Diagonal Arithmetics. An introduction: Chow groups.

Alena Pirutka
CNRS, École Polytechnique

May 25, 2015, IMPA, Rio de Janeiro

Objects of interest

k a field, X / k of finite type, equidimensional, $d=\operatorname{dim}(X)$.

Objects of interest

k a field, X / k of finite
type, equidimensional, $d=\operatorname{dim}(X)$.
(often consider X a projective variety, i.e.
defined by homogeneous
polynomials with
coefficients in k).

Objects of interest

k a field, X / k of finite type, equidimensional, $d=\operatorname{dim}(X)$.
(often consider X a projective variety, i.e. defined by homogeneous polynomials with coefficients in k).

Look at all $V \subset X$ irreducibles of dimension $d-i$.
A cycle is a formal linear combination of such V's: the group of cycles of codimension i is

$$
Z^{i}(X)=Z_{d-i}(X)=\oplus \mathbb{Z} V
$$

Objects of interest

k a field, X / k of finite type, equidimensional, $d=\operatorname{dim}(X)$.
(often consider X a projective variety, i.e. defined by homogeneous polynomials with coefficients in k).

Look at all $V \subset X$ irreducibles of dimension $d-i$.
A cycle is a formal linear combination of such V's: the group of cycles of codimension i is

$$
Z^{i}(X)=Z_{d-i}(X)=\oplus \mathbb{Z} V
$$

Denote [V]:=1•V $\in Z^{i}(X)$ the cycle corresponding to V, we call such cycle prime.

Objects of interest

k a field, X / k of finite type, equidimensional, $d=\operatorname{dim}(X)$.
(often consider X a projective variety, i.e. defined by homogeneous polynomials with coefficients in k).

Some properties :

Look at all $V \subset X$ irreducibles of dimension $d-i$.
A cycle is a formal linear combination of such V's: the group of cycles of codimension i is

$$
Z^{i}(X)=Z_{d-i}(X)=\oplus \mathbb{Z} V
$$

Denote [V]:=1•V $\in Z^{i}(X)$ the cycle corresponding to V, we call such cycle prime.

- (push-forward) for $f: X \rightarrow Y$ proper define $f_{*}: Z_{i}(X) \rightarrow Z_{i}(Y)$ by
$f_{*}([V])=0$ if $\operatorname{dim} f(V)<i$ and $f_{*}([V])=a \cdot f(V)$ if $\operatorname{dim} f(V)=i$, where a is the degree of the field extension $k(V) / k(f(V))$.
- (push-forward) for $f: X \rightarrow Y$ proper define $f_{*}: Z_{i}(X) \rightarrow Z_{i}(Y)$ by
$f_{*}([V])=0$ if $\operatorname{dim} f(V)<i$ and $f_{*}([V])=a \cdot f(V)$ if $\operatorname{dim} f(V)=i$, where a is the degree of the field extension $k(V) / k(f(V))$.
- (pull-back) If $f: X \rightarrow Y$ is flat of relative dimension n, $f^{*}: Z_{i}(Y) \rightarrow Z_{i+n}(X), f^{*}([W])=\left[f^{-1}(W)\right], W \subset Y$.
- (push-forward) for $f: X \rightarrow Y$ proper define $f_{*}: Z_{i}(X) \rightarrow Z_{i}(Y)$ by
$f_{*}([V])=0$ if $\operatorname{dim} f(V)<i$ and
$f_{*}([V])=a \cdot f(V)$ if $\operatorname{dim} f(V)=i$, where a is the degree of the field extension $k(V) / k(f(V))$.
- (pull-back) If $f: X \rightarrow Y$ is flat of relative dimension n, $f^{*}: Z_{i}(Y) \rightarrow Z_{i+n}(X), f^{*}([W])=\left[f^{-1}(W)\right], W \subset Y$.
- (intersections) $V \subset X$ and $W \subset X$ intersect properly if all irreducible components of $V \times_{x} W$ have codimension $\operatorname{codim}_{X} V+\operatorname{codim}_{X} W$. One then defines $V \cdot W$ as the sum of these components (with some multiplicities!).
- (push-forward) for $f: X \rightarrow Y$ proper define $f_{*}: Z_{i}(X) \rightarrow Z_{i}(Y)$ by
$f_{*}([V])=0$ if $\operatorname{dim} f(V)<i$ and
$f_{*}([V])=a \cdot f(V)$ if $\operatorname{dim} f(V)=i$, where a is the degree of the field extension $k(V) / k(f(V))$.
- (pull-back) If $f: X \rightarrow Y$ is flat of relative dimension n, $f^{*}: Z_{i}(Y) \rightarrow Z_{i+n}(X), f^{*}([W])=\left[f^{-1}(W)\right], W \subset Y$.
- (intersections) $V \subset X$ and $W \subset X$ intersect properly if all irreducible components of $V \times_{x} W$ have codimension $\operatorname{codim}_{X} V+\operatorname{codim}_{X} W$. One then defines $V \cdot W$ as the sum of these components (with some multiplicities!).
- For X / \mathbb{C} smooth projective one has a cycle class map $c^{i}: Z^{i}(X) \rightarrow H^{2 i}(X, \mathbb{Z})$, giving $Z^{i}(X) \otimes \mathbb{Q} \rightarrow \operatorname{Hdg}^{i}(X)$ where $H d g^{i}(X)=H^{2 i}(X, \mathbb{Q}) \cap H^{i, i}(X)$ (the Hodge classes). The Hodge conjecture predicts that this last map should be surjective.

Equivalence relations

$$
Z^{*}(X):=\oplus Z^{i}(X) \text { is is too huge! }
$$

Equivalence relations

$Z^{*}(X):=\oplus Z^{i}(X)$ is is too huge!
Question: what cycles should one consider as equivalent?

Equivalence relations

$Z^{*}(X):=\oplus Z^{i}(X)$ is is too huge!
Question: what cycles should one consider as equivalent?
\sim an equivalence relation on algebraic cycles is adequate if

- ~ is compatible with addition of cycles;
- for any X / k smooth projective and $\alpha, \beta \in Z^{*}(X)$ one can find $\alpha^{\prime} \sim \alpha$ and $\beta^{\prime} \sim \beta$ such that α^{\prime} and β^{\prime} intersect properly (i.e. all components have right codimension)
- if $X, Y / k$ are smooth projective, $p r_{X}$ (resp. pry) $X \times Y \rightarrow X$ (resp. Y) is the first (resp. second) projection and $\alpha \in Z^{*}(X), \beta=p r_{X}^{-1}(\alpha)$ and $\gamma \in Z^{*}(X \times Y)$ intersecting β properly, then $\alpha \sim 0 \Rightarrow \operatorname{pr}_{Y *}(\beta \cdot \gamma) \sim 0$.

The finest adequate equivalence relation

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \mathrm{iff}
$$

The finest adequate equivalence relation

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

- In general : similar, $\sim_{r a t}$ is generated by

$$
\sum a_{j} Y_{j} \sim_{r a t} 0 \text { if }
$$

The finest adequate equivalence relation

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

- In general : similar, $\sim_{r a t}$ is generated by

$$
\sum a_{j} Y_{j} \sim_{r a t} 0 \text { if } \sum a_{j} Y_{j}=\operatorname{div}(f)
$$

for some function f on $W \subset X$ of dimension $d-i+1$

The finest adequate equivalence relation

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

- In general : similar, $\sim_{r a t}$ is generated by

$$
\sum a_{j} Y_{j} \sim_{r a t} 0 \text { if } \sum a_{j} Y_{j}=\operatorname{div}(f)
$$

for some function f on $W \subset X$ of dimension $d-i+1$ (better: the normalization of W).

The finest adequate equivalence relation

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

- In general : similar, $\sim_{r a t}$ is generated by

$$
\sum a_{j} Y_{j} \sim_{r a t} 0 \text { if } \sum a_{j} Y_{j}=\operatorname{div}(f)
$$

for some function f on $W \subset X$ of dimension $d-i+1$ (better: the normalization of W).

- Chow groups : $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$;

The finest adequate equivalence relation

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

- In general : similar, $\sim_{r a t}$ is generated by

$$
\sum a_{j} Y_{j} \sim_{r a t} 0 \text { if } \sum a_{j} Y_{j}=\operatorname{div}(f)
$$

for some function f on $W \subset X$ of dimension $d-i+1$ (better: the normalization of W).

- Chow groups : $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$;
- for $Y \subset X$ an integral subvariety of codimension i write $[Y] \in C H^{i}(X)$ for the class of Y. More generally, for Y a subscheme of X (not necessarily reduced ni irreducible) one can define $[Y] \in C H^{i}(X)$.

The finest adequate equivalence relation

- For $X=C$ a curve and $i=1$ define :

$$
\sum a_{j} P_{j} \sim_{r a t} 0 \text { iff } \sum a_{j} P_{j}=\operatorname{div}(f)
$$

for some function f on C.

- In general : similar, $\sim_{r a t}$ is generated by

$$
\sum a_{j} Y_{j} \sim_{r a t} 0 \text { if } \sum a_{j} Y_{j}=\operatorname{div}(f)
$$

for some function f on $W \subset X$ of dimension $d-i+1$ (better: the normalization of W).

- Chow groups : $C H^{i}(X)=Z^{i}(X) / \sim_{r a t}$;
- for $Y \subset X$ an integral subvariety of codimension i write $[Y] \in C H^{i}(X)$ for the class of Y. More generally, for Y a subscheme of X (not necessarily reduced ni irreducible) one can define $[Y] \in C H^{i}(X)$.

Functorial properties for Chow groups

- (push-forward) $f: X \rightarrow Y$ proper then f_{*} induces $f_{*}: \mathrm{CH}_{i}(X) \rightarrow \mathrm{CH}_{i}(Y)$;

Functorial properties for Chow groups

- (push-forward) $f: X \rightarrow Y$ proper then f_{*} induces $f_{*}: \mathrm{CH}_{i}(X) \rightarrow \mathrm{CH}_{i}(Y)$;
- (pull-back) $f: X \rightarrow Y$ flat of relative dimension n, then f^{*} induces $f^{*}: \mathrm{CH}_{i}(Y) \rightarrow \mathrm{CH}_{i+n}(X)$. If X, Y are smooth, by a more difficult construction one defines

$$
f^{*}: C H^{i}(Y) \rightarrow C H^{i}(X)
$$

Functorial properties for Chow groups

- (push-forward) $f: X \rightarrow Y$ proper then f_{*} induces $f_{*}: \mathrm{CH}_{i}(X) \rightarrow \mathrm{CH}_{i}(Y)$;
- (pull-back) $f: X \rightarrow Y$ flat of relative dimension n, then f^{*} induces $f^{*}: \mathrm{CH}_{i}(Y) \rightarrow C H_{i+n}(X)$. If X, Y are smooth, by a more difficult construction one defines

$$
f^{*}: C H^{i}(Y) \rightarrow C H^{i}(X)
$$

- if K / k is a finite field extension of degree $m, \pi: X_{K} \rightarrow X$, then the composition $\pi_{*} \circ \pi^{*}: \mathrm{CH}_{i}(X) \rightarrow \mathrm{CH}_{i}\left(\mathrm{X}_{K}\right) \rightarrow \mathrm{CH}_{i}(X)$ is the multiplication by m.
- (cycle class) for X smooth projective, we have $C H^{i}(X) \rightarrow \operatorname{Hdg}^{i}(X)(k=\mathbb{C})$.

Functorial properties for Chow groups

- (push-forward) $f: X \rightarrow Y$ proper then f_{*} induces $f_{*}: \mathrm{CH}_{i}(X) \rightarrow \mathrm{CH}_{i}(Y)$;
- (pull-back) $f: X \rightarrow Y$ flat of relative dimension n, then f^{*} induces $f^{*}: \mathrm{CH}_{i}(Y) \rightarrow \mathrm{CH}_{i+n}(X)$. If X, Y are smooth, by a more difficult construction one defines $f^{*}: \mathrm{CH}^{i}(Y) \rightarrow \mathrm{CH}^{i}(X)$;
- if K / k is a finite field extension of degree $m, \pi: X_{K} \rightarrow X$, then the composition $\pi_{*} \circ \pi^{*}: \mathrm{CH}_{i}(X) \rightarrow \mathrm{CH}_{i}\left(X_{K}\right) \rightarrow \mathrm{CH}_{i}(X)$ is the multiplication by m.
- (cycle class) for X smooth projective, we have $C H^{i}(X) \rightarrow \operatorname{Hdg}^{i}(X)(k=\mathbb{C})$.
- (localisation sequence) $\tau: Z \subset X$ closed, $j: U \subset X$ the complement. Then we have an exact sequence

$$
\mathrm{CH}_{i}(\mathrm{Z}) \xrightarrow{\tau_{*}} \mathrm{CH}_{i}(X) \xrightarrow{j^{*}} \mathrm{CH}_{i}(U) \rightarrow 0 .
$$

Correspondences

Let $X, Y / k$ be smooth projective varieteies. Then

- Any map $f: X \rightarrow Y$ gives $f_{*}: C H_{i}(X) \rightarrow C H_{i}(Y)$

Correspondences

Let $X, Y / k$ be smooth projective varieteies. Then

- Any map $f: X \rightarrow Y$ gives $f_{*}: C H_{i}(X) \rightarrow C H_{i}(Y)$
- More : any $\alpha \in C H_{*}(X \times Y)$ gives $\alpha_{*}: \mathrm{CH}_{*}(X) \rightarrow \mathrm{CH}_{*}(Y)$: if $\gamma \in C H_{*}(X)$, then $\alpha_{*}(\gamma)=\operatorname{pr}_{\gamma_{*}}\left(\alpha \cdot \operatorname{pr}_{\chi}^{*}(\gamma)\right)$, i.e. α_{*} is the composition

$$
C H_{*}(X) \rightarrow \mathrm{CH}_{*}(X \times Y) \xrightarrow{-\alpha} C H_{*}(X \times Y) \rightarrow C H_{*}(Y) .
$$

- On cohomology: any $\alpha \in C H^{i}(X \times Y)$ gives $\alpha_{*}: H^{*}(X, \mathbb{Q}) \rightarrow H^{*}(Y, \mathbb{Q}): \alpha_{*}(\gamma)=p r_{\gamma}\left(c^{i}(\alpha) \cup p r_{x}^{*}(\gamma)\right)$, $\gamma \in H^{*}(X, \mathbb{Q})$.
- An important example : consider $\Delta_{X} \subset X \times X$ the diagonal. Then $\left[\Delta_{X}\right]_{*}$ is the identity map.

Other classical equivalence relations

Let $\alpha \in Z^{i}(X)$

- (algebraic) $\alpha \sim_{\text {alg }} 0$ if there exists a smooth projective curve C and two points $c_{1}, c_{2} \in C(k)$ and $\beta \in Z^{i}(X \times C)$ such that $\alpha=\tau_{c_{1}}^{*} \beta-\tau_{c_{2}}^{*} \beta$, where $\tau_{c_{i}}$ is the inclusion of c_{i} in C.
- (homological) $\alpha \sim_{\text {hom }} 0$ if $c^{i}(\alpha)=0$ (over \mathbb{C}, over k take another (Weil) cohomology)
- (numerical) $\alpha \sim_{\text {num }} 0$ if for any $\beta \in Z^{d-i}(X)$ one has $\alpha \cdot \beta$ (is well-defined!) is zero.
one has $\left\{\alpha \sim_{\text {rat }} 0\right\} \subset\left\{\alpha \sim_{\text {alg }} 0\right\} \subset\left\{\alpha \sim_{\text {hom }} 0\right\} \subset\left\{\alpha \sim_{\text {num }} 0\right\}$.

Plan of the lectures

General question : What one can do by studying zero-cycles ?

Plan of the lectures

General question : What one can do by studying zero-cycles ?

- (Bloch-Srinivas) triviality of CH_{0} and equivalence relations;
- (Voisin, Colliot-Thélène - Pirutka, Beauville, Totaro, Hassett-Kresch-Tschinkel) universal triviality of CH_{0} and stable rationality.

