \mathbb{Z} Y$
- $\sim_{r a t}$ is generated by

$$
\begin{aligned}
& \sum a_{j} Y_{j} \sim_{r a t} 0 \text { if } \\
& \sum a_{j} Y_{j}=\operatorname{div}(f) .
\end{aligned}
$$

Chow groups

Recall:

- $Z^{i}(X)=\oplus \mathbb{Z} Y$
- $\sim_{\text {rat }}$ is generated by

$$
\begin{aligned}
& \sum a_{j} Y_{j} \sim_{\text {rat }} 0 \text { if } \\
& \sum a_{j} Y_{j}=\operatorname{div}(f) .
\end{aligned}
$$

Chow groups : $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$; write $[Y] \in C H^{i}(X)$ for the class of Y.

Chow groups

Recall:

- $Z^{i}(X)=\oplus \mathbb{Z} Y$
- $\sim_{r a t}$ is generated by

$$
\begin{aligned}
& \sum a_{j} Y_{j} \sim_{\text {rat }} 0 \text { if } \\
& \sum a_{j} Y_{j}=\operatorname{div}(f) .
\end{aligned}
$$

Chow groups: $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$; write $[Y] \in C H^{i}(X)$ for the class of Y.

Chow groups

Recall:

- $Z^{i}(X)=\oplus \mathbb{Z} Y$
- $\sim_{r a t}$ is generated by

$$
\begin{aligned}
& \sum a_{j} Y_{j} \sim_{\text {rat }} 0 \text { if } \\
& \sum a_{j} Y_{j}=\operatorname{div}(f) .
\end{aligned}
$$

Chow groups: $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$; write $[Y] \in C H^{i}(X)$ for the class of Y.

Chow groups

Recall:

- $Z^{i}(X)=\oplus \mathbb{Z} Y$
- $\sim_{\text {rat }}$ is generated by

$$
\begin{aligned}
& \sum a_{j} Y_{j} \sim_{\text {rat }} 0 \text { if } \\
& \sum a_{j} Y_{j}=\operatorname{div}(f) .
\end{aligned}
$$

Examples:

- $i=0: C H^{0}(X)=\mathbb{Z}[X]$.
- $i=1$:

Chow groups : $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$; write $[Y] \in C H^{i}(X)$ for the class of Y.

Chow groups

Recall:

- $Z^{i}(X)=\oplus \mathbb{Z} Y$
- $\sim_{\text {rat }}$ is generated by

$$
\begin{aligned}
& \sum a_{j} Y_{j} \sim_{r a t} 0 \text { if } \\
& \sum a_{j} Y_{j}=\operatorname{div}(f) .
\end{aligned}
$$

Examples:

- $i=0: C H^{0}(X)=\mathbb{Z}[X]$.
- $i=1$:
$C H^{1}(X)=$
divisors/divisors of functions = Pic X.

Chow groups: $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$; write $[Y] \in C H^{i}(X)$ for the class of Y.

Chow groups

Recall:

$$
\text { - } Z^{i}(X)=\oplus \mathbb{Z} Y
$$

- $\sim_{r a t}$ is generated by

$$
\begin{aligned}
& \sum a_{j} Y_{j} \sim_{\text {rat }} 0 \text { if } \\
& \sum a_{j} Y_{j}=\operatorname{div}(f) .
\end{aligned}
$$

Chow groups: $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$; write $[Y] \in C H^{i}(X)$ for the class of Y.

Examples:

- $i=0: C H^{0}(X)=\mathbb{Z}[X]$.
- $i=1$:
$C H^{1}(X)=$
divisors/divisors of functions $=$ Pic X.
- $i=\operatorname{dim} X$, write
$C H^{d}(X)=\mathrm{CH}_{0}(X)$ zero-cycles.

Chow groups

Recall:

$$
\text { - } Z^{i}(X)=\oplus \mathbb{Z} Y
$$

- $\sim_{\text {rat }}$ is generated by

$$
\begin{aligned}
& \sum a_{j} Y_{j} \sim_{\text {rat }} 0 \text { if } \\
& \sum a_{j} Y_{j}=\operatorname{div}(f) .
\end{aligned}
$$

Chow groups:

 $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$; write $[Y] \in C H^{i}(X)$ for the class of Y.
Examples:

- $i=0: C H^{0}(X)=\mathbb{Z}[X]$.
- $i=1$:
$C H^{1}(X)=$
divisors/divisors of functions $=$ Pic X.
- $i=\operatorname{dim} X$, write
$C H^{d}(X)=\mathrm{CH}_{0}(X)$ zero-cycles.

In general difficult to determine!

Cohomology

Cohomology

Notation: \bar{X} is the base change of X to an algebraic closure $\overline{\mathbb{F}}$ of \mathbb{F}.

Cohomology

Notation: \bar{X} is the base change of X to an algebraic closure $\overline{\mathbb{F}}$ of \mathbb{F}. Étale cohomology groups: $H_{e t t}^{i}(X, \mathbb{Z} / \ell), H_{e t t}^{i}\left(X, \mu_{n}^{\otimes j}\right), H_{e ́ t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)$ $H_{e ́ t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right)=\lim _{H_{r}} H_{e t t}^{i}\left(X, \mu_{\ell r}^{\otimes j}\right)$, $H_{e ́ t}^{i}\left(X, \mathbb{Q}_{\ell}(j)\right)=H_{e ́ t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right) \otimes \mathbb{Q}_{\ell}(n, \ell$ are prime to the characteristic of \mathbb{F}).

Cohomology

Notation: \bar{X} is the base change of X to an algebraic closure $\overline{\mathbb{F}}$ of \mathbb{F}. Étale cohomology groups: $H_{e t t}^{i}(X, \mathbb{Z} / \ell), H_{e ́ t}^{i}\left(X, \mu_{n}^{\otimes j}\right), H_{e ́ t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)$ $H_{e t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right)=\lim _{r} H_{e t t}^{i}\left(X, \mu_{\ell r}^{\otimes j}\right)$, $H_{e t t}^{i}\left(X, \mathbb{Q}_{\ell}(j)\right)=H_{e t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right) \otimes \mathbb{Q}_{\ell}(n, \ell$ are prime to the characteristic of $\mathbb{F})$.Properties :

1. $H_{e t}^{i}\left(X, \mu_{n}^{\otimes j}\right)$ are finite, $H_{e}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right)$ are \mathbb{Z}_{ℓ}-modules of finite type (resp. with $\bar{X}) ; H_{e t t}^{i}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ have no torsion for almost all ℓ (Gabber, difficult);

Cohomology

Notation: \bar{X} is the base change of X to an algebraic closure $\overline{\mathbb{F}}$ of \mathbb{F}. Étale cohomology groups: $H_{e t}^{i}(X, \mathbb{Z} / \ell), H_{e t t}^{i}\left(X, \mu_{n}^{\otimes j}\right), H_{e t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)$ $H_{e t t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right)=\lim _{r} H_{e t t}^{i}\left(X, \mu_{\ell r}^{\otimes j}\right)$, $H_{e ́ t}^{i}\left(X, \mathbb{Q}_{\ell}(j)\right)=H_{e ́ t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right) \otimes \mathbb{Q}_{\ell}(n, \ell$ are prime to the characteristic of $\mathbb{F})$. Properties :

1. $H_{e t}^{i}\left(X, \mu_{n}^{\otimes j}\right)$ are finite, $H_{e}^{i}\left(\underline{X}\left(X, \mathbb{Z}_{\ell}(j)\right)\right.$ are \mathbb{Z}_{ℓ}-modules of finite type (resp. with $\bar{X}) ; H_{e t t}^{i}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ have no torsion for almost all ℓ (Gabber, difficult);
2. Hochschild-Serre spectral sequence relates X and \bar{X} :

$$
0 \rightarrow H^{1}\left(G, H_{e ́ t}^{i-1}\left(\bar{X}, \mathbb{Z}_{\ell}(j)\right) \rightarrow H_{e t t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right) \rightarrow H_{e ́ t}^{i}\left(\bar{X}, \mathbb{Z}_{\ell}(j)\right)^{G} \rightarrow 0\right.
$$

Cohomology

Notation: \bar{X} is the base change of X to an algebraic closure $\overline{\mathbb{F}}$ of \mathbb{F}. Étale cohomology groups: $H_{e t t}^{i}(X, \mathbb{Z} / \ell), H_{e ́ t}^{i}\left(X, \mu_{n}^{\otimes j}\right), H_{e ́ t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)$ $H_{e t t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right)=\lim _{r} H_{e t t}^{i}\left(X, \mu_{\ell r}^{\otimes j}\right)$, $H_{e ́ t}^{i}\left(X, \mathbb{Q}_{\ell}(j)\right)=H_{e ́ t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right) \otimes \mathbb{Q}_{\ell}(n, \ell$ are prime to the characteristic of $\mathbb{F})$. Properties :

1. $H_{e t}^{i}\left(X, \mu_{n}^{\otimes j}\right)$ are finite, $H_{e}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right)$ are \mathbb{Z}_{ℓ}-modules of finite type (resp. with $\bar{X})$; $H_{e t t}^{i}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ have no torsion for almost all ℓ (Gabber, difficult);
2. Hochschild-Serre spectral sequence relates X and \bar{X} :

$$
0 \rightarrow H^{1}\left(G, H_{e t}^{i-1}\left(\bar{X}, \mathbb{Z}_{\ell}(j)\right) \rightarrow H_{e t}^{i}\left(X, \mathbb{Z}_{\ell}(j)\right) \rightarrow H_{e t}^{i}\left(\bar{X}, \mathbb{Z}_{\ell}(j)\right)^{G} \rightarrow 0\right.
$$

3. there is a cycle class map $C H^{i}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right)$.

Computing cohomology

- $H_{e t}^{2 d}\left(\bar{X}, \mu_{n}^{\otimes d}\right) \xrightarrow{\sim} \mathbb{Z} / n ; H_{e t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)=0, i>2 n ; H_{e t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)$ and $H_{e ́ t}^{2 d-i}\left(\bar{X}, \mu_{n}^{\otimes(d-j)}\right)$ are dual (resp. with \mathbb{Q}_{ℓ}-coefficients).

Computing cohomology

- $H_{e ́ t}^{2 d}\left(\bar{X}, \mu_{n}^{\otimes d}\right) \xrightarrow{\sim} \mathbb{Z} / n ; H_{e ́ t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)=0, i>2 n ; H_{e ́ t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)$ and $H_{e t}^{2 d-i}\left(\bar{X}, \mu_{n}^{\otimes(d-j)}\right)$ are dual (resp. with \mathbb{Q}_{ℓ}-coefficients).
- $H_{e ́ t}^{i}\left(\mathbb{P}_{\overline{\mathbb{F}}}^{n}, \mu_{r}^{\otimes j}\right)= \begin{cases}\mu_{r}^{\otimes j-\frac{i}{2}} & i \text { even, } i \leq 2 n \\ 0 & i \text { otherwise } .\end{cases}$

Computing cohomology

- $H_{e ́ t}^{2 d}\left(\bar{X}, \mu_{n}^{\otimes d}\right) \xrightarrow{\approx} \mathbb{Z} / n ; H_{e ́ t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)=0, i>2 n ; H_{e ́ t}^{i}\left(\bar{X}, \mu_{n}^{\otimes j}\right)$ and $H_{e t}^{2 d-i}\left(\bar{X}, \mu_{n}^{\otimes(d-j)}\right)$ are dual (resp. with \mathbb{Q}_{ℓ}-coefficients).
- $H_{e ́ t}^{i}\left(\mathbb{P}_{\overline{\mathbb{F}}}^{n}, \mu_{r}^{\otimes j}\right)= \begin{cases}\mu_{r}^{\otimes j-\frac{i}{2}} & i \text { even, } i \leq 2 n \\ 0 & i \text { otherwise } .\end{cases}$
- $X \subset \mathbb{P}^{n}$ is a hypersurface. Same formulas as above for \bar{X}, but for $i=d$:

$$
H_{e t t}^{d}\left(\bar{X}, \mu_{r}^{\otimes j}\right)=H_{e ́ t}^{d}\left(\mathbb{P}_{\overline{\mathbb{F}}}^{n}, \mu_{r}^{\otimes j}\right) \oplus H_{e t t}^{d}\left(\bar{X}, \mu_{r}^{\otimes j}\right)^{\prime},
$$

$H_{e ́ t}^{d}\left(\bar{X}, \mu_{r}^{\otimes j}\right)^{\prime}$ is of HUGE rank $\frac{(\operatorname{deg} X-1)^{d+2}+(-1)^{d}(\operatorname{deg} X-1)}{\operatorname{deg} X}$.

Computing cohomology

In general :
Theorem (D.Madore and F. Orgogozo) There exists an algorithm which allows to compute the groups $H_{e ́ t}^{i}(\bar{X}, \mathbb{Z} / \ell)$ (so that the étale cohomology groups are computable in the sense of Church-Turing.)

Cycle class maps

Recall: we have $c^{i}: C H^{i}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right)$.

Cycle class maps

Recall: we have $c^{i}: C^{i}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right)$. Other versions :

- tensoring with $\mathbb{Q}_{\ell}: c_{\mathbb{Q}_{\ell}}^{i}: C H^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e t}^{2 i}\left(X, \mathbb{Q}_{\ell}(i)\right)$;

Cycle class maps

Recall: we have $c^{i}: \mathrm{CH}^{i}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right)$. Other versions :

- tensoring with $\mathbb{Q}_{\ell}: c_{\mathbb{Q}_{\ell}}^{i}: C H^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e t}^{2 i}\left(X, \mathbb{Q}_{\ell}(i)\right)$;
- geometric version : $G=G a l(\overline{\mathbb{F}} / \mathbb{F})=\hat{\mathbb{Z}}$ the absolute Galois group, generated by Frobenius

$$
\bar{c}_{\mathbb{Q}_{\ell}}^{i}: C H^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e ̂ t}^{2 i}\left(\bar{X}, \mathbb{Q}_{\ell}(i)\right)^{G}
$$

Cycle class maps

Recall: we have $c^{i}: \mathrm{CH}^{i}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right)$.
Other versions :

- tensoring with $\mathbb{Q}_{\ell}: c_{\mathbb{Q}_{\ell}}^{i}: C H^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e t}^{2 i}\left(X, \mathbb{Q}_{\ell}(i)\right)$;
- geometric version : $G=G a l(\overline{\mathbb{F}} / \mathbb{F})=\hat{\mathbb{Z}}$ the absolute Galois group, generated by Frobenius

$$
\bar{c}_{\mathbb{Q}_{\ell}}^{i}: C H^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e ̂ t}^{2 i}\left(\bar{X}, \mathbb{Q}_{\ell}(i)\right)^{G}
$$

- another geometric version :

$$
c l_{\mathbb{Q}_{\ell}}^{i}: C H^{i}(\bar{X}) \otimes \mathbb{Q}_{\ell} \rightarrow \bigcup H_{e ́ t}^{2 i}\left(\bar{X}, \mathbb{Q}_{\ell}(i)\right)^{H}
$$

where the union is over all open subgroups $H \subset G$.

The cycle class maps allow to relate the Chow groups (defined in a more geometric way, but difficult to compute) and étale cohomology groups (which are probably easier to understand.)

The cycle class maps allow to relate the Chow groups (defined in a more geometric way, but difficult to compute) and étale cohomology groups (which are probably easier to understand.)

Conjecture (J. Tate) The cycle class map $\bar{c}_{\mathbb{Q}_{\ell}}^{i}: C H^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e t}^{2 i}\left(\bar{X}, \mathbb{Q}_{\ell}(i)\right)^{G}$ is surjective (for any ℓ and $i)$.

The cycle class maps allow to relate the Chow groups (defined in a more geometric way, but difficult to compute) and étale cohomology groups (which are probably easier to understand.)

Conjecture (J. Tate) The cycle class map $\bar{c}_{\mathbb{Q}_{\ell}}^{i}: C H^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e t}^{2 i}\left(\bar{X}, \mathbb{Q}_{\ell}(i)\right)^{G}$ is surjective (for any ℓ and $i)$.

Still widely open, even for $i=1$ (for divisors).

The cycle class maps allow to relate the Chow groups (defined in a more geometric way, but difficult to compute) and étale cohomology groups (which are probably easier to understand.)

Conjecture (J. Tate) The cycle class map
$\bar{c}_{\mathbb{Q}_{\ell}}^{i}: C H^{i}(X) \otimes \mathbb{Q}_{\ell} \rightarrow H_{e t}^{2 i}\left(\bar{X}, \mathbb{Q}_{\ell}(i)\right)^{G}$ is surjective (for any ℓ and $i)$.

Still widely open, even for $i=1$ (for divisors).
Integral versions: understand if we have the surjectivity with \mathbb{Z}_{ℓ}-coefficients (counterexamples exist).

Remark: using Weil conjectures, one can show that the map $H_{e ́ t}^{2 i}\left(X, \mathbb{Q}_{\ell}(i)\right) \rightarrow H_{e t t}^{2 i}\left(\bar{X}, \mathbb{Q}_{\ell}(i)\right)^{G}$ is an isomorphism (in fact the kernel $H^{1}\left(G, H_{e t}^{2 i-1}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)\right.$ of the map with \mathbb{Z}_{ℓ}-coefficients is finite). So that we can identify $c_{\mathbb{Q}_{\ell}}^{i}$ and $\bar{c}_{\mathbb{Q}_{\ell}}^{i}$.

More conjectures

More conjectures

- (follows from Bass conjecture) the Chow groups $\mathrm{CH}^{i}(X)$ are of finite type;

More conjectures

- (follows from Bass conjecture) the Chow groups $\mathrm{CH}^{i}(X)$ are of finite type;
- the kernel of $Z^{i}(X) \rightarrow H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right)$ consists of classes numerically equivalent to zero, i.e. having zero intersection with any cycle of complimentary dimension (Tate); with \mathbb{Q}_{ℓ}-coefficients rational and numerical equivalence coincide (Beilinson conjecture), so that $c_{\mathbb{Q} \ell}^{i}$ is also injective (conjecturally).

Zeta functions

If $\mathbb{F}=F_{q}$ is a finite field with q elements, define

$$
\begin{gathered}
Z(X, T)=\exp \left(\sum_{n \geq 1}\left|X\left(F_{q^{n}}\right)\right| \frac{T^{n}}{n}\right) \\
\zeta(X, s)=Z\left(X, q^{-s}\right)
\end{gathered}
$$

From Weil conjectures (proved by Deligne), the poles of ζ are on the lines Res $=0,1 \ldots d$.

Zeta functions

If $\mathbb{F}=F_{q}$ is a finite field with q elements, define

$$
\begin{gathered}
Z(X, T)=\exp \left(\sum_{n \geq 1}\left|X\left(F_{q^{n}}\right)\right| \frac{T^{n}}{n}\right) \\
\zeta(X, s)=Z\left(X, q^{-s}\right)
\end{gathered}
$$

From Weil conjectures (proved by Deligne), the poles of ζ are on the lines Res $=0,1 \ldots d$.

Tate conjecture, the strong form $\operatorname{ord}_{s=i} \zeta(X, s)=-\operatorname{dim}\left(Z^{i}(X) / \sim_{n u m}\right) \otimes \mathbb{Q}$.

The case of divisors

- One has an exact sequence

$$
0 \rightarrow \operatorname{Pic} X \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{2}\left(X, \mathbb{Z}_{\ell}(1)\right) \rightarrow \operatorname{Hom}\left(\mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}, \operatorname{Br} X\right) \rightarrow 0
$$

where the last group has NO torsion: it follows that $\operatorname{Pic} X \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{2}\left(X, \mathbb{Z}_{\ell}(1)\right)$ is surjective \Leftrightarrow
$\operatorname{Pic} X \otimes \mathbb{Q}_{\ell} \rightarrow H_{e ́ t}^{2}\left(X, \mathbb{Q}_{\ell}(1)\right)$ is surjective $\Leftrightarrow B r X$ is finite.

Zero-cycles

Theorem

(J.-L. Colliot-Thélène, J.-J. Sansuc, C.Soulé)

The cycle class induces an isomorphism

$$
C H^{d}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H^{2 d}\left(X, \mathbb{Z}_{\ell}(d)\right)
$$

Torsion

- (J.-L. Colliot-Thélène, J.-J. Sansuc, C.Soulé) the torsion subgroup $\mathrm{CH}^{2}(X)_{\text {tors }}$ is finite and the map $\mathrm{CH}^{2}(X)_{\text {tors }} \rightarrow H^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$ is injective.
- could one have that the kernel of the map $C H^{i}(X)\{\ell\} \rightarrow H^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right)$ is nonzero?

Known cases of Tate's conjecture

- Divisors $(i=1)$ on abelian varieties, precise version:

$$
\operatorname{Hom}(A, B) \otimes \mathbb{Z}_{\ell} \rightarrow \operatorname{Hom}_{\mathbb{Q}_{\ell}}\left(T_{\ell}(A), T_{\ell}(B)\right)
$$

(where $T_{\ell}(A)=\lim _{\check{L}_{r}} A\left[\ell^{r}\right]$.)

Known cases of Tate's conjecture

- Divisors $(i=1)$ on abelian varieties, precise version:

$$
\operatorname{Hom}(A, B) \otimes \mathbb{Z}_{\ell} \rightarrow \operatorname{Hom}_{\mathbb{Q}_{\ell}}\left(T_{\ell}(A), T_{\ell}(B)\right)
$$

(where $T_{\ell}(A)=\lim _{r} A\left[\ell^{r}\right]$.)

- Note : over a finite field, there exist abelian varieties with 'exotic' Tate classes : not coming (by cup-product) from H^{1}.

Known cases of Tate's conjecture

- Divisors $(i=1)$ on abelian varieties, precise version:

$$
\operatorname{Hom}(A, B) \otimes \mathbb{Z}_{\ell} \rightarrow \operatorname{Hom}_{\mathbb{Q}_{\ell}}\left(T_{\ell}(A), T_{\ell}(B)\right)
$$

(where $T_{\ell}(A)=\lim _{r} A\left[\ell^{r}\right]$.)

- Note : over a finite field, there exist abelian varieties with 'exotic' Tate classes : not coming (by cup-product) from H^{1}.
- K3 surfaces in caracteristic different from 2 (F. Charles, D. Maulik, K. Madapusi Pera), examples: $X \subset \mathbb{P}^{3}$ a quartic; X a double cover $w^{2}=f_{6}(x, y, z)$ with f_{6} of degree 6 .
- some other specific varieties.

Products

- Divisors $(i=1)$ for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for $i=1$ on $X \times Y$ iff it holds for $i=1$ for X and for Y).

Products

- Divisors $(i=1)$ for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for $i=1$ on $X \times Y$ iff it holds for $i=1$ for X and for Y).
- Example : $a_{0} x_{0}^{n}+a_{1} x_{1}^{n}+a_{2} x_{2}^{n}+a_{3} x_{3}^{n}=0$ is dominated by the product of $a_{0} x_{0}^{n}+a_{1} x_{1}^{n}=y^{n}$ and $a_{2} x_{2}^{n}+a_{3} x_{3}^{n}=z^{n}$.

Products

- Divisors $(i=1)$ for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for $i=1$ on $X \times Y$ iff it holds for $i=1$ for X and for Y).
- Example : $a_{0} x_{0}^{n}+a_{1} x_{1}^{n}+a_{2} x_{2}^{n}+a_{3} x_{3}^{n}=0$ is dominated by the product of $a_{0} x_{0}^{n}+a_{1} x_{1}^{n}=y^{n}$ and $a_{2} x_{2}^{n}+a_{3} x_{3}^{n}=z^{n}$.
- Remark 1: for curves Pic $(X \times Y)=\operatorname{Pic}(X) \oplus \operatorname{Pic} Y \oplus \operatorname{Hom}\left(J_{X}, J_{Y}\right)$ (similar formula in higher dimension).

Products

- Divisors $(i=1)$ for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for $i=1$ on $X \times Y$ iff it holds for $i=1$ for X and for Y).
- Example : $a_{0} x_{0}^{n}+a_{1} x_{1}^{n}+a_{2} x_{2}^{n}+a_{3} x_{3}^{n}=0$ is dominated by the product of $a_{0} x_{0}^{n}+a_{1} x_{1}^{n}=y^{n}$ and $a_{2} x_{2}^{n}+a_{3} x_{3}^{n}=z^{n}$.
- Remark 1: for curves Pic $(X \times Y)=\operatorname{Pic}(X) \oplus \operatorname{Pic} Y \oplus H o m\left(J_{X}, J_{Y}\right)$ (similar formula in higher dimension).
- Remark 2, reductions: if E, E^{\prime} are two elliptic curves over a number field k, then there are infinitely many places where the reductions of E and E^{\prime} are geometrically isogeneous (F . Charles).

Products

- Divisors $(i=1)$ for X rationally dominated by products of abelian varieties and curves (in fact, Tate conjecture holds for $i=1$ on $X \times Y$ iff it holds for $i=1$ for X and for Y).
- Example : $a_{0} x_{0}^{n}+a_{1} x_{1}^{n}+a_{2} x_{2}^{n}+a_{3} x_{3}^{n}=0$ is dominated by the product of $a_{0} x_{0}^{n}+a_{1} x_{1}^{n}=y^{n}$ and $a_{2} x_{2}^{n}+a_{3} x_{3}^{n}=z^{n}$.
- Remark 1: for curves Pic $(X \times Y)=\operatorname{Pic}(X) \oplus \operatorname{Pic} Y \oplus H o m\left(J_{X}, J_{Y}\right)$ (similar formula in higher dimension).
- Remark 2, reductions: if E, E^{\prime} are two elliptic curves over a number field k, then there are infinitely many places where the reductions of E and E^{\prime} are geometrically isogeneous (F. Charles). In particular, for a given elliptic curve E over k either E is supersingular at infinitely many places, or has complex multiplication at inifinitely many places.

Integral versions

Goal : understand the surjectivity of

- $c^{i}: C H^{i}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right)$.
- $\bar{c}^{i}: C H^{i}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t t}^{2 i}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)^{G}$
- cl $l^{i}: C H^{i}(\bar{X}) \otimes \mathbb{Z}_{\ell} \rightarrow \bigcup H_{e t}^{2 i}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)^{H}$, where the union is over all open subgroups $H \subset G$.

Integral versions

Goal : understand the surjectivity of

- $c^{i}: C H^{i}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right)$.
- $\bar{c}^{i}: C H^{i}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{2 i}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)^{G}$
- cl $l^{i}: C H^{i}(\bar{X}) \otimes \mathbb{Z}_{\ell} \rightarrow \bigcup H_{e t}^{2 i}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)^{H}$, where the union is over all open subgroups $H \subset G$.
None of these maps need be surjective!

Topological obstructions

(Atiyah-Hirzebrich, Totaro, Pirutka-Yagita, Kameko, Antieau)

Topological obstructions

(Atiyah-Hirzebrich, Totaro, Pirutka-Yagita, Kameko, Antieau) There are examples where

$$
c l^{2}: C H^{2}(\bar{X}) \otimes \mathbb{Z}_{\ell} \rightarrow \bigcup H_{e ́ t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)^{H}
$$

is not surjective;

Topological obstructions

(Atiyah-Hirzebrich, Totaro, Pirutka-Yagita, Kameko, Antieau) There are examples where

$$
c l^{2}: C H^{2}(\bar{X}) \otimes \mathbb{Z}_{\ell} \rightarrow \bigcup H_{e t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)^{H}
$$

is not surjective;
and even

$$
c l^{i}: C H^{2}(\bar{X}) \otimes \mathbb{Z}_{\ell} \rightarrow \bigcup H_{e ́ t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)^{H} / \text { torsion }
$$

is not surjective.

Sketch

- One can define cohomological operations on $H_{e t t}^{*}(X)$, some of them $\left(Q_{1}\right)$ should vanish on classes of algebraic cycles (Voevodsky);

Sketch

- One can define cohomological operations on $H_{e t}^{*}(X)$, some of them $\left(Q_{1}\right)$ should vanish on classes of algebraic cycles (Voevodsky);
- We understand completely $H^{*}(G)$ for $G=(\mathbb{Z} / \ell)^{n}$, so that we easily find classes not in $\operatorname{ker} Q_{1}$.
- How to produce an algebraic variety from G ?

Sketch

- One can define cohomological operations on $H_{e t t}^{*}(X)$, some of them $\left(Q_{1}\right)$ should vanish on classes of algebraic cycles (Voevodsky);
- We understand completely $H^{*}(G)$ for $G=(\mathbb{Z} / \ell)^{n}$, so that we easily find classes not in $\operatorname{ker} Q_{1}$.
- How to produce an algebraic variety from G ?
- (Totaro) Consider quotients U / G where G acts freely on a quasi-projective U. Then one can take $X=U / G$ for U "big enough". Then one can find classes not in $\operatorname{ker} Q_{1}$ for such X.

Sketch

- One can define cohomological operations on $H_{e t t}^{*}(X)$, some of them $\left(Q_{1}\right)$ should vanish on classes of algebraic cycles (Voevodsky);
- We understand completely $H^{*}(G)$ for $G=(\mathbb{Z} / \ell)^{n}$, so that we easily find classes not in $\operatorname{ker} Q_{1}$.
- How to produce an algebraic variety from G ?
- (Totaro) Consider quotients U / G where G acts freely on a quasi-projective U. Then one can take $X=U / G$ for U "big enough". Then one can find classes not in $\operatorname{ker} Q_{1}$ for such X.
- With more work one can produce a projective variety (by some hyperplane sections).
- for non-torsion classes: take exceptional G (such as G_{2}, F_{4}, E_{8}) containing $(\mathbb{Z} / \ell)^{3}$.

Algebraic obstructions

- For $i=2$, one can understand (i.e. express differently) the torsion in the cokernel of $c^{2}: C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$.

Algebraic obstructions

- For $i=2$, one can understand (i.e. express differently) the torsion in the cokernel of $c^{2}: C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$.(B. Kahn, J.-L. Colliot-Thélène)
- Associate to X its field of functions $\mathbb{F}(X)$,

Algebraic obstructions

- For $i=2$, one can understand (i.e. express differently) the torsion in the cokernel of $c^{2}: C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$.(B. Kahn, J.-L. Colliot-Thélène)
- Associate to X its field of functions $\mathbb{F}(X)$, then one has Galois cohomology groups $H^{i}(\mathbb{F}(X), \mathbb{Z} / \ell)$ (or with $\mu_{\ell}^{\otimes j}$ coefficients).

Algebraic obstructions

- For $i=2$, one can understand (i.e. express differently) the torsion in the cokernel of $c^{2}: C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$.(B. Kahn, J.-L. Colliot-Thélène)
- Associate to X its field of functions $\mathbb{F}(X)$, then one has Galois cohomology groups $H^{i}(\mathbb{F}(X), \mathbb{Z} / \ell)$ (or with $\mu_{\ell}^{\otimes j}$ coefficients).
- Define the unramified elements in these cohomology groups: $\xi \in H^{i}(\mathbb{F}(X), \mathbb{Z} / \ell)$ having no residus (there are formulas to compute) for all valuations on $\mathbb{F}(X)$ (discrete rank one) :

$$
H_{n r}^{i}(\mathbb{F}(X), \mathbb{Z} / \ell)=\{\xi \text { is unramified }\}
$$

Algebraic obstructions

- For $i=2$, one can understand (i.e. express differently) the torsion in the cokernel of $c^{2}: C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$.(B. Kahn, J.-L. Colliot-Thélène)
- Associate to X its field of functions $\mathbb{F}(X)$, then one has Galois cohomology groups $H^{i}(\mathbb{F}(X), \mathbb{Z} / \ell)$ (or with $\mu_{\ell}^{\otimes j}$ coefficients).
- Define the unramified elements in these cohomology groups: $\xi \in H^{i}(\mathbb{F}(X), \mathbb{Z} / \ell)$ having no residus (there are formulas to compute) for all valuations on $\mathbb{F}(X)$ (discrete rank one) :

$$
H_{n r}^{i}(\mathbb{F}(X), \mathbb{Z} / \ell)=\{\xi \text { is unramified }\}
$$

(or with $\mu_{\ell}^{\otimes j}$; by llimit, with $\mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}(j)$ coefficients).

- Then Coker $\left(c^{2}\right)_{\text {tors }}=H_{n r}^{3}\left(\mathbb{F}(X), \mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}(2)\right)$ if this last group is finite.

Function fields

- In general $\mathbb{F}(X)$ is difficult to understand!

Function fields

- In general $\mathbb{F}(X)$ is difficult to understand!
- But : if Q is a quadric (defined by a homogeneous equiation of degree 2) over some field K, then the maps $H^{i}(K, \mathbb{Z} / 2) \rightarrow H^{i}(K(Q), \mathbb{Z} / 2)$ are quite well understood (starting by work of Arason).

Function fields

- In general $\mathbb{F}(X)$ is difficult to understand!
- But: if Q is a quadric (defined by a homogeneous equiation of degree 2) over some field K, then the maps $H^{i}(K, \mathbb{Z} / 2) \rightarrow H^{i}(K(Q), \mathbb{Z} / 2)$ are quite well understood (starting by work of Arason).
- This can be used when X has a map $X \rightarrow Y$ with generic fiber a quadric.

Function fields

- In general $\mathbb{F}(X)$ is difficult to understand!
- But: if Q is a quadric (defined by a homogeneous equiation of degree 2) over some field K, then the maps $H^{i}(K, \mathbb{Z} / 2) \rightarrow H^{i}(K(Q), \mathbb{Z} / 2)$ are quite well understood (starting by work of Arason).
- This can be used when X has a map $X \rightarrow Y$ with generic fiber a quadric.

Fibrations in quadrics, dimensions 3 or 4

- (Parimala-Suresh) For S a smooth surface, $X \rightarrow S$ with generic fiber a conic, one has $H_{n r}^{3}(\mathbb{F}(X), \mathbb{Z} / 2)=0$.

Fibrations in quadrics, dimensions 3 or 4

- (Parimala-Suresh) For S a smooth surface, $X \rightarrow S$ with generic fiber a conic, one has $H_{n r}^{3}(\mathbb{F}(X), \mathbb{Z} / 2)=0$. If S is geometrically ruled then $C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$ is surjective.

Fibrations in quadrics, dimensions 3 or 4

- (Parimala-Suresh) For S a smooth surface, $X \rightarrow S$ with generic fiber a conic, one has $H_{n r}^{3}(\mathbb{F}(X), \mathbb{Z} / 2)=0$. If S is geometrically ruled then $C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$ is surjective.
- We do not know what happens in dimension 4.

Fibrations in quadrics, dimension 5

One can produce $X \rightarrow \mathbb{P}_{\mathbb{F}}^{2}$ with generic fiber a quadric of dimension 3 , such that $H_{n r}^{3}(\mathbb{F}(X), \mathbb{Z} / 2) \neq 0$ (Pirutka),

Fibrations in quadrics, dimension 5

One can produce $X \rightarrow \mathbb{P}_{\mathbb{F}}^{2}$ with generic fiber a quadric of dimension 3 , such that $H_{n r}^{3}(\mathbb{F}(X), \mathbb{Z} / 2) \neq 0$ (Pirutka), this uses computations of residues and Arason's results.
For such X :

- the maps $C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$ and $C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)^{G}, \ell=2$, are not surjective;

Fibrations in quadrics, dimension 5

One can produce $X \rightarrow \mathbb{P}_{\mathbb{F}}^{2}$ with generic fiber a quadric of dimension 3 , such that $H_{n r}^{3}(\mathbb{F}(X), \mathbb{Z} / 2) \neq 0$ (Pirutka), this uses computations of residues and Arason's results.
For such X :

- the maps $\mathrm{CH}^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$ and $C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e ́ t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)^{G}, \ell=2$, are not surjective;
- Equation of the generic fiber (a quadric with coefficients in $\left.\mathbb{F}(x, y)=\mathbb{F}\left(\mathbb{P}^{2}\right)\right):$

$$
x_{0}^{2}-a x_{1}^{2}-f x_{2}^{2}+a f x_{3}^{2}+g_{1} g_{2} x_{4}^{2}=0
$$

with $a \in \mathbb{F}$ non-square, $f=x / y$ and g_{i} are fractions of products of 8 linear forms (configuration is specific to get residues we want!)

Examples: cubic curves

$E \subset \mathbb{P}_{\mathbb{F}}^{2}$ is an elliptic curve.

Examples: cubic curves

$E \subset \mathbb{P}_{\mathbb{F}}^{2}$ is an elliptic curve. We have
$-0 \rightarrow E(\mathbb{F}) \rightarrow \operatorname{Pic} E \rightarrow \mathbb{Z} \rightarrow 0$, where the first map is $P \mapsto P-O_{E}$.

Examples: cubic curves

$E \subset \mathbb{P}_{\mathbb{F}}^{2}$ is an elliptic curve. We have
$-0 \rightarrow E(\mathbb{F}) \rightarrow \operatorname{Pic} E \rightarrow \mathbb{Z} \rightarrow 0$, where the first map is $P \mapsto P-O_{E}$.

- $\operatorname{Pic} E \otimes \mathbb{Z}_{\ell} \xrightarrow{\simeq} H_{e t}^{2}\left(E, \mathbb{Z}_{\ell}(1)\right)$.

Examples: cubic curves

$E \subset \mathbb{P}_{\mathbb{F}}^{2}$ is an elliptic curve. We have
$-0 \rightarrow E(\mathbb{F}) \rightarrow \operatorname{Pic} E \rightarrow \mathbb{Z} \rightarrow 0$, where the first map is $P \mapsto P-O_{E}$.

- $\operatorname{Pic} E \otimes \mathbb{Z}_{\ell} \xrightarrow{\simeq} H_{e t}^{2}\left(E, \mathbb{Z}_{\ell}(1)\right)$.

Examples: cubic threefolds

$$
x \subset \mathbb{P}_{\mathfrak{F}}^{4} .
$$

Examples: cubic threefolds

$X \subset \mathbb{P}_{\mathbb{F}}^{4}$.

- For \bar{X} we have only even degree cohomology groups, which are \mathbb{Z}_{ℓ}. By Hochschild-Serre, $H_{e t t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \xrightarrow{\sim} H_{e t}^{2 i}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)^{G} \simeq \mathbb{Z}_{\ell}, 0 \leq i \leq 3$.

Examples: cubic threefolds

$X \subset \mathbb{P}_{\mathbb{F}}^{4}$.

- For \bar{X} we have only even degree cohomology groups, which are \mathbb{Z}_{ℓ}. By Hochschild-Serre, $H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \xrightarrow{\sim} H_{e}^{2 i}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)^{G} \simeq \mathbb{Z}_{\ell}, 0 \leq i \leq 3$.
- $C H^{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e \dot{e} t}^{0}\left(X, \mathbb{Z}_{\ell}\right)$ (clear),

Examples: cubic threefolds

$X \subset \mathbb{P}_{\mathbb{F}}^{4}$.

- For \bar{X} we have only even degree cohomology groups, which are \mathbb{Z}_{ℓ}. By Hochschild-Serre, $H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \xrightarrow{\sim} H_{e ́ t}^{2 i}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)^{G} \simeq \mathbb{Z}_{\ell}, 0 \leq i \leq 3$.
- $C H^{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e \dot{e} t}^{0}\left(X, \mathbb{Z}_{\ell}\right)$ (clear),
- $C H_{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{6}\left(X, \mathbb{Z}_{\ell}(3)\right)=\mathbb{Z}_{\ell}$ (any irreducible variety over a finite field has a zero-cycle of degree one, by Lang-Weil estimates)

Examples: cubic threefolds

$X \subset \mathbb{P}_{\mathbb{F}}^{4}$.

- For \bar{X} we have only even degree cohomology groups, which are \mathbb{Z}_{ℓ}. By Hochschild-Serre, $H_{e t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \xrightarrow{\sim} H_{e}^{2 i}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)^{G} \simeq \mathbb{Z}_{\ell}, 0 \leq i \leq 3$.
- $C H^{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{0}\left(X, \mathbb{Z}_{\ell}\right)$ (clear),
- $C H_{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{6}\left(X, \mathbb{Z}_{\ell}(3)\right)=\mathbb{Z}_{\ell}$ (any irreducible variety over a finite field has a zero-cycle of degree one, by Lang-Weil estimates)
- $C H^{1}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{2}\left(X, \mathbb{Z}_{\ell}(1)\right)$ (take the class of a hyperlane);

Examples: cubic threefolds

$X \subset \mathbb{P}_{\mathbb{F}}^{4}$.

- For \bar{X} we have only even degree cohomology groups, which are \mathbb{Z}_{ℓ}. By Hochschild-Serre, $H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \xrightarrow{\sim} H_{e t t}^{2 i}\left(\bar{X}, \mathbb{Z}_{\ell}(i)\right)^{G} \simeq \mathbb{Z}_{\ell}, 0 \leq i \leq 3$.
- $C H^{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{0}\left(X, \mathbb{Z}_{\ell}\right)$ (clear),
- $C H_{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{6}\left(X, \mathbb{Z}_{\ell}(3)\right)=\mathbb{Z}_{\ell}$ (any irreducible variety over a finite field has a zero-cycle of degree one, by Lang-Weil estimates)
- $C H^{1}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ̂ t}^{2}\left(X, \mathbb{Z}_{\ell}(1)\right)$ (take the class of a hyperlane);
- $\mathrm{CH}^{2}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$ (some linear combination of lines will have 1 as a class : apply Lang-Weil for the Fano variety of lines).

Examples: cubic surfaces

$$
X \subset \mathbb{P}_{\mathbb{F}}^{3}
$$

Examples: cubic surfaces

$$
X \subset \mathbb{P}_{\mathbb{F}}^{3}
$$

- Similarly, we have $C H_{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right) \simeq \mathbb{Z}_{\ell}$.

Examples: cubic surfaces

$X \subset \mathbb{P}_{\mathbb{F}}^{3}$

- Similarly, we have $C H_{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e t t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right) \simeq \mathbb{Z}_{\ell}$.
- We understand \bar{X} (it is a blow up of \mathbb{P}^{2} in 6 points), so that $\operatorname{Pic} \bar{X} \xrightarrow{\sim} H_{e t t}^{2}\left(\bar{X}, \mathbb{Z}_{\ell}(1)\right) \simeq \mathbb{Z}_{\ell}^{7}$ (generated by the class of a line and exceptional curves).

Examples: cubic surfaces

$X \subset \mathbb{P}_{\mathbb{F}}^{3}$

- Similarly, we have $C H_{0}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e t t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right) \simeq \mathbb{Z}_{\ell}$.
- We understand \bar{X} (it is a blow up of \mathbb{P}^{2} in 6 points), so that $\operatorname{Pic} \bar{X} \xrightarrow{\sim} H_{e ̂ t}^{2}\left(\bar{X}, \mathbb{Z}_{\ell}(1)\right) \simeq \mathbb{Z}_{\ell}^{7}$ (generated by the class of a line and exceptional curves).
- From the discussion on divisors it follows easily that $\operatorname{Pic} X \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e t t}^{2}\left(X, \mathbb{Z}_{\ell}(1)\right) \subset \mathbb{Z}_{\ell}^{7}$. (but for different cubics surfaces one can get different submodules of \mathbb{Z}_{ℓ}^{7}).

Examples: cubic fourfolds

$$
x \subset \mathbb{P}_{\mathbb{F}}^{5} .
$$

Examples: cubic fourfolds

$X \subset \mathbb{P}_{\mathbb{F}}^{5}$.

- Similarly, for all $i=0,1,3,4$ we have $C H^{i}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \simeq \mathbb{Z}_{\ell}$.

Examples: cubic fourfolds

$X \subset \mathbb{P}_{\mathbb{F}}^{5}$.

- Similarly, for all $i=0,1,3,4$ we have $C H^{i}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \simeq \mathbb{Z}_{\ell}$.
- Recall: the group $H_{e t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)$ is huge!

Examples: cubic fourfolds

$X \subset \mathbb{P}_{\mathbb{F}}^{5}$.

- Similarly, for all $i=0,1,3,4$ we have $C H^{i}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \simeq \mathbb{Z}_{\ell}$.
- Recall: the group $H_{e t t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)$ is huge! We know :
- Tate conjecture for $\mathrm{CH}^{2}(X)$ (F. Charles);

Examples: cubic fourfolds

$X \subset \mathbb{P}_{\mathbb{F}}^{5}$.

- Similarly, for all $i=0,1,3,4$ we have $C H^{i}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \simeq \mathbb{Z}_{\ell}$.
- Recall: the group $H_{e t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)$ is huge! We know :
- Tate conjecture for $\mathrm{CH}^{2}(X)$ (F. Charles);
- an integral version: $C H^{2}(\bar{X}) \otimes \mathbb{Z}_{\ell} \rightarrow \bigcup H_{e t t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)^{H}$ is surjective (F. Charles - A.Pirutka);

Examples: cubic fourfolds

$X \subset \mathbb{P}_{\mathbb{F}}^{5}$.

- Similarly, for all $i=0,1,3,4$ we have $C H^{i}(X) \otimes \mathbb{Z}_{\ell} \xrightarrow{\sim} H_{e ́ t}^{2 i}\left(X, \mathbb{Z}_{\ell}(i)\right) \simeq \mathbb{Z}_{\ell}$.
- Recall: the group $H_{e t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)$ is huge! We know :
- Tate conjecture for $\mathrm{CH}^{2}(X)$ (F. Charles);
- an integral version: $C H^{2}(\bar{X}) \otimes \mathbb{Z}_{\ell} \rightarrow \bigcup H_{e t t}^{4}\left(\bar{X}, \mathbb{Z}_{\ell}(2)\right)^{H}$ is surjective (F. Charles - A.Pirutka);
- but we still do not know if $C H^{2}(X) \otimes \mathbb{Z}_{\ell} \rightarrow H_{e t t}^{4}\left(X, \mathbb{Z}_{\ell}(2)\right)$ is surjective...

The End

Alena Pirutka

