Diagonal Arithmetics. An introduction : Chow groups.

Alena Pirutka

CNRS, École Polytechnique

May 25, 2015, IMPA, Rio de Janeiro

CNRS. École Polvtechnique

Alena Pirutka

k a field, X/k of finite type, equidimensional, $d = \dim(X)$.

Alena Pirutka Diagonal Arithmetics. An introduction : Chow groups.

k a field, X/k of finite type, equidimensional, $d = \dim(X)$. (often consider X a projective variety, i.e. defined by homogeneous polynomials with coefficients in k).

Diagonal Arithmetics. An introduction : Chow groups.

k a field, X/k of finite type, equidimensional, $d = \dim(X)$. (often consider X a projective variety, i.e. defined by homogeneous polynomials with coefficients in k). Look at all $V \subset X$ irreducibles of dimension d - i. A *cycle* is a formal linear combination of such V's: the *group of cycles* of codimension *i* is

$$Z^i(X) = Z_{d-i}(X) = \oplus \mathbb{Z} V$$

CNRS. École Polvtechnique

Alena Pirutka

k a field, X/k of finite type, equidimensional, $d = \dim(X)$. (often consider X a projective variety, i.e. defined by homogeneous polynomials with coefficients in k). Look at all $V \subset X$ irreducibles of dimension d - i. A *cycle* is a formal linear combination of such V's: the *group of cycles* of codimension *i* is

$$Z^i(X) = Z_{d-i}(X) = \oplus \mathbb{Z} V$$

CNRS. École Polvtechnique

Denote $[V] := 1 \cdot V \in Z^{i}(X)$ the cycle corresponding to V, we call such cycle *prime*.

k a field, X/k of finite type, equidimensional, $d = \dim(X)$. (often consider X a projective variety, i.e. defined by homogeneous polynomials with coefficients in k).

Some properties :

Look at all $V \subset X$ irreducibles of dimension d - i. A *cycle* is a formal linear combination of such V's: the *group of cycles* of codimension *i* is

$$Z^i(X) = Z_{d-i}(X) = \oplus \mathbb{Z} V$$

Denote $[V] := 1 \cdot V \in Z^{i}(X)$ the cycle corresponding to V, we call such cycle *prime*.

CNRS. École Polvtechnique

Alena Pirutka

• (push-forward) for $f : X \to Y$ proper define $f_* : Z_i(X) \to Z_i(Y)$ by $f_*([V]) = 0$ if $\dim f(V) < i$ and $f_*([V]) = a \cdot f(V)$ if $\dim f(V) = i$, where a is the degree of the field extension k(V)/k(f(V)).

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Alena Pirutka

- (push-forward) for $f : X \to Y$ proper define $f_* : Z_i(X) \to Z_i(Y)$ by $f_*([V]) = 0$ if $\dim f(V) < i$ and $f_*([V]) = a \cdot f(V)$ if $\dim f(V) = i$, where a is the degree of the field extension k(V)/k(f(V)).
- ▶ (pull-back) If $f : X \to Y$ is flat of relative dimension n, $f^* : Z_i(Y) \to Z_{i+n}(X), f^*([W]) = [f^{-1}(W)], W \subset Y.$

- (push-forward) for $f : X \to Y$ proper define $f_* : Z_i(X) \to Z_i(Y)$ by $f_*([V]) = 0$ if $\dim f(V) < i$ and $f_*([V]) = a \cdot f(V)$ if $\dim f(V) = i$, where a is the degree of the field extension k(V)/k(f(V)).
- ▶ (pull-back) If $f : X \to Y$ is flat of relative dimension n, $f^* : Z_i(Y) \to Z_{i+n}(X), f^*([W]) = [f^{-1}(W)], W \subset Y.$
- (intersections) V ⊂ X and W ⊂ X intersect properly if all irreducible components of V ×_X W have codimension codim_XV+codim_XW. One then defines V · W as the sum of these components (with some multiplicities!).

CNRS. École Polvtechnique

- (push-forward) for $f : X \to Y$ proper define $f_* : Z_i(X) \to Z_i(Y)$ by $f_*([V]) = 0$ if $\dim f(V) < i$ and $f_*([V]) = a \cdot f(V)$ if $\dim f(V) = i$, where a is the degree of the field extension k(V)/k(f(V)).
- ▶ (pull-back) If $f : X \to Y$ is flat of relative dimension n, $f^* : Z_i(Y) \to Z_{i+n}(X), f^*([W]) = [f^{-1}(W)], W \subset Y.$
- (intersections) V ⊂ X and W ⊂ X intersect properly if all irreducible components of V ×_X W have codimension codim_XV+codim_XW. One then defines V · W as the sum of these components (with some multiplicities!).
- For X/C smooth projective one has a cycle class map cⁱ: Zⁱ(X) → H²ⁱ(X, Z), giving Zⁱ(X) ⊗ Q → Hdgⁱ(X) where Hdgⁱ(X) = H²ⁱ(X, Q) ∩ H^{i,i}(X) (the Hodge classes). The Hodge conjecture predicts that this last map should be surjective.

Equivalence relations

 $Z^*(X) := \oplus Z^i(X)$ is is too huge!

Alena Pirutka

Equivalence relations

 $Z^*(X) := \oplus Z^i(X)$ is is too huge! Question: what cycles should one consider as equivalent?

Diagonal Arithmetics. An introduction : Chow groups.

Equivalence relations

 $Z^*(X) := \oplus Z^i(X)$ is is too huge!

Question: what cycles should one consider as equivalent?

- \sim an equivalence relation on algebraic cycles is adequate if
 - $ightarrow \sim$ is compatible with addition of cycles;
 - for any X/k smooth projective and α, β ∈ Z*(X) one can find α' ~ α and β' ~ β such that α' and β' intersect properly (i.e. all components have *right* codimension)
 - if X, Y/k are smooth projective, pr_X (resp. pr_Y) X × Y → X (resp. Y) is the first (resp. second) projection and α ∈ Z*(X), β = pr_X⁻¹(α) and γ ∈ Z*(X × Y) intersecting β properly, then α ~ 0 ⇒ pr_{Y*}(β · γ) ~ 0.

CNRS. École Polvtechnique

Alena Pirutka

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff

CNRS, École Polytechnique

Diagonal Arithmetics. An introduction : Chow groups.

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff $\sum a_j P_j = div(f)$

for some function f on C.

• In general : similar, \sim_{rat} is generated by

$$\sum {\sf a}_j Y_j \sim_{\it rat}$$
 0 if

Diagonal Arithmetics. An introduction : Chow groups.

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff $\sum a_j P_j = div(f)$

for some function f on C.

• In general : similar, \sim_{rat} is generated by

$$\sum a_j Y_j \sim_{rat} 0$$
 if $\sum a_j Y_j = div(f)$

for some function f on $W \subset X$ of dimension d - i + 1

Diagonal Arithmetics. An introduction : Chow groups.

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff $\sum a_j P_j = div(f)$

for some function f on C.

• In general : similar, \sim_{rat} is generated by

$$\sum a_j Y_j \sim_{rat} 0$$
 if $\sum a_j Y_j = div(f)$

for some function f on $W \subset X$ of dimension d - i + 1 (better: the normalization of W).

CNRS. École Polvtechnique

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff $\sum a_j P_j = div(f)$

for some function f on C.

• In general : similar, \sim_{rat} is generated by

$$\sum a_j Y_j \sim_{rat} 0$$
 if $\sum a_j Y_j = div(f)$

for some function f on $W \subset X$ of dimension d - i + 1 (better: the normalization of W).

• Chow groups :
$$CH^i(X) = Z^i(X) / \sim_{rat};$$

CNRS, École Polytechnique

Alena Pirutka

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff $\sum a_j P_j = div(f)$

for some function f on C.

• In general : similar, \sim_{rat} is generated by

$$\sum a_j Y_j \sim_{rat} 0$$
 if $\sum a_j Y_j = div(f)$

for some function f on $W \subset X$ of dimension d - i + 1 (better: the normalization of W).

- Chow groups : $CH^i(X) = Z^i(X) / \sim_{rat};$
- for Y ⊂ X an integral subvariety of codimension i write
 [Y] ∈ CHⁱ(X) for the class of Y. More generally, for Y a subscheme of X (not necessarily reduced ni irreducible) one can define [Y] ∈ CHⁱ(X).

• For X = C a curve and i = 1 define :

$$\sum a_j P_j \sim_{rat} 0$$
 iff $\sum a_j P_j = div(f)$

for some function f on C.

• In general : similar, \sim_{rat} is generated by

$$\sum a_j Y_j \sim_{rat} 0$$
 if $\sum a_j Y_j = div(f)$

for some function f on $W \subset X$ of dimension d - i + 1 (better: the normalization of W).

- Chow groups : $CH^i(X) = Z^i(X) / \sim_{rat};$
- for Y ⊂ X an integral subvariety of codimension i write
 [Y] ∈ CHⁱ(X) for the class of Y. More generally, for Y a subscheme of X (not necessarily reduced ni irreducible) one can define [Y] ∈ CHⁱ(X).

• (push-forward) $f : X \to Y$ proper then f_* induces $f_* : CH_i(X) \to CH_i(Y)$;

Alena Pirutka

- (push-forward) $f : X \to Y$ proper then f_* induces $f_* : CH_i(X) \to CH_i(Y)$;
- (pull-back) f : X → Y flat of relative dimension n, then f* induces f* : CH_i(Y) → CH_{i+n}(X). If X, Y are smooth, by a more difficult construction one defines f* : CHⁱ(Y) → CHⁱ(X);

- (push-forward) $f : X \to Y$ proper then f_* induces $f_* : CH_i(X) \to CH_i(Y)$;
- (pull-back) f : X → Y flat of relative dimension n, then f* induces f* : CH_i(Y) → CH_{i+n}(X). If X, Y are smooth, by a more difficult construction one defines f* : CHⁱ(Y) → CHⁱ(X);
- if K/k is a finite field extension of degree $m, \pi : X_K \to X$, then the composition $\pi_* \circ \pi^* : CH_i(X) \to CH_i(X_K) \to CH_i(X)$ is the multiplication by m.

CNRS. École Polvtechnique

• (cycle class) for X smooth projective, we have $CH^{i}(X) \rightarrow Hdg^{i}(X)$ $(k = \mathbb{C})$.

- (push-forward) $f : X \to Y$ proper then f_* induces $f_* : CH_i(X) \to CH_i(Y)$;
- ▶ (pull-back) f : X → Y flat of relative dimension n, then f* induces f* : CH_i(Y) → CH_{i+n}(X). If X, Y are smooth, by a more difficult construction one defines f* : CHⁱ(Y) → CHⁱ(X);
- if K/k is a finite field extension of degree $m, \pi: X_K \to X$, then the composition $\pi_* \circ \pi^* : CH_i(X) \to CH_i(X_K) \to CH_i(X)$ is the multiplication by m.
- (cycle class) for X smooth projective, we have $CH^{i}(X) \rightarrow Hdg^{i}(X)$ $(k = \mathbb{C})$.
- ► (localisation sequence) \(\tau: : Z \subset X\) closed, \(j: U \subset X\) the complement. Then we have an exact sequence

$$CH_i(Z) \xrightarrow{\tau_*} CH_i(X) \xrightarrow{j^*} CH_i(\bigcup) \xrightarrow{\tau_*} 0$$

Alena Pirutka

CNRS, École Polytechnique

Correspondences

Let X, Y/k be smooth projective varieteies. Then

• Any map $f: X \to Y$ gives $f_*: CH_i(X) \to CH_i(Y)$

Alena Pirutka Diagonal Arithmetics. An introduction : Chow groups.

Correspondences

Let X, Y/k be smooth projective varieteies. Then

- Any map $f: X \to Y$ gives $f_*: CH_i(X) \to CH_i(Y)$
- More : any α ∈ CH_{*}(X × Y) gives α_{*} : CH_{*}(X) → CH_{*}(Y): if γ ∈ CH_{*}(X), then α_{*}(γ) = pr_{Y*}(α · pr^{*}_X(γ)), i.e. α_{*} is the composition

$${\it CH}_*(X) o {\it CH}_*(X imes Y) \stackrel{\cdot lpha}{ o} {\it CH}_*(X imes Y) o {\it CH}_*(Y).$$

- On cohomology: any $\alpha \in CH^i(X \times Y)$ gives $\alpha_* : H^*(X, \mathbb{Q}) \to H^*(Y, \mathbb{Q}) : \alpha_*(\gamma) = pr_{Y*}(c^i(\alpha) \cup pr_X^*(\gamma)),$ $\gamma \in H^*(X, \mathbb{Q}).$
- An important example : consider Δ_X ⊂ X × X the diagonal. Then [Δ_X]_{*} is the identity map.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

CNRS. École Polvtechnique

Other classical equivalence relations

Let $\alpha \in Z^i(X)$

- (algebraic) $\alpha \sim_{alg} 0$ if there exists a smooth projective curve C and two points $c_1, c_2 \in C(k)$ and $\beta \in Z^i(X \times C)$ such that $\alpha = \tau_{c_1}^*\beta \tau_{c_2}^*\beta$, where τ_{c_i} is the inclusion of c_i in C.
- ▶ (homological) \(\alpha\) ~_{hom} 0 if \(c^i(\alpha) = 0\) (over \(\mathbb{C}\), over \(k\) take another (Weil) cohomology)
- (numerical) α ~_{num} 0 if for any β ∈ Z^{d-i}(X) one has α · β (is well-defined!) is zero.

one has $\{\alpha \sim_{\mathit{rat}} 0\} \subset \{\alpha \sim_{\mathit{alg}} 0\} \subset \{\alpha \sim_{\mathit{hom}} 0\} \subset \{\alpha \sim_{\mathit{num}} 0\}.$

CNRS, École Polytechnique

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Alena Pirutka

Plan of the lectures

General question : What one can do by studying zero-cycles ?

Alena Pirutka Diagonal Arithmetics. An introduction : Chow groups. CNRS, École Polytechnique

Plan of the lectures

General question : What one can do by studying zero-cycles ?

- ▶ (Bloch-Srinivas) triviality of CH₀ and equivalence relations;
- (Voisin, Colliot-Thélène Pirutka, Beauville, Totaro, Hassett-Kresch-Tschinkel) universal triviality of CH₀ and stable rationality.

CNRS. École Polvtechnique