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Stratified Canonical Forms of Matrix Valued Functions

in a Neighborhood of a Transition Point

Yevsey Nisnevich

1 Introduction

1.1. Let X be a complex analytic manifold or an algebraic variety over a perfect field k of

dimension d, let xo be a point in X(k), and let g: X → gl(n, k) be a germ of a matrix valued

analytic (respectively, polynomial) function on X in an analytic (respectively, Zariski)

neighborhood of xo.

Questions regarding the possibility of reduction of such functions to the Jordan

form j(x), or to some other normal form in a neighborhood of a point xo of X, by conjugating

it by a matrix function u: X → GL(n, k) in the same category; and questions about the

existence of a conjugating matrix function u with suitable analytic properties, play an

important role in various branches of analysis, geometry, and mathematical physics.

In particular, such questions arise frequently and unavoidably in nearly all the main

branches of the theory of ordinary ([Gn], [W1]–[W3]) and partial ([CH], [GV], [HYP], [N],

[P1]–[P3]) differential equations, dynamical systems and their bifurcations ([CLW]), the

perturbation theory of linear operators ([B], [K]), and the quantum field theory ([BT]).

A reduction to canonical forms was used especially widely, systematically, and

successfully in the general theory of hyperbolic systems of PDE since the pathbreaking

works of Petrowsky ([P1]–[P3]), at least. Indeed, many of the principal general results on

the existence and uniqueness of the solutions of the Cauchy (initial value) and mixed

(initial-boundary value) problems, on the correctness of these problems, on explicit con-

structions of the fundamental and other solutions or parametrices for these problems,

and on properties and asymptotics of their solutions, etc., for hyperbolic systems, have

been obtained using a reduction of the principal symbols of these systems to suitable
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local normal forms in the same category. See the monographs and surveys in [CH], [I],

[IV], [GV], [HYP], and the vast literature quoted there.

Notice that the results which provide some sufficient conditions for a local diago-

nalization of a matrix function within some category (smooth (= C∞), analytic, algebraic,

etc.) play an important role in many of the works on hyperbolic systems mentioned above,

and in many other subjects. Quite general results on the local diagonalization were con-

tained already in the works of Petrowsky ([P2], [P3]). Variants of his results for various

categories in the general or in some special cases were obtained and used later by many

authors (see, for example, [B], [BT], [K], [W1]–[W3], etc.).

All the known general results in this direction contain assumptions that some

discrete invariants of the matrix functions are locally constant (see Section 2 below

for details), and that they are false without them. Since the assumptions of this type

are too restrictive for many important potential applications, it is very desirable to find

more general methods of dealing with the problem of local diagonalization without these

assumptions. In this paper, we shall develop a new approach to this problem based on

the use of suitable stratifications of the parameter space X. It will allow us to obtain a

stratified version of the local diagonalization without the usual constancy assumptions.

1.2. More precisely, we shall be mainly concerned here with the study of the diagonal-

ization of a matrix valued function g(x) in a sufficiently small neighborhood (analytic or

Zariski) U of a point xo in X. The obvious necessary conditions for the diagonalization of

g(x) on U in the analytic or Zariski categories, respectively, are the following:

(i) All the eigenvalues ei(x) of g(x) are morphisms in the corresponding category;

i.e., they are holomorphic functions on U in the analytic case, and they are polynomial

functions on U in the algebraic case.

(ii) For any point x of U, there exists a matrix ux such that

uxg(x)u−1
x = d(x), (1.2.1)

where d(x) = diag(e1(x), . . . , en(x)) is the diagonal matrix with the eigenvalues ei(x) of g(x)

on its principal diagonal. (Here, the correspondence x → ux is not assumed to be in one

of the above categories; it is only a set-theoretic map.)

These necessary conditions are, in general, very far from being sufficient for the

local analytic or algebraic diagonalization of g(x). (See [BT, Sections 3, 5] for counterexam-

ples.) However, it is known in the analytic category, at least, that such a local diagonaliz-

ing matrix-function u(x) does exist, if the multiplicities of all the eigenvalues ei(x) of g(x)

remain constant in a neighborhood U of xo (see [P2], [P3], and Sections 2.4–2.6, below). We

shall consider below a much more complicated case where these multiplicities do change
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in a neighborhood of xo. Following the vast classical literature on ordinary differential

equations (see [W1]–[W3] and the literature quoted there), we shall call such a point a

transition or turning point. Transition points arise frequently in various applications.

Therefore, the problem of normal forms for matrix functions in their neighborhoods are

of significant interest.

In this paper, we shall construct a canonical stratification (Sr | r ∈ R) of a neigh-

borhood U of a transition point xo by submanifolds Sr which are algebraic in the algebraic

case, and are analytic in the analytic case, and are such that the multiplicities of all the

eigenvalues of g(x) remain constant on each strata Sr. Here, R is a finite set. We shall

show that for a sufficiently small U, and under some additional assumptions on this

stratification and on the matrix function g(x), the diagonalization can be achieved in the

following stratified sense.

1.2.2. For each r ∈ R, there exists a morphism ur: Sr → GL(n) in the corresponding

category such that

ur(x)g(x)ur(x)−1 = d(x)

for each x in Sr.

1.3 General notation and terminology

Throughout the whole of this paper, unless it is explicitly stated otherwise, we shall keep

the following notation:

1.3.1. In the analytic category: X will be a complex analytic variety over the field C

of complex numbers or a germ of such a variety. For a unification of notation with the

algebraic case, we shall sometimes denote the underlying topological space X as X(C).

1.3.2. In the algebraic category: X will be a scheme over a perfect field k, k an algebraic

closure of k.

1.3.3. In both categories: Let OX be the structure sheaf of X in the corresponding cate-

gory. For a point x in X, let Ox be its local ring on X in the corresponding category, i.e.,

the stalk of the sheaf OX at the point x. For a ring R, let gl(n, R) (respectively, G = GL(n, R))

be the algebra (respectively, the group) of all (respectively, all invertible) n × n matrices

with coefficients from R.

For a matrix valued function g: X → gl(n), let C(x) (respectively, Z(x)) be its cen-

tralizer in gl(n) (respectively, in GL(n)), let e1(x), . . . , en(x) be the set of all eigenvalues of
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g(x), let Vi(x) ⊂ V = (k)n be the eigenspace consisting of eigenvectors of g(x) with the

eigenvalue ei(x), and let mi(x) be the geometric multiplicity of the eigenvalue ei(x) of g(x),

i.e., the dimension of the eigenspace Vi(x). If g(x) is a diagonalizable matrix, mi(x) coin-

cides with the algebraic multiplicity of the eigenvalue ei(x), i.e., its multiplicity as a root

of the characteristic polynomial of g(x). Denote by d(x) = diag(e1(x), . . . , en(x)) the diagonal

matrix with the eigenvalues ei(x) of g(x) on its principal diagonal in a certain fixed order

(each ei(x) is repeated as many times on the diagonal as its multiplicity).

1.4 Local data

1.4.1. We shall refer to the following situation as the local case in the analytic category:

X is a germ of an analytic variety at a point xo or its sufficiently small representative. If

this germ is nonsingular, we can take as a representative a sufficiently small polycylinder

in Cn with its center at a point xo.

1.4.2. We shall refer to the following situation as the local case in the algebraic category:

X = Spec A is the spectrum of a localization A of a k-algebra B of finite type over a perfect

field k with respect to its prime ideal b and xo the closed point of X.

1.4.3. In both local categories: Let D be a divisor on X from the same category, Y = X−D.

Sometimes we shall refer to such a Y as a deleted neighborhood of xo.

1.5. Let D = ∪iDi be a decomposition of D into a union of its irreducible components Di.

We say that D is a divisor with normal crossings if all its components Di are nonsingular,

and they intersect transversally.

Assume now that X is a nonsingular analytic germ or a smooth local scheme

over k and let mo be the maximal ideal of the local ring OX,xo of the point xo on X. For a

nonsingular X, each irreducible component Di of D can be defined by a single equation

fi in mo. Then in pure algebraic terms, the condition of transversality of the intersection

of the collection of all the irreducible components Di of D is equivalent to the condition

of linear independence of the set of the images fi of all fi in the vector space mo/m2
o over

the residue field ko = OX,xo/mo of xo ([SGA1, XIII, 5.1]).

1.6. In the algebraic category, we shall say that a divisor D is defined over a field k or

D is a k-divisor, if all its irreducible components Di are defined over k.
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2 Diagonalization in a neighborhood of a point: The case

of constant multiplicities of eigenvalues

2.1. Everywhere in this section, X will be a reduced, irreducible analytic space over C

or a reduced, irreducible algebraic variety over a perfect field k.

2.2. Let g: X → gl(n) be a morphism in the analytic or in the algebraic categories,

respectively. We shall say that a matrix valued function g(x) is pointwise semisimple

if for any x in X, the matrix g(x) is semisimple; i.e., it is diagonalizable in the sense of

(1.2.1) with the diagonalizing matrix ux defined over C in the analytic case, and over the

algebraic closure k(x) of the residue field k(x) of the point x on X in the algebraic case.

In the algebraic case, if all the eigenvalues ei(x) of g(x) are defined over the field

k(x) for all x in X, then the diagonalizing matrices ux in (1.2.1) can be chosen, in fact, over

the field k(x) itself, for all x in X. In particular it is so, if ei is a k-polynomial function

on X.

Consider the following assumptions on g:

2.2.1. The dimension d(x) of the centralizer Z(x) of g(x) is constant in X.

2.2.2. The eigenvalues e1(x), . . . , en(x) are morphisms in the corresponding category; i.e.,

they are holomorphic functions on X in the analytic category, and they are k-polynomial

functions on X in the algebraic category.

For a pointwise semisimple matrix function g, condition (2.2.1) is equivalent to

the following condition:

2.2.3. The multiplicities of all the eigenvalues ei(x) are constant in X.

2.3. For any index i in [1, n], consider the subset Vi of trivial vector bundle X × V:

Vi = ((x, Vi(x)) ⊂ X × V | for all x in X).

Denote gi = g − eiId: On
X → On

X, where Id is the identical endomorphism of On
X.

Then by the definition, Vi = Ker(gi). This implies that Vi is a coherent OX-submodule of

On
X. We shall call it the sheaf of eigenvectors or simply the eigensheaf corresponding to

the eigenvalue ei of g. In the case when this sheaf is a vector bundle, we shall call it the

eigenbundle corresponding to ei.

2.4. Proposition. Let X be as in Section 2.1. Assume that the geometric multiplicity

mi(x) = dim Vi(x) is a constant function of x in X. Then Vi(x) is a subbundle of the trivial

bundle In = X×V over X, locally trivial in the analytic topology on X in the analytic case,

and in the Zariski topology on X in the algebraic case.
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Proof. Consider first the algebraic case; i.e., assume that X is a reduced irreducible

algebraic variety over k. Since the question is local, we can assume that X = Spec A is

affine. Therefore, Vi corresponds to a finitely generated A-module Ni ([FAC]).

It is enough to show that Ni is a free A-module in the case when A is an integral

local noetherian ring. Let m be the maximal ideal of A, k′ = A/m and let K be the fraction

field of A. As an A-submodule of torsion free A-module An, Ni is torsion free over the

integral local ring A, and by assumption, (2.2.3) dimK(Ni ⊗A K) = dimk′ (Ni ⊗A k′) = mi. Let

x′
1, . . . , x

′
mi

be a basis of Ni ⊗A k′ over k′, and let xj be a lift of x′
j to Ni for all j, 1 ≤ j ≤ mi.

Then the elements xj generate Ni over A by the Nakayama lemma ([AM]), and they generate

Ni⊗AK over K. The dimension equality above shows that they must be linear independent

over K. Since Ni has no torsion, the xj, 1 ≤ j ≤ mi, are linear independent over A as well.

Hence, Ni is a free A-module.

The proof in the analytic case is absolutely parallel. Indeed, it is enough to show

that for each point x of X, the stalk (Vi)x of the coherent sheaf Vi at x is a free Ox-module

([GPR, Ch. 1, 7.13]; or [GR, Ch. 4, Sec. 4]). Therefore, the main arguments of the proof in

the algebraic case given above can be repeated in the analytic case without any changes.

2.5. Corollary. Assume that g(x) is pointwise semisimple and satisfies conditions (2.2.2)

and (2.2.3) above. Then it is diagonalizable by an analytic (respectively, algebraic) matrix

function u: X → GL(n) if and only if all the locally trivial subbundles Vi of On
x are trivial.

In particular, it is so if X is local in the analytic or algebraic category.

2.6. Remarks. A variant of Corollary 2.5 for the local case in the smooth (C∞) category

was contained in the works of Petrowsky and played a basic role there; see the theorem

of Section 1, Chapter III of the new, corrected editions of [P2] and [P3]. (A global ver-

sion of this result stated in the original (1938) edition of [P2] was wrong for topological

reasons, as it was independently pointed out by J. Leray, L. Pontryagin, and J. Schauder.

Fortunately, the local result was sufficient for the derivation of the main results of [P2].)

See also [GV, Ch. 1, App.] and [IV] for more modern and precise formulations of the local

result. Petrowsky’s proof of it given in [P2], [P3] can be easily accommodated to the lo-

cal analytic category as well. Another proof in the local analytic category can be found

in [B].

The algebraic case of Corollary 2.5 is, perhaps, known as well, but we cannot give

a suitable reference. Proposition 2.4 can be derived from Corollary 2.5 and its variants,

at least, for a pointwise semisimple matrix function g. However, we preferred to give

here an independent algebra-geometric proof, which is valid in a more general situation

and sheds more light on the underlying geometric structures.
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3 Purity theorems for vector bundles

3.1. We shall assume in this section that X is a local object in the analytic or algebraic

category, as in Section 1.4 and xo ∈ X(k).

Let D be a divisor in X in the corresponding category, Y = X − D, and c(D) is

the number of irreducible components of D. In the algebraic category, we shall always

assume that D is a k-divisor, in the sense of Section 1.6. For a vector bundle E on Y, denote

by rk E its rank as an OY-module. Denote d = dim X and let [d/2] be the greatest integer

not greater than d/2.

Under purity theorems for vector bundles, we shall mean statements which give

some sufficient conditions for a vector bundle E on Y to be trivial. In this paper, we shall

use the following purity results.

3.2. Theorem (Gabber [Gb2]). Let X be a nonsingular analytic germ as in Section 1.4.1,

let D = ∪iDi be a divisor with normal crossings, and let E be an analytic vector bundle

on Y = X−D. Assume that E can be extended to X as a coherent analytic OX-module. Then

E is free.

3.3. Theorem. Let X = Spec A be in the local algebraic category as in Section 1.4.2, let

D be a k-divisor, and let E be a vector bundle on Y. Assume that X is smooth and that one

of the following conditions is satisfied:

(i) (Rao [Ra]) k is an infinite (and perfect as before) field, D is a k-divisor with

normal crossings, and rk E ≥ min(c(D), [d/2]); or

(ii) (Gabber [Gb1]) dim X ≤ 3.

Then E is free.

3.4. Remarks. (1) In the case when c(D) = 1, i.e., when D is smooth and irreducible, the

statement of Theorem 3.3(i) has been conjectured by Quillen ([Q]) in order to generalize

the celebrated conjecture of Serre ([FAC]) on the triviality of all vector bundles on the

affine space An
k over a field k to the affine space An

R over an arbitrary regular ring R. For a

smooth irreducible divisor D, it has been derived in [Ra] from the remarkable results of

Quillen ([Q]) and Suslin ([Su]) which proved the original Serre conjecture. Conversely, this

statement for an arbitrary irreducible smooth divisor D implies the Serre conjecture ([Q]).

(2) On the other hand, statement 3.3(ii) follows from the main results of the thesis

of Gabber ([Gb1]). Their proofs do not depend on any results of the Serre conjecture, and

it is unlikely that statement 3.3(ii) can be derived from them.

(3) Rao conjectured ([Ra]) that the statement of 3.3(i) remains valid without any

assumptions on the rk E. The following conjecture generalizes this conjecture of Rao and

Theorem 3.3.
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3.5. Conjecture. Let k be an arbitrary field, let X be a local k-scheme as in Section 1.4.2,

let D be a k-divisor, let Y = X − D, and let E be a vector bundle on Y. Assume that X is

smooth over k and that all the irreducible components Di of the divisor D are smooth,

and that their pairwise intersections are transversal. Let E be a locally free sheaf on Y.

Then E is free.

4 Diagonalization of matrix valued functions on deleted

neighborhoods

In this section, we shall preserve the notation and assumptions of Section 3.1. The follow-

ing two theorems provide a model for the “diagonalization on a stratum,” and therefore

constitute the basic ingredients of the main results of this paper.

4.1. Theorem. Let X be a small polycylinder in Cn, let D be an analytic divisor of X, and

let g: X → gl(n, C) be a holomorphic pointwise semisimple matrix valued function. As-

sume also that D is a divisor with normal crossings and that the restriction of g onto Y =
X−D satisfies conditions (2.2.2) and (2.2.3). Then g is analytically diagonalizable in Y; i.e.,

there exists an analytic map u: Y → GL(n, C) such that for all y in Y, we have an equality

u(y)g(y)u(y)−1 = d(y).

Proof. As was mentioned in Section 2.3, the sheaf Vi formed by eigenvectors of g(x) in

On
X corresponding to the eigenvalue ei is coherent over X. By construction, its restriction

Vi | Y on Y coincides with the sheaf of eigenvectors corresponding to this eigenvalue in

On
Y . Conditions (2.2.2) and (2.2.3) and Proposition 2.4 imply that Vi | Y is, in fact, a vector

bundle. Therefore, Vi | Y is trivial by Theorem 3.2. The conclusion of Theorem 4.1 follows

now from Corollary 2.5.

The following theorem is an analogue of Theorem 4.1 in the algebraic category.

4.2. Theorem. Let X be a smooth local algebraic scheme over a perfect field k, as in

Section 1.4.2, let D be a k-divisor of X, let Y = X−D, and let g: Y → gl(n) be a polynomial

pointwise semisimple matrix valued function. Assume that the eigenvalues ei of g satisfy

conditions (2.2.2) and (2.2.3). Assume also that one of the following conditions on the

quadruple (k, X, D, g) are satisfied:

(i) dim X ≤ 3, or

(ii) k is an infinite (and perfect) field, D is a k-divisor with normal crossings, and

mi ≥ min(c(d), [d/2]) for all i.

Then g is diagonalizable on Y by an (algebraic) k-morphism u: Y → GL(n).
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The proof of this theorem follows directly from Theorem 3.3 and Corollary 2.5.

4.3. Remarks. In contrast to the algebraic case (Theorem 4.2), we need in the analytic

case (Theorem 4.1) the assumption that the map g is defined on the whole of X, not just on

Y. This imposes some implicit assumptions on the growth of g near D. For applications,

it will be interesting to find some other conditions which would imply the result of

Theorem 4.1 with some assumptions of different types on g.

5 Construction of a natural stratification of X associated

with a matrix function

5.1. In this section, we shall assume that X is a germ of an analytic variety or a local

k-scheme, as in Section 1.4. Assume in addition that X is nonsingular and irreducible. Let

X → gl(n) be a semisimple matrix valued function in the corresponding category which

satisfies condition (2.2.2), but does not satisfy (2.2.3); i.e., xo is a transition point of g.

For any pair (ei, ej) of distinct (as functions on X) eigenvalues of g, consider the

subvariety F(i, j) of X defined by the equation ei = ej. It may be empty, of course. In

the algebraic case, by assumption (2.2.2), all the eigenvalues ei are defined over k and,

therefore, all the F(i, j) are defined over k as well. Consider the following conditions on the

system of the subvarieties F(i, j).

(5.1.1). All the nonempty subvarieties F(i, j) are nonsingular, and their pairwise intersec-

tions are transversal.

(5.1.2). All the nonempty subvarieties F(i, j) are nonsingular, and the collection of all of

them forms a k-divisor with normal crossings.

Notice that the nonsingularity of the varieties F(i, j) implies their irreducibility.

Indeed, each irreducible component of F(i, j) contains the point xo. This point can be non-

singular on F(i. j) only if this variety has no more than one irreducible component; i.e., it

is irreducible. This follows from the well-known fact of local algebra that the local reg-

ular ring OF(i, j),xo of xo on F(i, j) is analytically unibranched (see for, example, [ZS, Ch. VIII,

Th. 32]).

Notice also that the conditions of (5.1.2) clearly imply those of (5.1.1).

Consider now pairwise intersections F(i1, j1;i2, j2) of the subvarieties F(i1, j1) and F(i2, j2).

Notice that if (5.1.1) is satisfied, then all the varieties F(i1, j1;i2, j2) are nonsingular and

irreducible. Furthermore, if condition (5.1.1) (respectively, condition (5.1.2)) is satisfied
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for all F(i, j), then the system of subvarieties

(F(io, jo;ik, jk) | for all (ik, jk))

of F(io, jo) satisfies condition (5.1.1) (respectively, condition (5.1.2)) as well.

5.2. Assume now that the system of all the subvarieties F(i, j) satisfies condition (5.1.1).

Consider the sequence of locally closed subvarieties of X constructed as follows:

(i) X1 = X − ∪(i, j)F(i, j).

(ii) Notice that our constructions and condition (5.1.1) imply that F(io, jo) is again

a polycylinder in the analytic case (respectively, it is isomorphic to Spec Aio, jo
for some

smooth local ring Aio, jo
in the algebraic case). In both cases, this variety is nonsingular

and irreducible. So, we can continue the same process with X replaced by F(i, j) for all

pairs of indices (i, j). Namely, for a fixed pair of indices (io, jo), denote

X1
(io, jo) = F(io, jo) − ∪(i, j)6=(io, jo)F(io, jo;i, j).

Similarly, the subvarieties X1
(i, j) can be constructed for all other pairs of indices

(i, j) with nonempty F(i, j).

(iii) We can continue this process further for each F(i, j;k,l), and construct the variety

X1
(i, j;k,l) of the same type, etc.

(iv) As a result, we shall obtain a collection of locally closed subvarieties X1, X1
(i, j),

for all pairs (i, j), X1
(i, j;l,k), for all quadruples of indices (i, j; l, k), . . . , and so on. For a sim-

plification of our notation, we rename these varieties as Sr, r ∈ R, where R is a finite set

of indices. We shall call the stratification S = (Sr | r ∈ R) of X obtained in this way the

stratification associated with the matrix function g.

We shall summarize the main properties of this stratification in the following

lemma.

5.3. Lemma. Let X be as in Section 5.1. Then the stratification S = (Sr | r ∈ R) of X

constructed above has the following properties:

(i) Each of the strata Sr has a form Zr −Tr, where the pair (Zr, Tr) consists of a local

nonsingular and irreducible object Zr in the corresponding category (as in Section 1.4)

and its divisor Tr.

(ii) The collection of all the irreducible components of the divisor Tr satisfies

the conditions of (5.1.1) (respectively, condition (5.1.2)), for all r, if the initial terms F(i, j)

defining the stratification satisfy them. In the algebraic case, each of the irreducible

components of each divisor Tr is defined over the field k.

(iii) Let c be the number of nonempty and distinct subvarieties F(i, j), let c(Tr) be the

number of the irreducible components of Tr, and let To = ∪(i, j)F(i, j). Assume that condition

(5.1.1) is satisfied. Then c = c(To) ≥ c(Tr), for all r ∈ R.
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(iv) On each stratum Sr, the multiplicities mi(x) of all the eigenvalues ei(x) of

g(x), and the dimensions of the centralisers C(g(x)) and Z(g(x)) of g(x) in gl(n) and GL(n),

respectively, are constant. Denote by mi(r) the constant value of mi(x) on Sr.

(v) If a stratum St is in the closure of Sr, then mi(t) ≥ mi(r). In particular, for the

open strata So = X1 which was defined by equality 5.2(i) above, mi(o) ≤ mi(r), for any

r ∈ R.

5.4. Let D be the k-subalgebra of diagonal matrices in gl(n, k), and let H(i, j) be the hyper-

plane in D defined by the linear equation ei = ej. These hyperplanes intersect pairwise

transversally, and the collection of them and their intersections define a stratification

(Ws | s ∈ S) on D similarly to that described above for X.

Consider the map d: X → D, x → d(x) = diag(e1(x), . . . en(x)) defined by the set of

all the eigenvalues ei, 1 ≤ i ≤ n, of g taken in some fixed order. Then the varieties F(i, j)

considered above are the inverse images of the hyperplanes H(i, j) in D:

F(i, j) = d−1(H(i, j)) = X × 2H(i, j) (5.4.1)

(as analytic varieties or schemes, respectively).

The following lemma is useful for a verification of conditions (5.1.1) and (5.1.2).

However, it will not be used in this paper.

5.5. Lemma. Assume that the map d: X → D defined in Section 5.4 above is transversal

to each of the hyperplanes H(i, j) (in the sense of ([EGA, IV, 17.13.3]). Then all the varieties

F(i, j) are nonsingular and irreducible.

Proof. The nonsingularity of the varieties F(i, j) follows from equalities (5.4.1), the nonsin-

gularity of the hyperplanes H(i, j), and the transversality of the map d to these hyperplanes

([EGA, IV, 17.13.2]). (Notice that the proof of [EGA] works in the analytic category as well.)

A proof that the nonsingularity of F(i, j) implies its irreducibility has already been given

in Section 5.1.

6 Stratified conjugacy in neighborhoods of transition

points

In this section, we shall preserve the assumptions and the notation of Section 5. The

main goal of this paper is to prove the following two theorems.

6.1. Theorem. In the local analytic situation of Section 1.4.1, assume that the matrix

function g is pointwise semisimple and satisfies condition (2.2.2), and that the collection
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of the subvarieties F(i, j), for all pairs (i, j), satisfies condition (5.1.2). Then on each stratum

Sr of the stratification described above, there exists an analytic morphism ur: Sr → GL(n)

which diagonalizes g on Sr:

ur(x)g(x)ur(x)−1 = d(x), for all x in Sr. (6.1.1)

Proof. For indices i such that the multiplicity mi is a constant function on X, the eigen-

bundles Vi are trivial on the whole germ X by Proposition 2.4. For all the rest of the indices

i, mi(x) is a constant function on each stratum Sr by Lemma 5.3(iv), and the restriction

Vi | Sr of the coherent eigensheaf Vi on Sr is, in fact, a vector bundle by Proposition

2.4, for all r. Under our assumptions, the triviality of these vector bundles follows from

Theorem 3.2. Therefore, the matrix function g is diagonalizable on each stratum Sr by

Corollary 2.5.

6.2. Theorem. In the local algebraic situation of Section 1.4.2, assume that the matrix

function g is pointwise semisimple and satisfies condition (2.2.2), and that one of the

following conditions is satisfied:

(i) dim X ≤ 3, and the collection of the subvarieties F(i, j), for all pairs (i, j), satisfies

condition (5.1.1); or

(ii) k is an infinite (and perfect) field, the collection of the subvarieties F(i, j), for

all pairs (i, j), satisfies condition (5.1.2); and for each index i such that the multiplicity

function mi(x) is not constant on X, the inequality

mi(o) ≥ min(c, [d/2]) (6.2.1)

holds, where the integers mi(o), c, and [d/2] were defined in Section 5.3(iv)–(v), 5.3(iii), and

3.1, respectively.

Then for each stratum Sr, there exists an algebraic k-morphism ur: Sr → GL(n)

which diagonalizes g(x) on Sr; i.e., equality (6.1.1) is valid for this ur and any x ∈ Sr.

Proof. Inequalities (iii) and (v) of Lemma 5.3, and inequality (6.2.1) above, imply the

inequality

mi(r) ≥ min(c, [d/2]), for all r ∈ R. (6.2.2)

The rest of the proof of Theorem 6.2 is parallel to that of Theorem 6.1, with a

replacement of the analytic category onto the algebraic category, and the reference to the

analytic purity theorem (Theorem 3.2) by that to the algebraic purity theorem (Theorem

3.3).
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6.3. Remarks. (1) The condition of (5.1.2) that the divisor F formed by all the nonempty

subvarieties F(i, j) is a divisor with normal crossings, excludes, in fact, the cases where,

among the subvarieties F(i, j), there occur simultaneously the nonempty subvarieties F(i, j)

and F(k,l) with two of their four indices (i, j, k, l) coinciding. This condition is quite restric-

tive for many potential applications. However, a relaxation of this assumption requires

some progress toward our purity conjecture (Conjecture 3.5) which is, probably, very

difficult.

(2) If the conjecture of Rao quoted in Remark 3.4(3) is true, then the conditions

on the rank of E in Theorems 4.2(ii) and 6.2(ii) can be dropped.

(3) Most of the results of this paper, including those of Sections 2 and 6, can be

extended in many directions: to germs of real analytic matrix functions g: X → gl(n, R);

and in the algebraic category, to matrix functions g: X → G with values in an arbitrary

semisimple algebraic group G over a perfect field k (under some additional assumptions

on X and G), etc. We are planning to return to these questions in our subsequent papers.
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