Computational statistics
Sep 22, 2021
Optmization Meturds
Model poblem: unconstranied convex optimization Find $\quad \operatorname{argmin} \quad f(\vec{x})$

Newturis Mathod wald solu $\nabla f(\vec{x})=\vec{O}$ using the cteration $\vec{x}^{(k+1)}=\vec{x}^{(k)}-H^{-1}\left(\vec{x}^{(k)}\right) \nabla f\left(\vec{x}^{(k)}\right)$
$\bigwedge_{\text {Hessian }} H_{i j}=\frac{\partial^{\prime} f}{\partial x_{i} \partial x_{j}}$
BFGS (Broydin-Fletzher-Goldfarb$f$ conus
$\Rightarrow H$ is sgnmatric position definite.

The iden is to construct a segunce of approximations to the tire Hessian:

$$
\begin{aligned}
& \vec{x}^{(k+1)}=\vec{x}^{(k)}-\left(H^{(k)}\right)^{-1} \nabla f\left(\vec{x}^{(k)}\right) \\
& \Leftrightarrow \quad H^{(k)} \underbrace{\left(\vec{x}^{(k+1)}-\vec{x}^{(k)}\right)}_{\vec{s}^{(k)}}=-\nabla f\left(\vec{x}^{(k)}\right) \\
& \Leftrightarrow \quad \vec{x}^{(k+1)}=\vec{x}^{(k)}+\vec{s}^{(k)}
\end{aligned}
$$

What propecties shaide $H^{(4)}$ have?

- As $k \rightarrow \infty, H^{(k)} \rightarrow H\left(\dot{x}^{(h)}\right)$ for a troly quadatic connx functón $f$
- $H^{(k)}$ and $\left(H^{(k)}\right)^{-1}$ should be cheap to store/appely/update
- $H^{(k)}$ shaid ba SPD (sym. pos. def.)

If $f$ were quadrate, thin

$$
\begin{gathered}
\nabla f(\vec{x})=\nabla f\left(\vec{x}^{(k)}\right)+H\left(\vec{x}-\vec{x}^{(k)}\right) \\
\text { so } \nabla f\left(\vec{x}^{(k+1)}\right)=\nabla f\left(\dot{x}^{(k)}\right)+H\left(\vec{x}^{(k+1)}-\vec{x}^{(k)}\right) \\
\Rightarrow \quad \underbrace{\nabla f\left(\vec{x}^{(k+1)}\right)-\nabla f\left(\vec{x}^{(k)}\right)}_{g^{(k)}}=H \underbrace{\mathrm{~S}^{k}}_{\text {SECAN Size }} \\
\vec{g}^{(k+1)}-\underbrace{(k)}_{\text {CONDITION }})
\end{gathered}
$$

One approach to findig $H^{(k+1)}$ is to minimize the change from $H^{(k)}$ :
minimize $\left\|H^{(k+1)}-H^{(k)}\right\|$ subject to previous constraints: $\quad \vec{g}^{(k)}=H^{(k+1)} \vec{s}^{(k)}$
and $H^{(k+1) T}=H^{(k+1)}$

Équivantently minimize $\left\|H^{(k+1)^{-1}}-H^{(k)^{-1}}\right\|$
subject to $H^{-1} \vec{g}^{(b)}=\vec{s}^{(k)}$ and $H^{-1}=H^{-T}$
Choosing this norm $\|\cdot\|$ to be a particulur weighted Frokenius norm

$$
\|A\|_{F}^{2}=\sum_{i, j}\left|a_{i j}\right|^{2}
$$

gives the BFGS update formulas for $H^{(k+1)}$ :

$$
H^{(k+1)}=H^{(k)}+\underbrace{\frac{\vec{g} \vec{g}^{\top}}{\vec{g} \vec{s}}-\frac{H^{(k)} \vec{s}^{\top} H^{(k)}}{\vec{s}^{\top} H^{(k)} \vec{s}}}_{a \text { rank -2 update }}
$$

In fact, $H^{(k+1)^{-1}}$ can be lee computed fast using the Sherman-Morsison-Woodbury formula.

The algorithm is then:
(1) Set $\vec{x}^{(0)}, \vec{H}^{(0)}=I$ (or other good guess)), and compute $\nabla f\left(\vec{x}^{(n)}\right)$
(2) Compute $\vec{x}^{(1)}=\vec{x}^{(0)}-\vec{H}^{(0)^{-1}} \nabla f\left(\vec{x}^{(0)}\right)$
or equivulatty: solve $\quad \vec{H}^{(0)} \vec{s}^{(0)}=-\nabla f\left(\vec{x}^{(0)}\right)$
compute $\vec{x}^{(1)}=\vec{x}^{(0)}+\vec{s}^{(0)}$
(3) Stop if $\left\|\vec{s}^{(0)}\right\|$ is small.
(4) Otherwise compute $\nabla f\left(x^{(1)}\right)$, $H^{(1)}$ win the BFGS update, and repent young buck to (2) for $\vec{x}^{(k+1)}$, etc.

Numerical Linear Algebra

Produrb

- vecter-vacter

| - matrix - valor | BLAST $\theta\left(n^{2}\right)$ flops - minimize $\\|A \vec{x}-\vec{b}\\|_{2} \quad$ (Leastsy.) |
| :--- | :--- | :--- |
| - matrix - matrix | BLAB $3 \theta\left(n^{3}\right)$ flops) |

Factorizations

$$
-A=L U \quad-A=U S V^{\top}
$$

- $A=Q R$

Eigencomputations

- Find all $\lambda_{i}, \vec{v}_{i}$ such that

$$
A \vec{v}_{i}=\lambda \vec{v}_{i} .
$$

Condition numb of a porblem
The sensitizing of the "problem" at the solution. Ex: For a function $y=f(x)$, how sunsitin is $y$ to $x$ ?
(1) In an absolute suse,

$$
\begin{aligned}
& \left|y-y^{\prime}\right|=\underbrace{c(x)}_{\text {absolute condition }}\left|x-x^{\prime}\right| \\
\Rightarrow \quad & C(x)=\frac{\left|y-y^{\prime}\right|}{\left|x-x^{\prime}\right|}
\end{aligned}
$$

and for $x \simeq x^{\prime}, c(x) \approx f^{\prime}(x)$.
(2) In a velatin suse:

$$
\frac{\left|y-y^{\prime}\right|}{|y|} \approx K(x) \underbrace{\left.\frac{x-x^{\prime}}{x} \right\rvert\,}_{\text {relation change in } x}
$$

$$
\begin{aligned}
\Rightarrow \quad K(x) & =\left|\frac{y-y^{\prime}}{y}\right|\left|\frac{x^{\prime}}{x-x^{\prime}}\right| \\
& =\left|\frac{f(x)-f\left(x^{\prime}\right)}{x-x^{\prime}}\right|\left|\frac{x}{f(x)}\right|=\left|\frac{f^{\prime}(x) x}{f(x)}\right|
\end{aligned}
$$

We will now discuss the anuloge for lineius system:
When solving $A \vec{x}=\vec{b}$, what is the sensitivity of $\vec{x}=A^{-1} \vec{b}$ to change in $\vec{b}$ ?

Norms for vectin
Def: $\|\cdot\|$ is a nurm if:
(1) $\|\vec{u}\| \geqslant 0,\|\vec{u}\|=0$ iff $\vec{u}=\overrightarrow{0}$.
(2) $\|\alpha \vec{u}\|=|\alpha|\|\vec{u}\|$
(3) $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\dot{u}\|$

Matrix nosms
Def: (1) $\|A\| \geqslant 0$
(2) $\|\alpha A\|=|\alpha|\|A\|$
(3) $\|A+B\| \leq\|A\|+\|B\|$
(4) $\|A B\| \leq\|A\| \cdot\|B\| \quad$ (sometins).

If $\|\vec{u}\|$ is any vacter norm, the the moloud matrix norm is

$$
\begin{aligned}
\|A\| & \max _{\|\pi\|=1}\|A \vec{u}\|
\end{aligned}=\max _{\vec{u} \neq \overrightarrow{0}} \frac{\|A \vec{u}\|}{\|\vec{u}\|}
$$

The must commonly usud matrix no/m is the induced 2 -normi
Thm $\|A\|_{2}=\sqrt{\max _{j} \lambda_{j}}$ of $A^{\top} A$.
Pf: $\|A\|_{2}=\max _{\| \vec{n} k=1}\|A \vec{\imath}\|_{2}$

$$
\begin{aligned}
\|A \vec{u}\|_{2}^{2} & =(A \vec{u}, A \vec{u})=\left(\vec{u},\left(A^{\top} A \vec{u}\right)\right. \\
\Rightarrow & =\left(\vec{u}, P D P^{\top} \vec{u}\right)=\left(P^{\top} \vec{u}, D^{\top} \vec{u}\right)
\end{aligned}
$$

Since $P$ is or thogonal, $\left\|P^{\top} \vec{u}\right\|_{2}=\|\vec{n}\|_{2}$.

$$
\begin{aligned}
\Rightarrow \max _{\|\vec{u}\|=1}\left\|A_{u}\right\|_{2}^{2} & =\max _{\|\vec{u}\|=1}\left(P^{\top} \vec{u}, D P^{\top} \vec{u}\right) \\
& =\max _{\|\vec{v}\|=1}(\vec{v}, D \vec{v}) \\
& =\max _{\|\vec{v}\|=1}\left(\lambda_{1} v_{1}^{2}+\lambda_{2} v_{2}^{2}+\ldots+\lambda_{n} v_{n}^{2}\right) . \\
& =\max _{j} \lambda_{j} .
\end{aligned}
$$

By our definition earlier: the condition numis of solving $A \vec{x}=\vec{b}$ is the sensitivity of $\vec{x}$ to chanys in $\vec{b}$.

Let $\left\|\vec{b}-\vec{b}^{\prime}\right\|$ be small, and $\vec{x}=A^{-1} \vec{b}, \vec{x}^{\prime}=A^{\prime \prime} \vec{b}^{\prime}$.
Thin $\left\|\vec{x}-\vec{x}^{\prime}\right\|=\left\|A^{-1} \vec{b}-A^{-1} \vec{b}^{\prime}\right\|$

$$
\begin{aligned}
& =\left\|A^{-1}\left(\vec{b}-\vec{b}^{\prime}\right)\right\| \\
& \leq \underbrace{\| A^{\prime \prime}}_{\text {L absolute cond }}\|\cdot\| \vec{b}-\vec{b}^{\prime} \|
\end{aligned}
$$

absolute condition numbs.
Now the relation condition number is:

$$
\begin{aligned}
\frac{\left\|\vec{x}-\vec{x}^{\prime}\right\|}{\|\vec{x}\|} & \leq\left\|A^{-1}\right\| \frac{\left\|\vec{b}-\vec{b}^{\prime}\right\|}{\|\vec{x}\|} \\
& =\left\|A^{-1}\right\| \frac{\left\|\vec{b}-\vec{b}^{\prime}\right\|}{\|b\|} \frac{\|b\|}{\|\vec{x}\|} \\
& =\left\|A^{\prime}\right\| \frac{\left\|\vec{b}-\vec{b}^{\prime}\right\|}{\|b\|} \frac{\|A \vec{x}\|}{\|\vec{b}\|} \\
& \leq\|A\|\left\|A^{-1}\right\| \frac{\left\|\vec{b}-\vec{b}^{\prime}\right\|}{\|\vec{b}\|}
\end{aligned}
$$

Consequacs of $K(A)$ :

$$
\frac{\left\|\vec{x}-\vec{x}^{\prime}\right\|}{\|\vec{x}\|} \leq K(A) \frac{\left\|\vec{b}-\vec{b}^{\prime}\right\|}{\|\vec{b}\|}
$$

Tree linear system is $A \vec{x}=\vec{b}$.
Imagine that $\vec{b}^{\prime}$ is the floating pant representation of $\vec{b}$ :

$$
\vec{b}^{\prime}=\operatorname{round}(\vec{b}) \text {. }
$$

If machine precision is $\epsilon$, this means $\frac{\left\|\vec{b}-\vec{b}^{\prime}\right\|}{\|b\|} \sim \theta(\epsilon)$

$$
\Rightarrow \quad \frac{\left\|\vec{x}-\vec{x}^{\prime}\right\|}{\|\vec{x}\|} \leq K(A) \cdot \epsilon .
$$

$\Rightarrow$ The number of significant digits lost in solving

$$
A \vec{x}=\vec{b} \quad \text { is } \quad \sim \quad-\log _{10}(K(A) \cdot \epsilon) .
$$

This dresn't mean that $\frac{\left\|\vec{x}-\vec{x}^{\prime}\right\|}{\|\vec{x}\|}$ cannot he smaller, but it puts a bound on how bud it un be.

