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Abstract.
The mathematical tools of large deviation theory for rare events are illustrated
with some simple examples. These include discrete and continuous Gaussian
processes, importance sampling, and evolution equations of the Langevin type.
Some of these methods have been used in the study of rogue surface waves
but it seems that large deviation theory could have much wider application
in geophysical problems.

Introduction

Our knowledge of many small-scale processes in at-
mosphere and ocean dynamics is necessarily statisti-
cal in nature. For instance, this obviously applies to
ocean surface and internal waves, which in large part
must be treated as a random field whose statistics are
described (or at least constrained) by observed spec-
tra. When such processes show extreme behaviour (e.g.,
rogue waves, or large-amplitude internal waves that
may lead to wave breaking) then a natural question
to ask is whether ‘new physics’ is involved, or whether
the extreme event is just that, i.e., an extreme form of
the same physical dynamics that also governs the non-
extreme, typical events. Statistical methods using ob-
served ‘normal’ spectra can be used to study the second
kind of extreme event but not the first kind, and this
offers a test for detecting the presence of new physics.

In this context an important general tool from ap-
plied probability is large deviation theory (LDT). This
theory is well-developed in the mathematical commu-
nity (e.g., Freidlin and Wentzell [1998], Varadhan [1994])
and it has being applied successfully to diverse problems
such as communication network behaviour, chemical
reactions, conformation changes between meta-stable
states, and phase transitions in general. There are two
basic facts that make LDT relevant to these applica-
tions: first, it turns out that events with very little
likelihood, when they occur, do so in the overwhelm-
ing majority of cases by following the path that is least
unlikely. In other words, the probability distribution
conditional on the occurrence of a rare event is tightly
localized around the most likely way in which the rare
event can be realized. In this sense, the shape of rare
events of a stochastic process becomes nearly determin-
istic.

Second, in problems where multiple time scales are
involved a rare event on one time scale is not rare when
viewed from another timescale. For example, a chemi-
cal reaction (or the folding of a protein) are rare when
compared to the natural time scale of molecular oscilla-
tions, but they are not rare when viewed from a macro-
scopic time scale. This second point obviously applies to
geophysical systems in which fast small-scale processes
(such as internal wave breaking and the concomitant
ocean mixing) are known to contribute significantly to
the slow large-scale evolution of the global system.

This indicates that LDT might be useful in geophys-
ical problems involving extreme events. In fact, some
aspects of LDT have been rediscovered independently
in the surface oceanography community (e.g., Boccotti
[1989], Phillips et al. [1993]), but it appears that LDT
itself is not well known. Here the basic tools of LDT
are illustrated with some simple examples. Perhaps the
most important feature of LDT is that it is disarmingly
easy to use in practice, because it converts the problem
of finding the most likely shape of a rare event into a
problem of constrained minimization of a certain action
functional. This allows the use of calculus of variations
and numerical optimization on these problems and it
also allows a very flexible definition of the rare event
itself, which can be a lot more complex than simply
exceeding an amplitude threshold at some point, say.

Discrete Gaussian random variables

This is the simplest context in which to discuss large
deviations because here an exact solution for simple
large-amplitude events exists and can be compared with
LDT. We consider a discrete random process that is
a sequence of real-valued random variables Xi with
i ∈ Z. For instance, the Xi could represent measure-
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ments of sea surface height at a fixed position and at
times t = i∆t where ∆t is the time resolution of the
instrument. We assume that the first two moments of
Xi are

E [Xi] = 0 and E [XiXj ] = Cij (1)

where E [] denotes statistical expectation. Thus the
variables have zero mean and covariances given by the
positive definite covariance matrix Cij = Cji. In the
special case of a stationary process Cij = C|i−j|. We
will always assume that Cij goes to zero as |i− j| goes
to infinity. The information in (1) is enough to define
a normal distribution for the Xi as follows: if we select
any N variables out of the Xi then the N -point prob-
ability distribution is given by the multivariate normal
density

p(x1, . . . , xN ) =
1
Z

exp



−1
2

N∑

i,j

xiC
−1
ij xj



 (2)

where Z = (2π)N/2
√

detCij . (Note that this definition
of a Gaussian process far exceeds the requirement that
Xi should be normally distributed for a single value i.)
This holds1 for any finite N and completely specifies the
statistics of the process. For instance, the probability
to find all of the selected Xi in some arbitrary intervals
Bi can now be computed as

P [X1 ∈ B1, . . . , XN ∈ BN ] =
∫

x1∈B1

. . .

∫

xN∈BN

p dx1 . . . dxN .

(3)
The key component of the Gaussian density in (2) is
the positive definite2 quadratic form in the exponent.
By inspection, it suggests that “likely configurations”
of the random process will be associated with smaller
values of this quadratic form. More precisely, we can
define coarse-grained configurations by picking N real
numbers φi and setting Bi = [φi − δ,φi + δ] with small
bin-size δ. This yields

P
[
max

i
|Xi − φi| ≤ δ

]
≈ (2δ)N

Z
exp



−1
2

N∑

i,j

φiC
−1
ij φj





(4)
as δ → 0, which exhibits the role of the quadratic form.
Clearly, the most likely configuration is φi = 0 for all i,

1In this example we picked N consecutive members of Xi but
(2) holds with obvious modifications in the general case.

2This is easily extended to singular covariance matrices Cij ,
which have a zero eigenvalue associated with a linear combination
of the Xi that yields a deterministic variable. In this case the
quadratic form in (2) is defined by its action on the orthogonal
eigenvectors and is set to +∞ when acting on the null eigenvector.

which corresponds to a flat ocean surface at all times.
This shows vividly that the most likely configuration
(which for a Gaussian distribution always coincides with
the mean configuration) need not dominate the statis-
tics, because the aggregate probability of all other pos-
sible configurations may far exceed (4). This changes
once we look at conditional probabilities for extreme
waves, where the most likely configuration can indeed
dominate the statistics.

Conditional distribution

We now make the assumption

A : X0 = a (5)

for some positive amplitude a > 0 and then consider
the conditional distribution of the process Xi under this
assumption. The motivation is that we want to investi-
gate the process under the assumption that an extreme
amplitude a has been recorded at t = 0. This is par-
ticularly easy for a Gaussian process because the con-
ditional distribution is again Gaussian with conditional
means and covariances that are given by the standard
linear regression formulas, which are exact for Gaussian
variables. This yields

E [Xi|A] = a
Ci0

C00
and E

[
X ′

iX
′
j |A

]
= Cij −

Ci0C0j

C00
(6)

where X ′
i denotes the deviation of Xi from its expected

value. The Gaussian distribution corresponding to (6)
has a number of remarkable features:

• the conditional mean configuration is nonzero and
equal to the scaled covariance vector Ci0 (or auto-
correlation vector) of the original process. For a
Gaussian process this is also the most likely con-
figuration.

• The conditional variance vector E
[
X ′2

i |A
]

is zero
at i = 0, where the conditional process is equal
to a by assumption; if the original covariance vec-
tor Ci0 goes to zero for large values of i then the
conditional variance matrix relaxes to Cij if both
i and j are large.

• Most importantly: the conditional covariance ma-
trix is independent of the value a.

Crucially, the last point implies that the standard de-
viation of Xi divided by its mean value scales explicitly
as 1/a, which goes to zero for very large a. In other
words, the conditional shape of the Gaussian process
becomes deterministic as a → ∞ in the sense that the
relative size of statistical fluctuations goes to zero in
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this limit. For instance, for a stationary process with
Cij = C|i−j| and σ =

√
C0 the signal-to-noise ratio for

the conditional process under (5) is

E [Xi|A]√
E [X ′2

i |A]
=

a

σ

Ci√
σ2 − C2

i

. (7)

This shows that for fixed i the relative error becomes
small if a ( σ. Also, for fixed relative amplitude a/σ
the relative error becomes large if i becomes large and
Ci goes to zero. This shows that in the case of a very
large amplitude a/σ at i = 0 the shape of the random
process near i = 0 (where Ci ≈ σ2) is essentially deter-
ministic. Far away from i = 0 (where |Ci| ) σ2) the
influence of the extreme event has faded away. Based
on this fact the easily computed autocorrelation func-
tion of a random process emerges as a simple candidate
shape for large-amplitude waves.

Draupner rogue wave

As said before, the basic results in the last section are
well known in surface wave oceanography as are their
natural extensions to continuous functions, in which
both the function value and a zero slope can be speci-
fied at one point. For moderate values of a/σ this helps
discerning maxima of the wave field, although for large
a/σ a zero slope is virtually implied by the large func-
tion value, which with high probability corresponds to
a maximum of the wave field.

This approach has also been used to analyze data
sets from rogue waves such as the Draupner wave, al-
though there are far too few data sets to allow a com-
prehensive study. Of particular interest is the recent
work on the Draupner wave by Walker et al. [2004],
who adjusted the most likely shape in (6a) with nonlin-
ear Stokes corrections up to fifth order. This heuristic
procedure, in which the classical Stokes correction ex-
pansion for nearly monochromatic small-amplitude sur-
face waves is applied to the Fourier components of the
most likely large wave, narrows the peaks and widens
the troughs of the shape. Figure 1 shows that this im-
proves the fit with the Draupner wave. Importantly,
this nonlinear procedure also breaks the explicit linear
up–down symmetry in (6a), which is clearly unrealistic
for surface waves because according to this theory the
most likely shape of a wave with large surface depres-
sion X0 = −a would be given by the inverted shape in
(6a).

Large deviation theory

The previous results are examples of large devia-
tion theory (LDT), which deals quite generally with the
structure and the probability of rare events in random

the Draupner data can be approximated as:

hðtÞZ a cos 4C
1:10

70
a2 cos 24C

1:57

702
a3 cos 34: (11)

The slight discrepancy between the values of S22 found
for zero skewness (S22w1.0) and the value computed using
kdZ1.6 (S22Z1.10) can be attributed to the relatively small
effect of directional spreading on the magnitude of second-
order sum contributions (Forristall [10]).

5. Fifth-order NewWave

When the linear NewWave profile is compared against
the New Year wave profile, considerable mismatch is found.
The NewWave model is now modified to include nonlinear
corrections up to fifth order using the theory outlined in
Appendix A; modified versions of the Stokes coefficients
defined by Fenton [9] are used and suitable expressions for

the temporal contributions for all nonlinear terms up to fifth
order have been derived using the linear wave record and its
Hilbert transform. For the estimation of the Stokes
coefficients kdZ1.6 has again been used. Fig. 8 plots the
fifth-order NewWave profile together with its first-, second-
and third-order contributions (fourth- and fifth-order
contributions have been excluded as they are too small to
clearly illustrate graphically). Fig. 8 also shows a compari-
son between the fifth-order NewWave and the New Year
wave. A linear NewWave amplitude of 14.7 m is used as
this corresponds to an amplitude of 18.5 m in the fifth-order
corrected NewWave profile, matching the amplitude of the
measured New Year wave. This comparison does not
incorporate any representation of the second-order differ-
ence contribution. This is discussed in Sections 7–9.

The effects of including nonlinear contributions are
largely as one would expect; the crests become narrowed
and raised, while the troughs are broadened and raised. As
one would expect, the size of the nonlinear contributions
decreases rapidly as the order increases. Beyond second
order, the effects of nonlinearity are most pronounced close
to the apex of a crest; the crest is sharpened further.
Quantitatively, by including nonlinear corrections up to fifth
order, the peak crest of the NewWave profile has been raised
by 26% (from 14.7 to 18.5 m) whereas the deepest troughs
have been raised by 17% (from 10.0 to 8.3 m). The
agreement between the fifth-order NewWave profile and
the New Year wave profile close to the peak is surprisingly
good, with the broad banded nature of the freak wave being
captured quite well. The troughs either side of the peak crest
are still predicted to be too deep; the actual trough depths
are 6.5 and 7.1 m. Hence the New Year wave is slightly
broader banded, having shallower troughs and lower crests
adjacent to the main peak.

Assuming the standard Rayleigh distribution for linear
crest amplitude and taking the linear crest amplitude to be
14.7 m, it is found that the New Year wave is approximately
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Fig. 7. Stokes second- and third-order sum coefficients, S22 and S33, plotted

against kd. Horizontal lines are shown corresponding to the S22 values

computed for zero skewness. A vertical line is drawn at kdZ1.6.
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Fig. 8. A comparison of the fifth-order NewWave profile with its constituent contributions (first, second and third order only) and the New Year wave.

D.A.G. Walker et al. / Applied Ocean Research 26 (2004) 73–8378

Figure 1. Draupner rogue wave data together with large
deviation estimate (termed “NewWave”) based on (6a) com-
bined with Stokes corrections. The covariance function was
estimated from 20 mins of storm data near the time of the
rogue wave. The top panel shows the bare prediction (dot-
dashed line) and its modification including Stokes correc-
tions to fifth order (dotted line). The bottom panel shows
the fit of actual wave (full line) by the prediction (dotted
line). From Walker et al. [2004].

systems. LDT allows access to asymptotic results simi-
lar to (6a), but in a much wider range of settings. There
are two key ingredients: first, that the set of configura-
tions that contribute significantly to the probability of
a rare event is tightly localized around the most likely
configuration; and second, that the most likely configu-
ration can be computed by constrained minimization of
a suitable action functional. Both points are neatly il-
lustrated by the present example of a discrete Gaussian
process.

To this end it is convenient to consider the family
of scaled processes εXi with covariance matrix ε2Cij

where ε > 0 is a small parameter. We then consider
the event that εX0 ≥ a for some fixed a > 0, which
is clearly a rare event for small values of ε. It is intu-
itively obvious that for large a/(εσ) the most important
contributions to the probability of this event will come
from configurations in which εX0 − a is small. We can
check this because P [εX0 ≥ a] is easily computed from
the one-point marginal distribution for X0 as

1
εσ
√

2π

∫ ∞

a
exp

(
− x2

2ε2σ2

)
dx =

exp
(
− a2

2ε2σ2

)
1

εσ
√

2π

∫ ∞

0
exp

(
− ay

ε2σ2
− y2

2ε2σ2

)
dy

after the substitution y = x − a. Here ε2σ2 = ε2C00

is the variance of εX0. By Laplace’s method for expo-
nential integrals, the final integral is very well approxi-
mated by ε2σ2/a if ε) 1. This implies localization be-
tween εX0 = a and a plus a modest multiple of εσ2/a.
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We then have the simple explicit result

P [εX0 ≥ a] =
ε√
2π

σ

a
exp

(
− a2

2ε2σ2

)
as ε→ 0.

(8)
The structure of this expression is typical for the prob-
ability of extreme events: an algebraic prefactor related
to the size of the set of relevant configurations times
an exponentially small term that dominates the decay
of the probability for small ε. Estimating and comput-
ing the exponent in the dominant second factor is the
central topic of large deviation theory.

Indeed, we can now determine the most likely coarse-
grained configuration by minimizing the quadratic form
for εXi ≈ φi in (4), which is

1
ε2

I[φ] =
1

2ε2

N∑

i,j

φiC
−1
ij φj , (9)

subject to the constraint φ0 ≥ a that defines the rare
event. It is clear that the minimum is achieved at
φ0 = a. Using a Lagrange multiplier λ it follows for
any constraint g(φ1, . . . ,φN ) = 0 that I is extremal
where

N∑

j

C−1
ij φj = λ

∂g

∂φi
⇔ φi = λ

N∑

j

Cij
∂g

∂φj
(10)

holds for a value of λ determined from the constraint.
The extremal value of I is

1
2ε2

N∑

i,j

φiC
−1
ij φj =

λ2

2ε2

N∑

i,j

∂g

∂φi
Cij

∂g

∂φj
. (11)

In the present case g = φ0 − a and therefore ∂g/∂φj =
δj0 and φi = λCi0 follows. Substitution in the con-
straint yields λ = a/C00 and this recovers the most
likely shape as φ∗i = aCi0/C00, say, consistent with the
conditional expectation in (6a). Now, the minimum of
(9) is

1
ε2

I∗ =
1
ε2

I[φ∗] =
a2

2ε2C2
00

N∑

i,j

δi0Cijδj0 =
a2

2ε2C00
,

(12)
which is indeed equal to minus the exponent in (8) with
σ2 = C00. So this exponent can be computed in LDT
as the constrained minimum of the relevant action func-
tional. This is a generic result for LDT in all applica-
tions. It can be stated in general form as (e.g., §4 in
Freidlin and Wentzell [1998])

lim
ε→0

ε2 ln P [εX ∈ G] = − inf
φ∈G

I[φ] (13)

where G denotes the set of configurations that defines
the rare event, X and φ refer to the corresponding vec-
tors, and I[φ] is a scaled action functional. In our case

φ ∈ G ⇐⇒ φ0 ≥ a and I = 0.5φT C−1φ. The for-
mula makes explicit that the logarithm of the probabil-
ity can be computed from LDT and the corresponding
minimization procedure in the limit ε→ 0.

The key observation here is that LDT works for very
general constraints. For instance, it is easy to add fur-
ther thresholding constraints at different locations i by
adding further Lagrange multiplier terms to (10), which
again yields results consistent with the standard exten-
sion of the regression formula (6a) for multiple condi-
tions. Nonlinear event constraints involving εXi at mul-
tiple locations (e.g. φ ∈ G ⇐⇒ φ2

1 + φ4
2 ≥ a) can be

treated in precisely the same way in LDT even though
there is no simple regression formula such as (6a) avail-
able in this case. This illustrates the great flexibility of
LDT as a numerical tool.

Finally, the localization property of rare events near
the most likely configuration can also be made precise
in general form as

lim
ε→0

P
[
max

i
|εXi − φ∗i | < δ|εX ∈ G

]
= 1. (14)

Here δ > 0 is arbitrary and φ∗ is the conditional mini-
mizer of I[φ]. This is an impressive mathematical theo-
rem about uniform convergence although it flatters the
physical reality a little bit because it is only the scaled
process εXi that fits arbitrarily closely (i.e., for any fi-
nite δ) to the minimizer φ∗ at all locations i. In a phys-
ical application such as ocean waves it might be more
natural to consider the process Xi as fixed and let the
constraint scale up as X0 ≥ a/ε. Then (14) still holds
but with δ replaced by δ/ε, which is large in absolute
value but again finite and of arbitrary size compared to
the large wave amplitude a/ε. A more practically useful
expectation for the shape of extreme waves is that near
the maximum their shape is tightly localized around the
most likely shape predicted by LDT whereas far away
the process reverts to its unconstrained variability as
described by (7).

Continuous Gaussian processes

Both the theory for Gaussian random variables and
LDT are easily extended to continuous random func-
tions X(t) of continuous time t, which is the usual set-
ting for presenting observational data and power spec-
tra. In practice, the continuous case can always be re-
duced to the discrete case by considering a discrete sam-
ple Xi = X(i∆t). Such an approach with ∆t → 0 is
also necessary in order to construct a probabilistic mea-
sure in the space of continuous functions, which yields
the analog of (2). However, the continuous version al-
lows some useful analytical tools to be used, most no-
tably Fourier series and the calculus of variations for
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the action functional of LDT. We restrict ourselves to
stationary random functions and thus we consider the
real-valued continuous random function X(t) such that

E [X(t)] = 0 and E [X(t)X(t + s)] = C(s) (15)

with an even covariance function C(s) = C(−s). We
now restrict to periodic random functions such that
X(t + T ) = X(t) for some period T . This allows the
use of Fourier series and if we choose T much larger
than the autocorrelation time of our process then the
assumption of periodicity plays a very limited role. If
we denote the domain by L = [−T/2,+T/2] then we
have the spectral representation

C(t) =
1
T

∑

ω

eiωtĈ(ω) and Ĉ(ω) =
∫

L
e−iωtC(t) dt.

(16)
Here the frequency ω = n2π/T with n ∈ Z and Ĉ(ω)
is the discrete energy spectrum3 of our process. By the
nature of C(s), the energy spectrum Ĉ(ω) is real, even,
and non-negative. As usual, inner products are related
by

(a, b) =
∫

L
a∗b dt =

1
T

∑

ω

â∗b̂ (17)

where the star denotes complex conjugation and convo-
lutions satisfy

c = a ∗ b =
∫

L
a(t− s)b(s) ds ⇒ ĉ = âb̂. (18)

Now, it can be shown (e.g., Yaglom [1962]) that X(t)
can be represented by the following random Fourier co-
efficients:

ω > 0 : X̂(ω) =

√
TĈ(ω)

2
(Aω + iBω)

ω = 0 : X̂(0) =
√

TĈ(ω)A0

ω < 0 : X̂(ω) = X̂∗(−ω).

Here all the Aω and Bω are independent random num-
bers drawn from a normal distribution with zero mean
and unit variance (note the special treatment for the
ω = 0 mode). This explicit formula allows the easy nu-
merical generation of samples from the random process.
Actually, there is a simpler and more efficient version,
namely

X̂c(ω) =
√

TĈ(ω)(Aω + iBω) (19)

with i.i.d. coefficients (Aω, Bω) for all values of ω, in-
cluding the zero mode. The inverse Fourier transform of

3In observations the energy spectrum is often given by a con-
tinuous function S(ω) such that

R∞
0 S dω = C(0). In this case

πS(ω) = Ĉ(ω).

X̂c is complex and its real and imaginary parts are two
independent samples of the real process X(t). There-
fore, this simpler formula allows generating twice the
number of samples with the same numerical effort.

In order to compute the action functional for the
continuous process we need to find the analog of the
quadratic form in (4) and (9) of the discrete case. This
involved the inverse covariance matrix C−1

ij and it can
be shown (e.g., §4 in Freidlin and Wentzell [1998]) that
for continuous functions this involves the inverse of the
self-adjoint non-negative covariance operator C defined
by the convolution φ(t) = Cψ = C∗ψ such that φ̂ = Ĉψ̂.
Using this operator the LDT action functional is defined
as

I[φ] =
1
2
(φ, C−1φ). (20)

This gives a well-defined answer if φ(t) is in the range of
C. If that is not the case then we set I = +∞, which as
before indicates that configurations in the neighbour-
hood of such φ(t) have zero probability. Formally, the
most likely configuration subject to a functional con-
straint g[φ] = 0 can be computed using a Lagrange
multiplier just as in (10) and yields

φ = λ C δg

δφ
= λ C ∗ δg

δφ
(21)

for the minimizer φ(t) in terms of the functional deriva-
tive of g. For instance, if g = φ(t0) − a we have
δg/δφ = δ(t − t0) and therefore φ = λC(t − t0). This
shows again that the most likely shape of the process
conditioned on taking a certain value at some position
is given by the autocorrelation function centred at this
position. More generally, if a set G of admissible con-
figurations is defined as before then we again have the
LDT results (13-14), where in the second equation the
maximum over the index i is replaced by the supremum
over t ∈ L.

Now, using (17-18) the action can be written explic-
itly as

I[φ] =
1

2T

∑

ω

φ̂∗ ̂(C−1φ) =
1

2T

∑

ω

|φ̂|2

Ĉ
. (22)

This remarkable formula shows that computing the ac-
tion density in spectral space reduces to division by
the energy spectrum Ĉ(ω). This allows easy numeri-
cal computation of the action and therefore nonlinear
optimization procedures can easily be used to find the
most likely shape of extreme waves using LDT. This
expression also makes explicit that finite I[φ] implies
that φ̂ is zero whenever Ĉ = 0, otherwise φ is not in the
range of C and the action is infinite.

Another advantage of (22) is that in some cases this
action density can be converted into an explicit differ-
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ential operator acting on the field φ(t). We give some
examples in the next section.

Three examples and numerical LDT

The first example is the stationary Ornstein–Uhlenbeck
process (see also (35) below), which is the prototypical
example of red noise and also arises as the invariant
distribution of the linear Langevin equation. It is char-
acterized by

C1(t) =
1
2

exp(−|t|) and Ĉ1(ω) =
1

1 + ω2
. (23)

The sample paths are almost surely everywhere con-
tinuous but nowhere differentiable. This non-smooth
behaviour is typical for processes driven by white noise
and its trademark is the slow ω−2 decay of the energy
spectrum for large ω. The action functional is

I1[φ] =
1

2T

∑

ω

|φ̂|2(1 + ω2) =
1
2

∫

L

(
φ2 + φ2

t

)
dt, (24)

which follows from (17) and (̂φt) = iωφ̂. This explicit
differential form allows the use of calculus of variations.
For instance, the Euler–Lagrange equation for (24) is
the ODE φtt − φ = 0 and minimizers constrained to
have fixed values at two points t1 and t2, say, will satisfy
those boundary conditions as well as this ODE. The
autocorrelation C1(t) satisfies this ODE together with
a decay condition at infinity, which shows once more
that C1(t) is the most likely shape conditional on an
isolated fixed value.

Clearly, whenever the energy spectrum is the recipro-
cal of a polynomial in ω2 then the action functional can
be written as an integral over a quadratic form in the
derivatives of the function. For instance, a smoother
version of (23b) is Ĉ2(ω) = 1/(1 + ω4) with covariance
function

C2(t) =
1
2

exp
(
− |t|√

2

)
cos

(
|t|√
2
− π

4

)
(25)

and action

I2[φ] =
1
2

∫

L

(
φ2 + φ2

tt

)
dt. (26)

On the other hand, the spectrum Ĉ3(ω) = ω2/(1 + ω4)
with covariance function

C3(t) =
1
2

exp
(
− |t|√

2

)
cos

(
|t|√
2

+
π

4

)
(27)

does not lead to a simple expression for the action in
terms of local derivatives. This third process is interest-
ing because its spectrum has an interior maximum at
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Figure 2. Staggered plot of the autocorrelation functions
C1(t), C2(t), and C3(t). These are the most likely shapes of
a Gaussian process under the constraint that the value at
the origin exceeds a given positive threshold.

ω2 = 1, which is typical for many energy spectra in geo-
physical fluid dynamics such as the frequency spectrum
of surface waves, for instance. The three autocorrela-
tion functions are plotted in figure 2.

It is easy to minimize the action functional of LDT
with a numerical method for very general kinds of con-
straints. A simple method combines a down-gradient
flow together with a penalty term that enforces the
constraint. Specifically, we introduce a marching time τ
and define a smooth flow of φ(t, τ) such that φ converges
to the minimizer φ∗(t) as τ → ∞. The minimization
procedure is then defined by

∂φ

∂τ
= −C−1φ + h ⇔ ∂φ̂

∂τ
= − φ̂

Ĉ
+ ĥ. (28)

The first, down-gradient term is just minus the func-
tional derivative δI/δφ and it is easily computed in
spectral space. The second, penalty term is usually
more easily computed in real space. For example, if
the constraint is φ ≥ a in some set B ⊂ L then one can
use

h = α(1− tanh(β(φ− a))) if t ∈ B (29)

and h = 0 otherwise. The constants α and β are ad-
justed to make the scheme work; here β = 100 was
always used and α varied between 20 and 100. The sec-
ond equation in (28) is evolved in τ by freezing h at the
beginning of the time step, which leads to

φ̂(ω, τ+∆τ) = e−
∆τ
Ĉ φ̂(ω, τ)+

(
1− e−

∆τ
Ĉ

)
Ĉĥ(τ). (30)

It is the constraint that couples different Fourier modes.
This scheme is applied for a finite range of ω and alter-
nated with recomputing h from (29) until convergence
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Figure 3. Most likely shapes subject to constraints indi-
cated by the black lines. On the left φ ≥ 1 is enforced at
two points and on the right the same constraint is enforced
over the closed interval B between the points.

is reached. Two examples are shown in figure 3. In the
left column the constraint was φ ≥ 1 at two points t0
and t0 + 2 whilst in the right column this constraint
was enforced throughout the interval B = [t0, t0 + 2].
There are several interesting features here. For C1 the
most likely shapes are non-negative, they are identical
outside B (which could have been guessed from (24b)),
and the first shape dips inside B to lower the action
whilst the second shape hugs the constraint φ = 1 for
the same reason. In contrast, for C3 the shapes are not
identical outside B and there are also negative under-
shoots outside B; these are depression precursors before
the high wave hits.

In the case of C2, the two-point shape bulges up-
ward in B and therefore exceeds the threshold φ = 1
there. This implies that both shapes are completely
identical, because the two-point constraint already im-
plies the interval constraint. This would have been hard
to guess and indeed the occurrence of this overshooting
feature depends on the width of the interval. This can
be understood from the exact solution for the two-point
problem, which from (21) with both t0 = 0 and t0 = d
is the linear combination of covariance functions

φ∗(t) =
C(t) + C(t− d)

C(0) + C(d)
. (31)

Overshooting means that this function exceeds unity for
some t ∈ (0, d). This is impossible if C(t) is convex for
all t > 0 (which here rules out C1) but for non-convex
C this can be possible. For instance, under the assump-
tion that the overshoot occurs at the midpoint t = d/2
(which must be true for very small d) overshooting oc-
curs if C(d/2) > (C(0) + C(d))/2. By visual inspection
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Figure 4. Autocorrelation function and most likely shape
for standard JONSWAP spectrum dominated by 10 second
surface waves. The constraint φ > 1 is enforced first at
the centre and then over 2 seconds as indicated by the black
lines. There are notable depression precursors in either case.

of figure 2, this criterion rules out C3 but not C2, which
is concave near the origin. Indeed, any smooth covari-
ance function at t = 0 satisfies this criterion for small d
and therefore any differentiable random function such
that −C ′′(0) = E[Ẋ2] <∞ is capable of overshoots for
small enough d.

Finally, figure 4 shows the analogous results for a
standard JONSWAP spectrum for surface waves with
central frequency of 0.1 Hertz. Clearly, for a two-second
threshold constraint the most likely shape overshoots
the threshold, in this case by some 30%.

Importance sampling using LDT

The minimal action I[φ∗] corresponding to the most
likely shape φ∗ gives the exponentially small part of
the probability of the rare event under consideration.
However, it does not give the prefactor in front of the
exponential (cf. (8)), which must be evaluated sepa-
rately, usually by using numerical sampling. In fact,
one very practical use of the maximal shapes predicted
by LDT lies in importance sampling, which greatly im-
proves convergence for the numerical estimation of the
probability of rare events. Basically, by concentrating
samples near the most likely shape the variance of the
estimator can be sharply reduced because the exponen-
tially small part of the probability is known explicitly
and need not be estimated. This is a great practical
advantage.

In general, we may wish to estimate pG = P [X ∈ G]
for some set G by drawing N independent samples of
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the process X and computing the proportion of sam-
ples that fall in G. By the law of large numbers this
proportion converges to pG and the variance of this
estimator is pG(1 − pG)/N ; this follows directly from
pG = E[χ(X ∈ G)] where χ(·) is the indicator function.
The expected relative error after N samples is

√
1− pG

NpG
≈

√
1

NpG
(32)

for small pG. This shows that N ( pG samples are
needed to estimate the probability of a rare event such
that pG ) 1. If pG is exponentially small, then this is
a hopeless numerical task.

For example, (8) gave the probability for the event
that a single zero-mean Gaussian variable εX with vari-
ance ε2σ2 exceeds the threshold a. This probability is
∝ exp(−I∗/ε2) and hence would be impossible to esti-
mate directly for small ε. Now, the most likely config-
uration is X = a/ε and the equation preceding (8) can
be viewed as giving the probability that Y = X − a/ε
exceeds zero. The sought-after probability is now an ex-
plicit exponential prefactor (with the now familiar min-
imum action in the exponent) times an integral that
can be viewed as the expected value of the function
χ(Y > 0) exp(−Y a/(εσ2)) relative to a normal distri-
bution of Y with zero mean and variance σ2. It is easy
to show that both the expectation and the variance of
this function are O(ε) and therefore the relative sam-
pling error from (32) is now small if N ( 1/ε. This is a
vast improvement over the condition N ( exp(−I∗/ε2)
without importance sampling.

Analogous results hold for multiple variables and
discrete or continuous processes: the dominant part
exp(−I∗/ε2) of the probability can be computed explic-
itly and the remaining prefactor can then be estimated
with a well-conditioned numerical procedure by consid-
ering εY = εX − φ∗ where φ∗ is the minimizer of the
action relative to the constraint.

LDT for evolution equations

The general methods of LDT are not restricted to
Gaussian processes and in particular can be applied to
many evolution equations that contain some random
component (e.g., E et al. [2004]). Examples include
Markov chains, autoregressive processes, and dynamical
equations under random forcing (see Varadhan [2003]
for a discussion of such applications using entropy as a
unifying principle). A simple example is the Langevin
equation for the time-evolution of a continuous vector
Xt ∈ Rn such that

dXt = b(Xt)dt + ε dWt and X0 = x. (33)

This is a stochastic differential equation in which dWt

is a the increment of the Wiener process, or standard
Brownian motion. This is a vector of random num-
bers (dW 1

t , dW 2
t , . . . , dWn

t ) that are independent and
identically distributed with a normal distribution that
has zero mean and variance equal to dt (e.g., Gardiner
[1997], Oksendal [2002]). Without this random term
(33) would be a deterministic initial-value problem for
Xt such that Ẋt = b with t ∈ [0, T ], say. For instance,
this could describe truncated evolution equations for
waves or other geophysical processes and the added ran-
dom forcing term might represent unresolved degrees of
freedom or other external influences and parametriza-
tions that are not explicitly resolved.

For small ε the solution stays close to the determin-
istic trajectory, but it is now possible to deviate from
this path and the probabilities to do so satisfy an action
principle based on

I[φ] =
1
2

∫ T

0

∣∣∣φ̇− b(φ)
∣∣∣
2

dt (34)

such that the probability of supt |Xt−φ| < δ is propor-
tional to exp(−I[φ]/ε2). Here φ(t) ∈ Rn is a function
satisfying φ(0) = x and without further constraints the
minimal action is achieved if φ satisfies the determinis-
tic equation. However, constraints can again be added
and then the optimal φ can be found by minimizing (34)
using the calculus of variations. This yields most likely
trajectories that are not trajectories of the determinis-
tic system.

It is notable that the random function Xt is not a
Gaussian random function in general. For instance,
if b(Xt) = −∇H(Xt) then the invariant probabil-
ity distribution for (33) can easily be shown to be
A exp(−2H/ε2) for some constant A, which inciden-
tally is the canonical distribution of statistical mechan-
ics with Hamiltonian H. However, this is not Gaus-
sian unless H is quadratic in Xt. Notably, in the spe-
cial one-dimensional case H = X2

t /2 we have the linear
Langevin equation

dXt = −Xtdt + ε dWt (35)

whose solution is the Ornstein–Uhlenbeck process (with
stationary covariance function (ε2/2) exp(−|t|)) discussed
as the first example in (23). This special process is both
Gaussian and Markovian. The action functional is

1
2

∫ T

0

(
φ̇ + φ

)2
dt =

1
2

∫ T

0
(φ̇2 +φ2) dt+

1
2

φ2
∣∣T
0

. (36)

For constraints with fixed end points this reduces to the
functional (24b) for the periodic case.

The Langevin equation (33) is easily generalized to
non-uniform noise terms such that dW ∈ Rm and there



Large deviation theory and extreme waves 9

is a constant matrix σ ∈ Rn×m such that

dXt = b(Xt)dt + ε σdWt. (37)

This allows for correlations between noise terms in dif-
ferent components of this equation. The corresponding
action functional is

I[φ] =
1
2

∫ T

0

(
φ̇− b

)T
A−1

(
φ̇− b

)
dt (38)

where the quadratic form is governed by the inverse
of the matrix A = σσT . This works easily provided
A ∈ Rn×n is invertible, as usual. Actually, (38) also
applies to the case of ‘multiplicative’ noise, in which σ
is a function of Xt. Notably, in this case the solution
of the stochastic differential equation (37) depends on
the precise definition of the noise term and care needs
to be taken to use the right definition for modelling
the physical situation at hand. This modelling prob-
lem brings in the well-known differences between the
Itô and Stratonovich versions of the stochastic integral
(e.g., Gardiner [1997], Itô [1974]). However, for fixed
T these differences play no role in the leading-order ex-
pression for the action functional as ε→ 0.

Finally, importance sampling using the most likely
path of LDT can be applied here as well. In the con-
text of (37) this involves the use of Girsanov’s formula
to transform the probabilistic measure between Xt and
the centred path Yt = Xt − φ∗ (e.g., Liu and Vanden-
Eijnden [2007]). This is analogous to the Gaussian pro-
cess discussed before.

Concluding comments

LDT applies in essentially unchanged form to multi-
dimensional processes, although in practice additional
assumptions about the interpretation of observed spec-
tra are needed in this case. For instance, for ocean sur-
face waves the space–time spectra might be isotropic in
the horizontal directions, but only because they repre-
sent an average over many wave realizations that indi-
vidually had a strong preference in the wind direction,
say. This preference is averaged out in the observed
spectrum if the wind directions is random itself. In-
terpreting the observed spectra in this light affects the
shape of the rare surface waves.

At the other end of the ocean there is the generation
(and eventual dissipation) of internal tides by undulat-
ing topography (e.g., Garrett and Kunze [2007]). The
topography can be viewed as a mixture of large-scale
resolved and small-scale unresolved statistical features
and LDT can be used to predict the shape and probabil-
ity of random waves that exceed the breaking amplitude
in the ocean interior, say, by three-dimensional focusing
effects (e.g., Bühler and Muller [2007]).

Finally, a completely different application of LDT in
geophysics could be in data assimilation. The prob-
ability and spatial structure of large errors in the as-
similated fields should again be governed by a suitable
version of LDT and so this could be a useful tool to
apply in this area.
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