Computational Statistics

11/24/21

More sampling ...

- Recall Bayesiain modeling:
- We model data Xi..., Xa as having some from some distribution F with dissity f = f(Xi,..., Xaj Bi..., Bk) when the distribution of the di
- (3) We compute the posterior, unditional distribution, of BIX as:

$$p(\vec{\theta}|\vec{x}) = p(\theta_{in}, \theta_{u} | x_{in}, x_{n}) = f(x_{in}, x_{n} | \theta_{i}, \theta_{u}) f(\vec{\theta})$$

$$\int f(x_{in}, x_{n} | \theta_{in}, \theta_{u}) f(\vec{\theta}) d\vec{\theta}$$

$$\propto J(\vec{\theta}) f(\vec{\theta})$$

$$\int f(\vec{\theta}) f(\vec{\theta}) d\vec{\theta}$$

Bayes + MCMC

Recall the Metapolis - Hastings algorithm:
With
$$q(y|x)$$
 a poposal dusity is construct a
Michain for sampling from f as follows:
Michain $X_{in} = \begin{cases} Y & with probability & r(x,Y) \\ X_{in} & x_{in} = \begin{cases} Y & with probability & r(x,Y) \\ X_{in} & x_{in} = \end{cases}$

when
$$V(x,y) = \min \left\{ \frac{f(y)}{f(x)} \frac{q(x,y)}{q(y|x)}, \right\}$$

If we wish to sumple from the posterior [Recall, X is the observed data]
$$p(\theta|X) = \frac{I(\theta)}{C(X)} + \frac{f(\theta)}{C(X)} + \frac{f(\theta)}{C($$

to construct a chain \$1, 82,... 8;,... when

$$\Theta_{i+1} = \begin{cases}
Y & with prob $r(\theta_i, Y) \\
\Theta_i & with prob [-r(\theta_i, Y))
\end{cases}$$$

and
$$V(\theta_i, Y) = \min \left\{ \frac{p(Y|X)}{p(\theta_i|X)} \frac{q(\theta_i|Y)}{q(Y|\theta_i)}, 1 \right\}$$

= $\min \left\{ \frac{p(Y|X)}{p(\theta_i|X)} \frac{q(Y|\theta_i)}{q(Y|\theta_i)}, 1 \right\}$

$$= \min \left\{ \frac{1}{10} + \frac{$$

Note: You do not need to comple the normalizing constant C(X) in order to sumple from p using MCMC!

Furthermode : If the prior to was uninformatic
i.e. flat,
$$f(x) = C$$
 and then we have
 $r(\theta_i, Y) = \min\left\{\frac{f(x)}{f(Y)}, \frac{g(\theta_i|Y)}{g(Y|\theta_i)}, \frac{g(\theta_i|Y)}{g(Y|\theta_i)}, \frac{g(\theta_i|Y)}{g(Y|\theta_i)}, \frac{g(\theta_i|Y)}{g(Y|\theta_i)}, \frac{g(\theta_i|Y)}{g(Y|\theta_i)}, \frac{g(\theta_i|Y)}{g(Y|\theta_i)}, \frac{g(\theta_i|Y)}{g(Y|\theta_i)}, \frac{g(\theta_i|Y|)}{g(Y|\theta_i)}, \frac{g(\theta_i|Y|)}{g(\theta_i)}, \frac{g(\theta$

 $\theta_{\mu}|\vec{\theta}_{\mu},\vec{x} \sim g_{\mu}(\theta_{\mu}|\vec{\theta}_{\mu},\vec{x}).$

Drive
$$\vec{\theta}^{(n)}, ..., \vec{\theta}^{(n)}$$
, to generate the components \mathbf{p}
 $\vec{\theta}^{(i+1)}$ merely draw from
 $\vec{\theta}^{(i+1)}_{u} \sim g(u)(\vec{\theta}_{u} | \vec{\theta}^{(i)}_{(u)}, \vec{x})$ for $k=1,..., K$.
Then use the provision step's values of $\vec{\theta}^{(i)}_{j}$ to condition
and draw $\vec{\theta}^{(i+1)}_{u}$.
(See Efair c Heistie § 13.4 for worked example.)
Tost a note: ITimogene we have $x_{i...,x_{n}} \sim \text{JID N}[\mu, \tau]$
and we wish to simple from the posterior for μ_{i} .
We are in to generate a sequence of $\mu^{(i)}_{i}, \tau^{(i)}, \mu^{(i)}_{i}, \tau^{(i)}_{i}$.
 $p(\mu, \tau | \vec{x}) \propto \vec{f}(\mu, \tau) f(\mu, \tau)$
And to sample, for nucle

$$p(\mu|\tau, \vec{x}) = \frac{p(\mu, \tau|\vec{x})}{p(\tau)}$$

$$p(\tau|\mu, \vec{x}) = \frac{p(\mu, \tau|\vec{x})}{p(\mu)}$$

M-H is more general algorithm...

4

Monte Carlo Variance Reduction

For any MC method und to estimate $I = \int f(x) dx$, the variance scales as $Var(\hat{T}) = \frac{C}{N}$

All one ran du is male C smaller.

Analytic Transformations Consider computing P(X>2) with X ~ Cauchy. $P(X>2) = I = \int_{2}^{\infty} \frac{1}{\pi(1+x^2)} dx$ = $\int \frac{1}{\pi} (x^2) \frac{1}{\pi} (1+x^2) dx$ =7 $\int = \int \sum_{n} \frac{1}{2} \frac{1}{2} (x_{i})$ where x_{i} is a draw from Cauchy distribution . Alternativity: I = J T(1+1/2) dy (by change of variable) Let $\tilde{T} = t_{1} \tilde{\xi} \frac{1/y_{1}^{2}}{\pi(1+/y_{1}^{2})}$ where $y_{1} \sim U(0, 1/2)$ Analytic with do for =7 one can show $\frac{Var(\hat{T})}{Var(\hat{T})} \approx .001$ reducing the variance ar the hist!

15

$$Var\left(\frac{f}{f}\right) = \frac{1}{N} Var\left(\frac{f(x)}{p(x)}\right) \quad \text{where} \quad X \sim p.$$

$$Var\left(\frac{f(x)}{p(x)}\right) = \mathbb{E}\left(\frac{f^{2}(x)}{p^{2}(x)}\right) - \mathbb{E}\left(\frac{f(x)}{p(x)}\right)^{2}$$

$$\mathbb{E}\left(\frac{f(x)}{p(x)}\right)^{2} = \left(\int \frac{f(x)}{p(x)}p(x) dx\right)^{2} = \left(\int f(x) dx\right)^{2}.$$

$$dve_{1} = u_{1} + dve_{2} + dve_{3} + dve_{4} + dve$$

choice of p!

So choose p close to |f|, i.e. so that $\frac{|f|}{p} \approx 1$.

+

2

Density Estimation
is $f = F'$.
Goal: Estimate f NSing as fow assumptions as possible. =7 Still a smoothing problem:
MMMM undersmoothed estimate
oversusothed
One possible measure of the error is the L ² error:
$l_{055} = L = \int (f(x) - f(x)) dx$ = $\ \hat{f} - f\ ^2$
$= \ \hat{f}\ ^{2} - 2(\hat{f}, f) + \ f\ ^{2} = \Im + \ f\ ^{2} = \Im + \ f\ ^{2} = \Im + C.$
(f,f) = inver product of f with f
$= \int \hat{f}(x) f(x) dx$ $= \int \hat{f}(x) dF(x)$
$= \mathbb{E}(\hat{f}(x))$
Goal is to estimate J.

• • •	As he for, denote by find the estimator obtained by
• • •	leaving out Xi:
• • •	Def: CV estimate of the risk:
• • •	$\hat{f} = \ \hat{f}\ ^2 - \frac{2}{n} \leq \hat{f}_{(-i)}(X_c)$
• • •	· · · · · · · · · · · · · · · · · · ·
•••	Histograms
• • •	Assume we are estimating f on $[0,1]$, set $h = \frac{1}{m}$,
• • •	then we have bins $B_1 = [0,h)$, $B_2 = [h,2h)$, $B_j = [(j-1)h,jh]$.
• • •	Denote by Y: = # X:'s in bin j.
••••	p; = Yi/n. ← probability of ending up in bin j
· · · ·	$p_j = \int_{B_j} f(x) dx \leftarrow true probability of landing in B_j = b_{i\bar{i}}$
• • •	$= P(X \in B_{j}).$
• • • • • •	Histogram estimator: $\hat{f}(x) = \sum_{j=1}^{m} \frac{\hat{P}_j}{h} \frac{\mathbb{1}(x \in B_j)}{h}$
 . .<	Why not just \hat{p}_{j} ? \hat{f} $\int f(\hat{r}) = \hat{f}_{j} \approx \int f(\hat{r})$
• • •	$\mathbb{E}(\hat{f}(x)) = \frac{\mathbb{E}(\hat{P}_j)}{h} = \frac{P_j}{h} = \frac{1}{h} \int_{B_j} f(x) dx \approx \frac{1}{h} f(x) \cdot h = f(x).$
• • •	Then $E(f(x)) = \frac{P_j}{h}$ for $x \in B_j$
• • •	$\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right) = \frac{1}{2}\left(\frac{1}{2}\right)$
• • •	$\frac{1}{n h^2}$
• • •	

and the risk can be computed as:	• •
Then Assum that f' is "absolutely continuous" and	• •
$\int (f')^2 \angle \infty \qquad \text{then} \qquad \qquad$	•••
$12(f,f) = \frac{\pi}{12} \int (f'(x))^2 dx + \pi h^2 + 0(\pi) f'(\pi)$	•••
and for fixed n, the minimum accurs at	•••
$h_{x} = \frac{1}{N^{3}} \left(\frac{4}{\int f^{2} dx} \right)^{2} \qquad n^{3}$ and	•••
-then $\mathcal{R}(\hat{f},f) \sim C \frac{1}{N^{2/3}}$.	•••
Remember: Since f is not known, minimize I instead	•••
since it can actually be computed.	•••
Kernel Density Estimaters	• •
If you had only one data point, x, what would	•••
you do :	•••
	•••
Idea: Mue a local larnel at each data point, and sum:	•••
$\downarrow \Lambda \Lambda \Lambda \stackrel{+}{\rightarrow} \downarrow$	•••
How wide should the kernel be?	• •
Def: Kernel dussity estimator: JK = 1	•••
$f(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \left[\frac{1}{n} \right] \qquad \int x K = 0$	• •
]

•	•	•		<u> </u>	`	ber	I - 1 1		ſ f/x	t) F	د] مراجع	f	(0, (x)	۰۲۱ :		, US 9	· · · ·	21 21	•	×.	/*	er.	م ک	•	<i>6</i> -	-, (, v	ıh	• 	00	• /	•	• •	
•	•	•	Ţ	<u>n</u> w	• • •	•	•		e+	•	l v	(بیہ ریجہ کر (60 (x)) - - -	•	Ē	+(1	c) []	- F/x`	+(;) -	×) (-	Ĵ (×	> {) `)2)	(• •) h	•		h	•	ŗ, j	h	• •	
•	•	•	•	•	СГ.	•	X	•		71 2 (x	nen .)	И	• • [ত	-4 n	ĥ	ł f	"(×	-) ²	•	+ -	s - t	<u>(x)</u> h)	 	<u>^</u> 2/	x)	٩x	•	+ l) (<u> </u> (r	- - -	• • •	0(h ^{(e}),
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		IJ	