Computational Statistics
Stochastic Processes
A stochastic process
$$\{X_{k}: t\in T\}$$
 is a collection
of random variables individing t
- X_{k} takes values in the stake space X
- T is the index set (i.e. \mathbb{R} , $\mathbb{N}_{1...}$)
- $\mathbb{R}r$ include stock price, writher, index $X_{1...,X_{n...}}$
- $\mathbb{R}rc.ll:$ for $X_{1...,X_{n}}$ the joint dues f is given by
 $f(X_{1,...,X_{n}}) = f(X_{1}) f(X_{2}|X_{1}) f(X_{3}|X_{1},X_{1}) \cdots f(X_{n}|X_{1...,X_{n-1}})$
 $= \frac{m}{T} f(X_{2}|paut i's)$

$$\frac{Def}{X_n: neT} \quad is \quad a \quad Markov \quad Channinif $P(X_n = x \mid X_{n-1}, X_{n-1}) = P(X_n = x \mid X_{n-1})$
for all $n \in T$ and $x \in X$.$$

$$= f(x_{n} | x_{n-1} ... x_{n}) = f(x_{n} | x_{n-1})$$
$$= f(x_{n}, x_{2}, ... x_{n}) = f(x_{n}) f(x_{2} | x_{1}) f(x_{3} | x_{2}) - ... f(x_{n} | x_{n-1})$$

n-sty transition probability:
$$P(X_{max} = j \mid X_{m} = c) = p_{ij}(n)$$

Theorem (Chapman-Kolmogoov) The m-styp transition
probabilities setsify:
 $P_{ij}(men) = \frac{1}{k} p_{ck}(m) P_{kj}(n) = (P(m) P(m))_{cj}$
 $\Rightarrow P(2) = P \cdot P = P^{2}$
 $\Rightarrow P(3) = P^{3}$
 $\Rightarrow P(n) = P^{n}$
This means that if at time 0, may probability
 ck lang in state is in m_{i} , and define
 $\mu_{i}b = (\mu_{i}^{(0)}\mu_{i}(b) - \mu_{i}(b))$
 $\Rightarrow \mu_{i}(n) = \mu_{i}(b) P$,
 $\Rightarrow \mu_{i}(n) = \mu_{i}(b) P^{n}$ to matrix under multiplication.
Question: As $n=\infty$, is $\mu_{i}(n) = 0$? Or is $P_{i} > 0$
 $fr all i?$
 $D_{i}f$: state is reached state j (j is accessible from i)
 $if P_{ij}(n) > 0$ for some n
 $\Rightarrow i \rightarrow j$
 $\Rightarrow (f i \rightarrow j)$ and $j \rightarrow i$, then $i < j \rightarrow j$

Then () i to i
() it is and job the then cook.
() The stak space X can be written as a
displicit union of classes
$$X = X_1 \cup X_2 \cup \dots$$

where is communicate iff is is X_{12} .
Def: If all states communicate, then the chain
is irreducible,
Cloud: set of states is cloud if the chains
enters but near leas.
Cloud is to destruct a single stak: an ebserbing state.
Recurrent/persistent: $P(X_n = i \text{ for some not} | X_0 = i) = 1$
Transment : else.
Stateminity II is a state ingle or invariant) distribution
if II = πP .
 $P(T = T$
 $= 0$ with erginute 1.

Iden: Dom Xo from
$$\pi$$
, a stationary distribution of P.
Next, draw $X_1 \sim \pi P$.
Notationally: $X_1 \sim \mu_1 = \mu_0 P = \pi P = \pi$
=> If $X_2 \sim \mu_2 = \mu_1 P = \mu_0 P^2 = \pi P = \pi$
=> that $X_2 \sim \pi$

When a chain has distribution TC, it will forever.

Def A Murkov Chain has limiting distribution TC
if
$$P^n \rightarrow \begin{pmatrix} T \\ T \\ \vdots \\ T \end{pmatrix} = \begin{pmatrix} T_1 & T_2 & \cdots & T_{pv} \\ \vdots \\ T_1 & T_2 & \cdots & T_{pv} \end{pmatrix}$$

$$= \mathcal{P}_{\mathcal{M}_{0}} \mathcal{P}^{\mathcal{M}} = \mathcal{T}_{\mathcal{T}_{1}} - \mathcal{T}_{\mathcal{T}_{N}} + \mathcal{T}_{\mathcal{T}_{1}} - \mathcal{T}_{\mathcal{T}_{N}} + \mathcal{T}_{\mathcal{T}_{1}} + \mathcal{T}_{\mathcal{T}_{1}} + \mathcal{T}_{\mathcal{T}_{2}} + \mathcal{T}_{\mathcal{T}_{2}$$

Detailed Balance T satisfies detailed balance if for all is $P(X_{n}=i)P(X_{n+i}=j|X_{n}=i)$ $P(X_{n+i}=j,X_{n}=i)$ $P(X_{n+i}=j,X_{n}=i)$

Then If
$$\pi$$
 satisfies detailed balance, then
 π is a stationag distribution.
Proof: Detailed balance says $\pi_i p_{ij} = p_{jc} \pi_j$
We used to show that $\pi P = \pi$. The jth element
 $et \pi P = (\pi P)_j = \sum_{k=1}^{n} \pi_k p_{kj} = \sum_{k=1}^{n} p_{kk} \pi_k$
 $= \pi_j$.
Markov Chanic Monke Carlo (MCMC)
Goal: Estimate an integral $E(h(X)) = \int h(x) f(x) dx$.
Idea: Construct a Markov Chanin X_i, X_i, ...
whose stationag distribution is f
 $\Rightarrow X_n \sim F = \int f$
Weire specifying π_j .
 $\pi = \pi P$.
If this can be done, then under certain assumption
 $\int_N \sum_{i=1}^{n} h(X_i) = F(h(X))$.
For example: Draw from posterior in Bayesian
calculation: $f(\theta(X)) = \frac{\Gamma(\theta)}{C4} f(\theta) f(\theta) d\theta$
 $E[F]$

Specific Algorithm Metropolis - Hastinge.
Liske as one of top 10 algorithms of 20⁴⁴ cantury.
(along with FFT, FMM, QR, Forton)
Goal: Draw samples from X with dusity f.
M-H Algorithm
(a) Choose X₀ arbitrarily. Assuming that we
have gravated X₀,..., X₀:
(b) Generale Y from dasity
$$g(g|X_i)$$

 $f_{andidak}$ value that is easy to draw
from : propose1 distribution
 $E_{X_i}(g(y|X)) \sim N(X, \sigma^{-})$.
(c) Evaluate $r = r(X_i, Y)$ where
 $r(X_i) = \min \left\{ \frac{f(y)}{f(y)} \frac{g(X|y)}{g(y|X_i)} , 1 \right\}$
(c) Set $X_{int} = \begin{cases} Y & with probability 1-r \\ X_i & with probability 1-r \end{cases}$

Completely opaque algorithm, look at specific example first hefore understandig why it works.

Ex: Draw from Carely distribution
$$f(x) = \frac{1}{T} \frac{1}{1+x^2}$$
.
Take $q(y|x) = \frac{1}{y^{2}Tb} e^{-(y-x)^{2}/2b^{2}}$.
So then $r(xy) = \min\left\{\frac{f(y)}{f(x)}, \frac{q(x|y)}{q(y|x)}, 1\right\}$
 $= \min\left\{\frac{1+x^{2}}{1+y^{2}}, \frac{e^{-(x-y)^{2}/2b^{2}}}{e^{-(y-x)^{2}/2b^{2}}}, 1\right\}$
 $= \min\left\{\frac{1+x^{2}}{1+y^{2}}, 1\right\}$

So the algorithe reduce to fullowig:

$$X_{i+1} = \begin{cases} Y \sim N(X_i, b^2) & \text{with probability } r(X_i, Y) \\ X_i & \text{with prob. } 1 - r(X_i, Y) \end{cases}$$

Why does this algorithm work at all? <u>Short anwer</u>: We enforce ditailed balance in the chain, therefore guaranteeing the existence of a stationary distribution. 7/

$$\frac{\operatorname{Recall}}{\operatorname{Peij} \pi_{i}} = \operatorname{Pic} \pi_{j}$$
Contriving version of detailed balance:

$$\operatorname{Peij} \rightarrow p(x, g) \approx \operatorname{P}(x_{nn} - g \mid x_{n} - x)$$

$$\pi_{i} \rightarrow f(x) \approx \operatorname{P}(x_{n} - x).$$
The function f is a stationary distribution if

$$f(g) = \int p(x, g) f(x) dx$$

$$\Longrightarrow \operatorname{Detailed} \operatorname{Balance} \operatorname{Hen} \operatorname{means} \operatorname{Hent}$$

$$f(x) p(x, g) = f(g) p(g, x)$$
If this equation holds, then just integrate each side
to show that f is a stationary distribution.
Using the construction of the M-H algorithm, show
that detailed balance is satisfied, and the for f
is the stationary distribution.

Either
$$f(x) q(y|x) \ge f(y) q(x|y)$$

or $f(x) q(y|x) \ge f(y) q(x|y)$ (*)

Without loss of generality, assure that (*) holds.
and we then have:

$$\frac{f(y)}{f(x)} q(x(y)) = 1$$
and therefore $r(x,y) = \frac{f(y)}{f(x)} \frac{q(x(y))}{q(y(x))}$.
(And obviously $r(y,x) = \min\left\{\frac{f(x)}{f(y)} \frac{q(x(y))}{q(y(y))}, 1\right\} - 1$.)
Next, compute the transition probabilities:
 $p(x,y) = P(x \rightarrow y)$ and requires that
(if generate y
(ii) accept y
 $= p(x,y) = q(y(x) + r(x,y) = q(y(x)) + \frac{f(y)}{f(x)} \frac{q(x(y))}{f(x)}$
 $= \frac{f(y)}{f(x)} q(x(y))$
 $= f(x) q(x(y)) = f(y) q(x(y))$
On the other hand, $p(y,x) = P(y \rightarrow x)$ and require:
(i) generate x
(ii) accept x

Monte Carlo methods "

$$= \int h(x) f(x) dx \approx \frac{1}{N} \sum_{j=1}^{N} h(x_i) \quad \text{when } X_i \sim \text{sampb}$$

$$F_{i} = \int hf$$

$$F(I) = \int hf$$

$$Var(I) \propto \frac{1}{N} = 3 \quad \text{std}(I) \sim \frac{1}{\sqrt{N}}$$