240 BISIMPLICIAL SETS AND THE GROUP COMPLETTOR THEOREN
REFERENCES.
" + f
Barratt, M.B. and Priddy, S.B.: On the homniow‘o
] nu'::zennected mothoids and their associated groups .,
v. 47, i-14, 1972.
: to
Bousfieid, A.K.: ‘The localization of spaces with respect
=2 ho::logy'. Topology 14, 133-150. 1975.
3 Bousfield, A.K. and Kan, D.X.: Hom py L
k1 and Localizaticns. Springer LNN 304, 1972.
4 Gobriel, P. and Zisman, H.: leyl f Trac
[ ! Homotopy Theory, Springer-Verlag, 1967.
51 Jardine, J.F.; 'On the homotopical foundations of algebraic
i K~-theory', to appear.
{6} Mac Lane, S.: Categorjes f .
Springer-Verlag, 1971.
(7} May, }.B.: ‘Classifying spaces and fibrations', Mewoirs ANS
155, 1975. _
0 ions and the
8 Hchuff, D. and Segal, G.: "Homology fibrat
8) group-completion theorem®, Jnvent, Math. 31, 279-287, 1976.
{9} Quilien. D.C.: Homotopical Algebra. Springer LA 43, 1967,
{1073 Quillen, D.G.: ‘Rational homotopy theory’, Aon, Math, 90,
205-295, 1969.
{11} tuilien, D.G.: “Higher algebraic K-theory', Springer LNM 341,
B5-~147, 73, .
[i23 Ouillen, D.G.: 'On the group completion of a simplicial

monold’, unpublished.

!

THE COMPFLETELY DECOMPOSED TOPOLOGY ON SCHEMES AND ASSOCIATED DESCENT

SPECTRAL SEQUENCES IN ALGEBRAIC K~THEGRY

AUSTRACT. Let

Ye. A. Nisnevich
Department of Mathemstics
The John Hopkins University
Baltimore, MD 21218

USA

To Alexander Grothendieck on his 60th birthday.
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242 THE COMPLETELY DECOMPOSED TOPOLOGY
0. INTRODUCTION

‘This paper has two goais. The first of them 1s to give a definition
and a systematic treatment of some basic properties of the completely
decomposed topology on schemes. Our second goal is to use this
topology to construct a descent {or local-to~global) speetral sequence
for the X-theory of coherent shealves which refines the well known
Brown-Gersten spectral sequence [83.

The cd-topology has been Introduced by the author in [28] - [20}
as a tool for a study of the arithmetic mnd {non-abelian} étale
cohomology of affine group schemes over Dedekind rings. The definition
of this topology has been motivated by i1ts intimate copnections with
several classical adelic constructions associated with such group
schemes, in particular, with their adele groups and adele class groups.
tater the cd-topology and the assoclated cohomology theory have been
used by K. Kato and 8. Salto for the study of high-dimensional
arithmetic schemes, f.e. schemes proper and of fi‘ni te type over ¥ or
over a finite field. In particular, these tools have been gsad for a
study of arithmetic of such schemes (a generalization of the idele
class group [25]. conjectures on specia}l values of L-functions [-i"{]).
their Class Field Theory (generaiizations of the Artin reciprocity [25]
and of the Moore uniqueness theorem [501}, and various cohomological
questions (the theory of Brauer groups [51], relationships of the class
groups amd the Class Field Theory with the motivic cohomology theéry
{507, existence of which have been conjectured by Beilinson t&O] and
Lichtenbaum [48]). .
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However, a systematic treatment of the basic properties of the
cd-topology and the associated cohomology theory are still lacking in,
the literature, and we shall try to f1l] this gap partially in §1 of
this paper. The content of 1.1-1.22 is essentially extracted from our
Harvard thests [307 (1982, unpublished). More recent in this
presentation of the theory is a new notion of & point in a tepos which
1s more genern} than that used in [SGA 4] and is wore convenient for
our purposes. The theory of the local cd~cohomology and thelr excision
properties have been used in the proofs of [28]. [29], {25], {50] but
are developed systematicnlly here for the first time,

The rest of this paper is devoted to appiications of the technique
developed in §1 to a study of the descent problem in Algebraic

K-theory.

0.2, Let X be a noetherian scheme of finite Krull dimension, Kn(x)
{resp. cn(x)} the Quillen Kn—groups of the category LF(X} of
coherent locally free (resp. Coh {X) of coherent) sheaves of
Ox—m&ules on X, xn(x.vezn {resp. Gn(x.lle)) the Kn-graups with
L/tT-coefficients of the category LF{X) (resp. Coh {X})., where £
is an integer. Let nl(’:t {resp. E::t) be the sheaf on the etale site
Xet obtained by sheafifying the presheaf Knt Y — Kn(Y) {resp,

G Y= Gn(Y)} on etale topology on X: Iet E:‘(zxez} and
E:‘(va} be the etaje sheaves on X corresponding to xn(x. L/8%)

and cn{x.vm respectively.

0.3, One of the most promising directions in the Algebraic K~theory is

a study of 1ts relationships with etale cohomology. Based on an
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mnalogy with the approach used in the Algebraic Topology for a study of
generalized homology theories [1], [37], especially with the
Atiyah-Rirzebruch spectral sequence relating topological K-theory and
stngular homology [3]. Quillen [34] end Lichtenbaum [13], [26]
formiated the following conjectures {we atate the firat of them in a

iater, corrected form}:

0.4. Confecture {{13}, [26]. {34;}}: Assume that X is regular, Then

there exists a descent spectral sequence with the Ezmtarn
7.4 wet
o.4.1. Ep9s n”(xet.xq (Z/e2)}, p20. 920,

which converges to xq“p{x.zxez) for g-p > Z'coh.dime X where

et}'
cob.dim, (X_,) 1s the stale cohomological Z-dimension of X.

{We assume here nnd everywhere below that
xn(x.vu) = c“(x.ve:t) =0 1f n < 0. The indexation of the terms of
this and other spectral sequences in this peper féllows to that of
Bous{ield-Kan [5], [38] {see §2.21 for detaiis}).:

Notice, that ax it 1% well known, the spectral sequence does not
converge to xn(x,z{zz}} for smali n already when X = Spec k,
where k is a [ield. |

The second conjecture of Qlﬂlen-i.ichtenba.um.. proved recently by‘
joint efforts of Susiin, Gabber, Gillet and Thomason [35]. [36]. [12].
{20}, asserts that the sheaf E:t{lftl} ia constant, and equal to;:
L7tk(1t}, 1f n = 24, and to zero, §f n = 21+%, ‘

Thus, combining this result with conjecturg Cé.-i. if it i; true,

one would have effective tools for & study and comtput.atlons of
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l{n(x.lltl} for sufficiently big n. Notice, however, that the
sitaation for n ¢ 2-cnh.din¢ (Xﬁ) and slyo for & singular X is
jeft open by Conjecture 0.4 in its current form.

The beat known and frequeitly used approximation to Conjecture 0.4

{s the Brown-Cersten spectral sequence on the Zariski topology:

P
0.4.2.F 7 gHP{"z”'E?;M) #C (%) P20, 920, P 2 0.

and a simtiar spectral sequence for Gn{vtl] {8}, {33}1. 1f X is
regular, we cun replace Gn{X) on Kn(X} and GanICZ} on xn(va}
in these spectral sequences respectively.

Unfortunately, the sheaves ?nnr. Eﬁ”{vu). E&r and
Ef;'“wu) on X.L“ are very compiicated, and this wakes direct
computations with the Brown-Gersten spectral sequence usually
impossibie. However. some information on the cohomology of the sheaves
Eﬁ". Fnar(lﬂl} can be obtalned from the Cersten {or Cousin- in the

terminology of Grothendieck {21j) resolutions of these sheaves if X

i

We are not discussing here works of Thomason [38] and Friedlander [0}
in which descent spectral sequences on etale topology have been
constructed for different although related K-theories xn(x.z/u){p"}
(the Bott perfodized algebraic K-theory [74]) and KP(x,2/eE) (the
etale .topoiogh:al K-theory [10]). Relationships of these theories with
the Quillen K-theory are the subject of many current works ond
conjectures {111, [39], [40]. {48], [73] - [78). In particular,

Conjecture 0.4 can be formmiated in terms of such relationshsips.
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satisfies the assumptions under which the Gersten conjecture is
currently proved, i.e. 1f X {5 smooth and of finite type over a field

or (in the case of finite coefficients} over a discrete valuation ring.

0.5. In this paper we shall construct a locai—to-global {or descent}.

spectral sequence on the cd-topology X , of X defined in §1:

0.5.1. EB%awP(x_, E:") +C_(X}). p20. 420 ap2 0.

and its analopues 0'5‘17181 for Gn(X.ZIeZ). Actually, our
construction gives similiar spectral sequences for the homotopy groups
1'2(?{)(}) of a more general class of presheavés F: xcd — FSp with
val;xes in the category FSp of fibrant spectra {in the sense of
Hototopy Theory) which are Qddltlve and satisfy certain ed-excision
property {see 82 -~ §4 for precise definitions and results}. By a
result recently announced by Thomeson and Trobaugh [62], there exis:
Bass type extensions [SB{X} and EB{D'CZ) of the connective {-theory
spectra K{X) and K(F/2I) of the category LF{X} of locally fr.ee
sheaves onto negative degrees which are additive and satisfy this .
cd-excision condltion. Therefore, there exist variants of spectral
sequences 0.5.1 and 0'5'11182 for their homotopy groups K‘;(X} and
K’;{l/ll) {see 3.8, 4.5 for details). The veraion of 0‘5‘11'/82 for
KX(Z/€Z) combined with the computation of the fibres of the sheal.
K°(2/27) described below (and In Lemma 4.6), and the comparison
theorem of [38} for flelds imply an extension of t:he global comparison
theorem K (X.2/0T)[A'] — KP(X.2/62) of [38] to singular schemes
X_ {see [623). . E
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If X is regular the spectral sequences for Gn and l(.;
{respectively for Gn{b’tl} and K‘;(V!Z}} colncide.

The cd-topology 1s stronger than the Zariski topology, but wealker
than etale topology in X. Hence, spectral sequence £.5.1 and fts
variants refine the Brown-Cersten spectral sequence and can be
considered ns a step toward probies 0.4 of the etale localization of
K-groups in which we restrict our attention only to the geometric etale
extensions, i.e., extensions with the fixed residue fﬁelds: but they
include Gn and Ki. for al} n ) 0. MNoreover, the existence of
spectral sequence 0.5.1 and its varisnts show that the oniy
cbstructions to the extstence of the etale descent for the G - and
Kﬁvsheuves are coming from the residue fields. {The last fact for a
regular X and from a different point of view has been obtained in
{383).

Although the sheaf K-9(I/€Z) 1is not constant as Kten). its
fibres can be eastly computed in terms of groups Kn(k'.ZUEZ) of all
finite etale extensions k' of the residue fields k(x} of X (see

Lemws 4.6). Thus, our approach gives an opportunity to reduce directly

" various questions cencerning K“{X.ZIEZ) for possibly singular X to

the corresponding questions for K*{k‘.la’n} for al}l finite etale
extensions k' of the residue fields k{x). for all x € X, avoiding
any use of the Gersten conjecture and the Gersten resolution and the
restrictions which the current status of the Gersten conjecture
impoées.

Notice also, that the Gersten-Cousin complex for a singular X s
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not exact, and, thus, the methods based on it and on the Brown-Cersten
spectral sequence are not applicabie te singular X 1in principle.
Unfortunately. the current knowledge of X-theory of fields {27},
[77]. [78] glves only a quite restricted opportunity to use our
spectral sequence for direct computations of Ki{x.lr’élj. 1 €2, Byt
any progress in the understanding of K-theory of fields will increase

its applicability.

0.6. The construction of spectral sequence 0.5.1 given in this paper
is based on & suitably generalized method of the construction of the
Brown-Gersten spectral sequence ocutlined by Thomason in ([38]. 52).
Thomason's construction combines elements of the original Brown-Gersten
construction [B] and the 1deas of Crothendieck ({231, II; {24]) and
Quillen [33] on a use of the filtration by the cc;dlmslon of points of
X. The theory of jocal presheaves of spectra on the Zariski topn_logy.
and a notion of the hypercchomological spectrums of a presheaf of
spectra are the main new tools used in [381 to combine the two
approaches mentioned above {see also 984.7, 4.8 for further cmwl;ats on
this method).

The first mentioned theory 1s a spectrum level version of the
theory of local Ihomotnpy and howology developed by Grothendh.ack in
[SCA 2} and {SCA 4]. The secornd notion is a specirum level version of
the hypercohomological cowplex of a complex of sheaves in the derived
category of complexes. In this paper we shall dejveiop both of these
tools in the context of presheaves of spectra on the cd-topology.

In 52 we give the definition and study some properties of the
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hypercohemoliogical spectrum l{{xcd.F) corresponding to a presheaf of
spectra F on xcd in a form used in this paper. In §3 we develop
the theory of presheaves of local spectra _I:x{F) on the cd-topology
for a point x € X and presheaves of spectra F which have &
cd-excision property. The theory is more complicated than the
corresponding theory on the Zariski topology outlined in {383, because
the cd-presheaves [ (F) are not constant on the closurea x of x as
in the case of the Zarisk{ topology, and the proof of the acyclicity of
the associated sheaves -F-x{F} an xr:d given in §4 required some extra
efforta. This proof is close in its spirit with the proof of the
acyclicity of the adelic resolutions given ia {[28]. {30], Ch. I). The
weak homotopy eqivalence F{X} —s H(X_,.F) underlining the descent.
spectral segquence for F 1is proved by induction based on the
acyciiclty of the sheaves fﬂ(l"} for all x € X in §4. &4 Is

concluded by some Further comments and conjectures.
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1. THE COMPLETELY DECOMPOSED TOPOLOGY

1.0. In this section we shall develop the formalism of the cd-topology

and the ed-cohomalogy following the general scheme of [SGA 4]. Due to
iimitations of space and time we tried to include here only most basic
facts which are used i{n this paper or in other works and/or which are
specific features of the cd-topology. Between them are a more general
than that in [SCA 4} theory of points in a topos, the local cohom;logy
theory and its excision properties, the behaviour of the ed-cohomology
and the local cd~cohémology under limits, and an estimate on the
cohomological dimension of the topos Xcd {Theorem 1.32). The‘!n:;cal
cohomology and the excision properties for the cd~topology have been .
used frequently in [28] - [32] and later in [25], [50] but have not
been developed slystemt!mlly with the necessary ‘campieteness and/or
details in any of these papers. This theory. developed in 1.23-1.31,
can also be considered as an introduction into its homo topy—theoretical
version developed in §3. The estimete on the coWlmiml dimension
of X.; 1 due to Kato and Saito [25] but we included it here with a

detailed proof because the proof of this jmportasnt fact is only

e e el o
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indicated in [25].

i.1. Let X be & schemm, Et/X the category of all schemes etaje
over X.
For en etale morphism ¢: X' — X consider the following subset

cd(X'/X) of X:

111, ed(X'/%) = {x € X] 3 x' € ¢ 1 (x} | P (R(x}) > k{x'}},

wh&a «pn is the canonica}l mep of the residue fields induced by .
If X'7/% 1is a Calois extension, the condition sbove means that x is
completely decomposed {or split) in X' in the classical terminology
of the Number Thecery. This explains our notations and terminology.

For each X' € Ob{Et/X} consider the category Cnvcd{X‘} of
coverings on X' which consists of all familles {wi: Xi wa X', 1 € I}

of etale morphisms ) such that

1.1.2 U cd{X;/X') = X'

1€l

The correspondence X' wCovcd(X‘} satisfies all of the axioms
for a pretopology {[SGA 4], II, 1.3; [SGA 3). I¥. §6) and, hence, it
defines a Grothendieck topology on Et/X which we shall call the
completely decomposed topology or, more shortly, the cd-topolaogy.

Denote by Xcd the corresponding site, i.e. the category Et/X
equipped with the cd-topology. and by xcd the topos of sheaves on
Xed.
1.2. Examples.
X = Spec k. Then the category xcd consists of the spectra Spec A

(1) dimX =0. Let k be a field and set

of finite stale k-aigebras A, Any such k-algebra is n finite direct
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k

sum A = GLi of finite separable field extensions ’“1 of k. This
=} .

fact and condition 1.1.2 imply that for any finite separable extension

k' /k, and cd-covering Y «» X' = Spec{k') has the form
1.2.1. YsSpecLOUSpecLIU...HSpech

{the disjoint sum}, where ]..0 = k' and Li/k’ is a finite separable
‘extension of k', 1 {1 £ k. Any such covering can be refined by the
trivial covering Idx.= X' - X, ‘

fet F: xcd -3 (Sets} be s presheaf of sets on xcd‘ It is known
{[SGA 4], 1I, 2.4} that F is a sheaf if and only if for any
X' € Ob{xcd). and aﬁy covering {Xi -+ X', 1 € 1} the sequence of

s5ety

@
1.2.2. f(x')m»iréx FX) o3 7

. F(Xi Xy XJ}
(1.3)€x
is exact in the first and the second terms {in particular, a s
injective}.
On the coverings in the form 1.2.1 the exactness of sequence 1.2.2

is equivalent to the bjijectivity of the caponical map

X
1.2.3. F(Xg UXj U »es UX) e ::0 F(X;)

k
induced by the canonical inclusions Xi - U Xl. 0¢1 <k, where
=0

X; = Spec L. 1 {1 ¢k and X, = X'. Since they are the only
coverings in Cov_,{X') we see that the presheaf F is a sheaf if it
is additive in the sense of the following definition (see for example,
[38]. 1.B2):
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1.2.4. Delinition. let € be a site with finite coproducts U. A

presheaf F: C - (Sets) is called additive if for any X,. X

;» X5 € Ob(C)

the canonlical map
1.2.5.  F(X, U X)) — F(X,) x F(X}

induced by the canonical embeddings }(i wxl ] Xz._ i = 1.2, is
bijective.

Notice that condition 1.2.2 shows that any sheaf of sets on C is
additive,

Return now to our example. The characterization of sheaves on
Xcd given above (or the construction of the sheal associated with =
presheaf given in [SGA 4], I, $3) shows that the canonical map F s F

of a presheaf F: X , -~ {Bets} into its sheafification F on xcd‘

cd
induces a bijectivity on global sections:

1.2.6.  I{%',F) = I(X'F)

for any irreducible X' € Ob{xcd). i.e. the spectrum

X' = Spec k' € Oh(xud) of an etale field extension k°'/k. Hence, the
functor of global sections F ~= M{X',F) is exact for any such X°. )
Sincoe any Y € Ob{xcd) iy a finite disjoint union of irreducibles

Yi = Spec Li with l.i a3 in 1.2.1, the functor of sections

1.2.7. F(Y,~}: ¥ —F{Y.F}, F€ Ob(xod)

is exact for moy Y € Oh{xod}.

{2) dimX =3}, Let X = Spec R be the spectrum of an integral

noetherian one-dimensional ring R. It follows from condition 1.1.2 on




254 THE COMPLETELY DECOMPOSED TOPGLOGY

the generic point n of X that any cd-covering {"i: xi -~ X, 1 €1}
mist contain an open immersion X, Lo ¥ Let
(4]

X - Xio = {xZ szu wee U xr}. where Koo 1 $asr are closed
points of X. Then the covering also conteins a famliy of etale

*

extensions

¥y Xi -
[ 3

1{afr

such that x;
o
open immersions and some of them might colncide}.

In a similar wny one can construct inductively cd-cwérlngs of &
noetherian scheme X of a finite Krull dimension > 1. Notice, that

the coverings constructed in this way are finite.

1.3. Assume that X {s a noetherian scheme. Then any etale X-scheme ®
f: Y — X is also noetherfan, f is an open map {{S5GA 1], IV, 6.6)
and any subscheme Y' C9Y is noetherfan and therefore has a finite
number of irreducibie components. It is easy to see using ;.he
inductive method of construction of od-coveri_ngs; of ¥ indicated in
1.2(2} that under the noetherianess assumption any cd-covering

{fit 'fi -+ Y, 1 € I} contains a finite ed-subcovering.

t.4. Let §f: Y «s X be a morphism of achemes. ' It is easy to see from

the definitions of 1.1 that the functor “inverse image"

.41, PUX -y XX =Y’

¥ aof finide '{'.y/pe

€ ml()(1 X)), t{ag$r. (Someof #3 's also might be .
[ 4 o

ooy

TR
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induces the functor

»
f-xcd—-—-t‘{cd

1.4.2.
which comnutes with finite inverse limits and transforms s cd-covering
{og2 ¥, — X', 1€I)} of X' € Ob(xcd} into the cd-covering

. ]
{"i.Y": 'i(1 &.Y — Y, 1 G. I} of Y'. Hence, the functer f s

continuous {{SGA 4]. II1. 1.6) and it defines the morphism of the site:

HE

1.4.3. £ od ed

cd
([SGA 4]. IV, 4.9.2}, Therefore, ch defines the morphism of topol

of sheaves
- * cd . - L .
1.4.4. fed = “cd’fn ): ch —-——rxcd_
where I:id i3 the functor "direct image" of sheaves

ed,

145 18 v . f20F) < P, forall Fe ob(Y )

and the functor "inverse image”

” el LB
1.4.6. fcd' xchYod
ia defined as the left adjoint functor to fﬁd. {The existence of the

ed

® follows from the general results of the

left adjolnt functor to f
Category Theory {see, for example, [49]. Ch. II, prop. 2.2}).
¥e of ten shall consider alse the direct and inverse image functor: '

in the categories of presheaves

Gd. ~ - od » ~
147, fgs Yy —aX . £y (F) = Foi , ¥ F € Ob(Y,)

and '
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$# -~ -
1.4.8, :
fcd xcd_u'ycd

respectively associnted with f, where Y;d and X;d are the
categories of presheaves on Yc 4 and X ed respectively.

The functor f# is again defined as the left adjoint to I#.
Recall that for a sheaf F on Xcd :

149, 1(F) = £0F). £°(F) = ()

# ~ -
where (£'(F)} 1s the sheafification of f(F} on Y, (see ([49].
ch. 11, 2.7 and p. 68} for these facts in a more general situation).
¥e often will drop the lower and upper indices “ed” and denote
ed Led oM # :
£ f# . fcd and fcd simpiy as §_, f#. £ and f“ respectively

where 1t does not cause a confusion.

Generaliyed ts _in the cd~ g

Working with the cd-topology it 1s convenlent ta use n more general

rotion of & point in a topos than that used in {{SGA 4], Iv).

~

1.5. Definition: let S bea site, § the topos of the sheaves on
8.

{a) ¥e say that the site S and the topos ,SN are acyclic if

for any X € Ob(S) the functor of X-sections
F{X.~): F s I'(X.F)
is exact on § .

(b} Assume that the category § has a terminal object Xo We say
that the site § and the topos S are connected if l‘(xo.lis} = N
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for any set N and the constant sheaf )ls on § assoclated with M.

1.6.1. Remark. For a sheaf of groups (resp. abelian groups) F on §
condition (a) implies the vanishing of its cohomology ul{x.r) = O
(resp. H(X,F} =0, 1 >0, for all X € Ob(S). This explains the

term "acyclic” in Definition 1.5 {a}.

1.6. Definition. Let ¥ be a topos. A palr {p.up). consisting of
an acyclic connected site p with a termionl object and » morphism of

topot ap: p~ -3 ¥ 18 called & point of ¥.

The usual notlony of a conservative fanily of points, the stalk of
& sheal at a point, the Codement resolution, utc. can be extended to
points in the sense of Definition 1.6,

We shall discuss below these notions in the case of the

. cd~topology.

. 1.7. Let X be a scheme. We shall identify a point x € X with the

spectrwm Spec k{x)} of its residue field k(x). Let
i,: x = Spec k(x) ©» X be the canonical embedding. Then i induces
morphisms of the corresponding cd~zites and of the topol of sheaves:

1.7.1. 1x.cd: Xed —-#X‘;d.

-

1.7.2. ’x.odz LI w»xcd.
{see 1.4}.
By 1.2(1) the functor It F - F({x'.F} of gioba) sections is

exact on X .. for ali x’ GOb(xcd). e, X . and X4 are
acyclic in the sense of Definition 1.5(a)}. On the other hand %4 and
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Xoq are obviously connected. Hence, the pair {x ,i:d). with
ix: Xed «-»xcd induced by 1x‘ fs n "point” of the topos xcd ‘in the

sense of Definfivion 1.6.

"cd',"e X
1.8. Definjtion: Let x € X be & point of X. An etale X-scheme

p: ¥ »+ X 1is called a nelghborhood of the point X a4 of the gite Xcd
{or of the point x 1in the cd-topology) 1f x € cd{U/X)*. '

Recail, that this condfition means that there exists a point .
iyt vy Lo U such that ¢y} =x, ¢ Induces an 1somorphism of the
residue fields -p?: k{x) — k{y), and the following diagram {s
commtative:

g
y
y = Spec k(y) G U

e/ i l ¢
x = Spec k{x} C—s X
ix ,
(Compare with the notion of f-punctured etale neighborhwds_in
([SGA 4}, VIII, 4}, where [ is a “"geometric” point of X},
~}

Kore generally, let Z £9 X be a subscheme of X, Zy=v {2).
¥e shall call an ‘etale scheme ¢: U — X, a cd-neighborhood of Z 4f
there exists a subscheme 2' C Zu such that ¢ induces an isomorphism
vly 25z

Denote by r«ad(z.x) the category of all cd-neighborhoods of Z
in X. ¥hen no confusion can arise we shall write simply ch(Z}
instead of ch{Z.X).

* See the Note Added in Proof on page 342,
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1.8. Let U™ X be an affine open subscheme of X containing x,
Ngd{x} the subcategory of ch{x} consisting of all cd-neighborhoods
of x, affine over Y. As in ([SCA 4], YiI, 4.5). we can see that
the categories R 4(x) and Ngq{x} are pseudo-filtered, Nucd{x) is

confinal in N _,(x). and consists of affine schemes. Recall also that

1.9.1. lin

X" €0b(N) ,(x)°)

X' = Spec Oil'x

where 0: X is the henselization of the local ring ﬂx X ef x on X
with respect to 1te maximal ldeal m C Ox X {{EGA], IV, 18.6.5), and
U o L

ch{x} is the category dual to ch{x}.

Sen

1.1}, Let x € X be a point of X, (xod' i:) the corresponding point

of the topos Xcd. F a presheaf on Xod. Define the presheaf-stalk

F: of F at X.q Bs ity presheaf inverse imge on X .4

_ o
1101, Fh o= 4 (F).

Define the sheaf-theorettcal tnverse tmoge i:(?} of the presheaf
s
F on X g and the sheaf-stalk (or simply the stalk} Fx of F at
X.q 88 the sheafification of the presheaf F:::

e g Py~
1.10.2. Fx deF !x(F) et (Fx) .

¥e shall see in Proposition 1.11 {4) below that 1f ¥ is the
sheaft{fication of a presheaf F on xcd' and u! F s F is the

canonical map. then the natural map



1103, u: F o (F),

is an isomorphism, for all x € X.

let x' € Ob{xcd} aml ¥{x', X) be the category of V € Ob(xcd}

such that there exists a morphism By' X' =3V which mkes the diagram

1.10.4 x* 5 v
l i)(. ]
X Ce—— %
commutative,
1.11. Proposition. (compare [SGA 4], VIII, 3.9). Let x' € Ob(x_,)

and M(x'.X)°, N _4(x)° and NJ (x)° be the categories dual to -
M{x'.X). ch(x} and N:d{x} respectively. Then

(1) The categories M(x',X)° N_,(x)° and Nl (x)° are

filtered.

{2} For any sheaf F on Xz ond x' €0b(xcd}

LiLL  Fo(x') = lin F(V) = 3_:_5‘ F(V}
VeOb(N_,(x" .X*)%) Veob(RY (x*.X')%)

where X' is any etale X-scheme such that x' = X' x, x, and

g Gy a fixed open affine subscheme of X' containing x'. The

iim does not depend on a choice of X' and U' with these

properiies.

{3) ¥ F {s an additive presheaf on X then F: is alse

cd
additive, F:: = Fx' ard we can replace Fz by Fx in 1.11.1 for such
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F.
{4) Let ¥ be the sheafifcation of a presheaf F on X,q- Then

1.41.2.

(FRx) = (F) (x') = lig Fv) = Lin F(v).

VEOb(N_(x" . X")%) VﬁOb(Ng‘;(x' X%

for all x' € %{xcd).
1.11.3.  F (x') = Fo(x') — (F)(x) = (F) (x")
for any irreducible x' € {‘ﬂz(xﬁd]. and the natural map of the stalks

w s Fx b (ﬁx' induced by the canonical morphism u: F— F, isa

bijection.

{5y ¥ F s additive then

1114, F =P (FP=F . forall xex.

Broof: (1) Let X' € Ob(X_,)} be such that x' = X' x, x. Then the
categories M{x'.X}, N 4(x".X") = M{x', X'} and Ngc.l(x"}{'} obviously
have fibre products induced from Sch/X. Hence, the dual categories
H(x'.X}o. ch{x'.X‘)o and Kg‘;(x‘.X') are flitered {[49], Ch. II,.
Prop. 2.3}, This proves {i}.

{2} By ([49], Ch. Ii, p.57)
1.11.5.  Fo(x'}) = lin F(V)

veob{M{x'.X}°)

Since the categories ch{x',x‘) and Ng;(x'.x‘) are cofinal in

M(x',X} 1.31.5 fmplies 1.11.1.
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Let X" € Ob{xcd) be another etale X-scheme such that
X Xy X = x',. Replacing X" by X X% X', we can assumwe that there
exists an etale morphism X” —+ X'. Then, clearly, the category
ch{x',)(“) is cofinal in Nod[x'.X’}. Hence, the lim does not depend

on a choice of X° with these properties.  This proves {2}.

(3} For Xy Xo € Ob{xcd} consider a commuitative diagram .

1.11.6.
Flxti) . Felx;) x Fi{x))
s IS
lim F(V) ~La 1in F(V,) x: iy F(V,)
VEOb(M(x,Lix, .X}°) v, €0b{M(x, . X)") _vzeob{u(xz.x)‘“}

where u is the natural map and the vertical mpﬂ are bijections
1.11.5. To define the lower horizontal map v observe that the
subcategory Hl{xi ¥ x2.)(} of ll(xl u xz.!(} ce:_ms_isting of schemes
V= Vl u Vz. where Vi € Db{!(xi.x)). 1=1,2, is cofinal in

M(x; U x;.X) and, hence, we have a canonical bijection -«

1.11.7.

FY) —  lig Lin
V,€0b{N(x, .X)°} V,€0b(H(x,.X)°)

¥: 5_13

F(Y, UV,
VEOb(H(x Lk, X)")

ol

Let now for ail V, € Ob(lt(xi.)()). 1=1,2
KA F(Y, U V,) — F(V,} x F(¥,)

be 2 canonical map. Define

s
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1118, v = Lim im Yy ¥

V,€0b(H(x, .X)®) V,€0b(K(x, X)) 12

and put v = viw.

For an additive presheaf F, Yy vy is & bijection for ali
1'

2
Vieob{ll(xi.X)). i=1,2 and, hence, v, and v are bijections.

Then diagram 1.11.6 shows that u s a bijection, f.e. Fi is
additive. By 1.2(1) an additive presheaf on x , isa sheaf, hence,

P .
Fx..Fx.

(4) Since any sheaf is additive, 'ir‘: is additive by (3). Then
(2) and {3) fsply all equalities of 1.11.2. On the other hand the
construction of the sheaf associated with a presheaf given in ({SGA 4],

I1. 3.19) shows that

<
1.11.8, lim

VEOb(N _,(x* X' ™)

F(V) = lig F(v)
vem,(ucd{x',x')“}

for any irreducible x' € Ob{xcd) and any X' € Db{xcd) such that

x' = X' g ¥ {this fact remains true for any topelegy on X', see

arguments in the proof of [SGA 3], VIII, 3.9}, This together with

1.13.1 and 1.11.2 implies 1.11.3,

{5) If F is additive the middle bijection and the first

k
equality of 1.11.3 can be extended to any reducible x' = U xi using
i=}

1.2.3. Q.E.D.
1.12. Let 1 be & small filtered category (see [60], ch. IX).

1 — :l(i € Ob(Xed) a filtered projective system in Xcd indexed by
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1 €1, {.e. a contravariant fuhctor I Xcd. We often will consideéer

projective systems satisfying the following condition:

1,12.1. All schemes Xl are quasi-compact and quasi-separated and all

the transition mwaps uy are affine and flat.

P4
1.12.2. Exsmple: Llet X be a locally noetherian scheme, U T X an
affine open noetherian neighborhood of x € X, Ngd(x.'.\() the category
of cd-neighborhoods of x affine over U. Then the dual category

1= Ngd{x.x}o is f1ltered by 1.11{1) and the projective system
Ngd(x.)(} € X.q+ canonically indexed by I, satisfies condition
1.12.1.

1.12.3. For x € X, a finite separable k{x)-algebra A' and
%' = Spee A" € O‘b(xcd) denote by 0:. the unique henselian

h 1
Ox’x-algebra such that 02‘ @ 0h k{x} = A’. {Notice that 02. exists

x.X
k
and is untque by ([EGA], IV, 18. 5.15); it coincides with z 0:. Xt
=l J.
k
where x' = 1} xi i% the decomposition of x' into the disjoint union
=i

of irreducible components x‘;. and X' 1is an etale X-scheme such

that X' x % = x'}.

1.13. Corollary. let X bea l.ocaliy noetherian scheme, € be a
faithful subcategory*and all schemes Spec Bﬁ‘.X’ for all

X' € Ob{X ;) and for all x' € X'. Let F: €~ (Sets) bea
contravariant functor. Assume that F commites with filtered

projective limits in € which satisfy condition [.12.1 above:

e

of Sch (X) which contains the category

X4 88 a faithful subcategory *
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1.13.1, F (iim X,} = lim F(X ).
1€l 1€l

Let F: X_, — (Sets} be the restriction of F on X, and F
be the sheafification of the presheaf ¥ on Xcd. fet x€X be a
point.

{1) The presheaf stalk I-‘f: of F at the point Xed of xcd

can he described as

k
1132, Py = Fely =Y o)
=1 3
k

where x' = H xi € (R)(xcd) and other notations as In 1,12.3.
$=1 .

Moreover., if F  is additvive
k
1.13.3. F(x'}= N F(a:".}
=1 3

{2} The (sheaf-theoretic} stalk ﬁx of the sheaf F at Xed is

k
1.13.4, F.(x') = n Fehy,
X'} - X}

k
* * € Obix

forall x" = Ux 1.
J=1 i ed

In particular,
1135, Px) = F x) = FOR) = ¥t
if x° 1s irreducible.

- L} 4 = 1 ] 1
Proof: LetXGOb(xl)besuchthatx Xxxxanduc-—»x
L] 1] 1 Q

be 5 Zariski open neetherian affine neighborhood of x', Nui{x XYY
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the category dual to the category Ngd(x’.X'} of neighborhoods of x'
on X', affine over U {see §1.9}.

Using 1.11.3, 1.11.2, $.12.2 und 1.9.1 we obtain:

FPx') = la F(V}) = F(  )m

V)= Pl .
v € ob(N (x*.X'}%) veoﬁ(n“('x"’) Gex)
al®’ A )

and similarly for 'l'!x{x'). This proves 1.13.2. If F is ndditi;ve
presheaf then F, 1s also additive by 1.11(3). and any sheaf is-
additive. This together with 1.13.2 proves 1.13.3. The equalities of
1.13.4 and 1.13.5 follow from 1.11(3), 1.13.2 and 1.2.3.

1.14. Example: Let F be one of the Functors Icn: X' =G {X') or
Gn(llel)z X — G (X'.Z/2Z} of the G-theory (se:e 0.2}, which are
defined and contyavariant on the category (Sch/x}“ of all X-schemes
and flat morphlsms, or one of the functors Kn: x s Kn(X'} or
xn'{va): X' wa xn(x;.zuz} of the X-theory which are defined and
contravariant on the category Sch/X of mil X——s?chemes and all
X-morphisms. Then these f\_mc:t.ors are additive and satisfy the
conditions of Corollary 1.13 by {{33}, 7.2.2}. Therefore, for al}l

x € X and all x'GOb(xod}

Ll () (x) = ¢y, Elava) (x) = qol. v
t2. (&N () =k (@l K (x) = x (. e,

1.15. Proposition: fet F be n sheaf on xud‘ Then the family of

stalks Fx’ x € X is conservative, 1.e. any homomorphism of sheaves

u F —F° on xml is an isomorphism if end only if the induced
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homomorphisms uxt Fx — F;‘ on the stalks are isomorphisms of sheaves,

for all x € X,

This propesition can be proved by a modification of the proeof of
the simllar property of stale topology {[SGA 43, YIII, 3.5b)} using
1.9.f andd 1.11.2. We omit details,

As a formal consequence of Proposition 1.15 we obtain:

1.16. Corgllary: A homomorphism of sheaves ui F -+ F on X, isa
monomorphism {resp. an epimerphism) 1f and only if u s F:c sy F;( is a
monomorphism (resp. an epimorphism} in the category of sheaves on LI

for all x € X,

1.17. Corollary: Let F «» G -~ H be a sequence of homomorphisms oi‘
sheaves on xcd. ‘Then this sequence is exact if and only 1f the
sequences Fx —_ Gx b Hx are exact, for all x € X.

1.17.1. BRemark: It is enough to check all conditions on stalks in
1.15-1.17 for irreducible x' € Ob{x¢d). 1.e. the spectra of finite
separable field extensions k'/k. In particular & homomerphism of
sheaves on Xcd u: F— G is an isomorphism {resp. monomorphism,
resp. epimorphism} 1f and only 4f for any x € X and any irreducible
x' € Ob(xcd} the induced homowerphism ux(x‘}: Fx(x’} b Gx{x'} is an

Isomorphism {resp. monomorphism, resp., epimorphism).
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The cd-gohomolo

In 1.18-1.44 we shall assume that X ia a locally noetherion scheme,

1.18. Let db be the category of abelian grbups. ,(xcd} {resp.
(X 4} be the category of presheaves {resp. sheaves) of abelian

groups on X .,

i 9(X_;) —>db, F—I(X_.F). FE€O0b{#(X_)))

the functor of global sections. The functor I' is Jeft exact. Its
right derived functors RqF(F} = H“(x F}. q 20 are called the g~th
cohomelogy groups of xcd with coefficients in F.

[.18.1 Lemma: let X = Spec R be the spectrum of a Jocal henselian
ring R. Then for any sheaf of abelian groups ¥ on xcd'

i
H{xcd.F}_.{). for all 1 > 0.
Proof: Let x € X be the closed point and
O =t G ey § it G e }

be an exact sequence of sheaves on X d” Then by Corollary 1.17 the

sequence of stalks evalunted on x must be exact:

0 —» G.;({x} - Gx(x} ey G;{x) et )

Since X ¢5 a local hense}llan scheme, each etale morphism
X' = X with x € cd{X'/X} admits an X-section X -+ X', Hence, for

any sheaf G on Xcd

Gx{x) = }_XJE C{k') = G(X}

X*€0b(N_,(x.X)")
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Therefore, the functor of global sections I' 1s exact on 9(xcd}, and
W . F) =0, forall 150.

1.19. lLet I be a filtered category. {i *-*Xi, i €I} a filtered
projective system of X-schewmes. Assume that all schemes xl. for alil
1 €] are quasi-compact and quasi-separated and that all transition

morphisms uui XJ —»Xi are affine. Then the limit X = Qi:m Xi
exists in - Sch/X ([ECGA], IV, 8). let F be a sheaf on Xoa° ?i
{resp. F_} the inverse image of F on Xi {resp. X ). Then the
canenical prqjections u Xy -»Xi. i € Ob(I), tinduce the canonlcai.

maps u“(xi.cd,irl} «»H“(xw'cd,r.,) and therefore the map

1.19.1, ln ﬂ‘*{xi'cd.f*i) «-—-»Hq(xw_nd,'s“).
1e0b{1)
1.20. Thegrem: IUnder the assumptions and notations of 1.19 canenical

map 1.19.]1 is an isomorphism.

Proof of 1.20 fellows the general scheme of the proof of a similar
fact for etale topelogy {[SGA 3], VII, 5583.5) and is too long and
technical to give here,

1.21. Let §f: X —» Y be a morphism of schemes, f§d= 9’(Xcd} --’9(‘{0&)

be the direct lmage functor on the categories of abelian sheaves
induced by f. This functor is left exact and its right derived

functors qu:d. q 2 0 are called the higher direct lmages of f,
1.22. Theorem: Let f: X — Y be a morphism of schewes,

Fe Ob(ff(xad)} a sheal of abelian groups on Xeg Then
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(1) &4

w 18 the sheafl associated with the presheaf

i -——-’Hq{{fﬁl{'{'}cd.F') on ch’ where F' = f"{F) is the inverse

ed

image of F on the X-scheme X' = l'_l{\"}. The formation of Equ“

commites with the localization on ch.

+

{2} ‘There exists the Cartan-Leray spectral sequence

1.22.1.  E5'% = HP(Y_.ROE.F) S (X ,F), p20.q0.

If Y is noetherian and dim ¥ < » then this spectral sequence is

strongly convergent.

(3) The fibres of the sheaf RIf (F) at x € X can be described
as

1.22.2. ﬂqf*(f-‘)x{k') = H“({a:.)cd.F:.).

for any etale k-algebra k', where x' = Spec k', the henselian
0: x—algeh‘m 0::. 1s defined in 1.12.3, 1.13, and F:. is the inverse
image of .F on  {Spec Ol):’)cd

Proof: Statement {1) and the existence of spectral sequence 1.22.1 are
apecial cases of the results proved in {[SGA 4}, V, 5.1. 5.3) for any

. £: ‘I‘1 -— 'f2.
this spectral sequence foliows from vanishing of E;‘q for p > dim X

continuous morphism of topoi The strong convergence of

(Theorem 1.32 below}, (3) follows from (1}, Theorem 1.20 and Corsllary

1.13.

M
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C 1 th r the cd-to

1.93. Let 1: Y — X be a closed subscheme of X, U = X-¥, j: 4 &a X
the natural open immersion, U and Y determine the open and the

clogsed subsites of xcd respectively. It follows then from the

general results of ({SGA 4], 881V, 13, 14.5) that the functer

18% Y, —X_, has the right adjoint

b~ ~
1ed.x0d--n'c

is injective.

g and the

¥
adjuniction morphism iidoi' Moreover, for any

cd
sheal of groups F on X not necessary abelian) the sequence
cd

- 1d

'
| RN 1"“1&1}-‘ — F oy J:dj:dl?

1.23.1 »

is exact {[SGA 4]. IV, 1.4.6}. In particular. for any etake morphism

X' — X we have

1232 Pl F) 557 e gt (1) = Ker(FOX') — FU x X)),

f.6. 15(F) can bo characterized as the maximal subsheaf of F,

sections of which bave their supports in Y {{SGA 4]. IV. 14.8).
Beginning from this point in this section and in §§81.24-1.30 below

we shall drop indices “od” in the notations of all these functors and

H cd @ !

instead of i*’icd‘i vees It owill

write simply 1 i”. i od

not cause a confusion.

The functor ¢: F — 1 41 (F) (resp. wi F = I(x.1,1"F)).
e Ob{sf(xcd}) is left exmet. Its right derived funetors
R = (X ;. F). n20 (resp. Ry = Hp (X 4-F)

the n-th local cd-cohomoltogy sheaf (resp. group) of X modulo Y with

n y0) are called

coefficients (n F. There exists & long exact echomoiogy seguence
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1.23.3.  — Ny F) — (X g F) = (X 4 F) — H*(U . F) —

relating the ordinary and the local cd-eohomology ([SGA 4]. V. 6.5.3}.

We shall call it the cohomological sequence of the pair (X ,Ucd}.

1.24. Theprem: Let I be a filtered category. {i = X, 1 € Ob({I}}
be a filtered projective system In Sch/X. Assume that all schemes

X i € Ob(1} are quagi-compact and qmsi-sepa}ate;d and that al} the

i‘
transition morphisms uu: X! — Xj are affine, Denote
X = Jm X,. let Y € X be a closed subscheme, Y, =X % Y and

1E0b(1)
Y, = X, X Y are inverse image of Y on X i € Ob(1), and X
respectively: F a sheaf of abelian groups on X ., Fi and F_ are
the inverse images of F on xi,cd and Xw.cd_mapectiveiy. Then
the canonical map
1.24.1. Ly By (%) 0P — iy (X, oqFa
1€0b{1}

is an iszomorphism.

Propf: Let U‘ = X;Yl. U, = X-Y,. For all 1 € Ob(I} we have a

commutative diagram

-1
TN g ) O F) M[ff\i{xi PR
e N, Rl = WO, g B ) (K g F)

s H(X F)MH(U

1,ed*" 1 l i, cd'

Fg} =~ ..

= %, g B} — HU, LR,
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rows of which are exact sequences 1.23.3. for the pairs {xi,vi) and
{X,.U4.). Since exact sequences in the category of abelian groups b
are preserved by filtered direct limits {{55], ch. ¥, th. 5). applying

}“i._lp. to the upper row of this diagram we obtain again 1 commtative
ieOb{1}
diagram with the exact rows. By Theorem 1.20 four external vertical

arrows of the new diagram are isomorphisms. B8y 5-lemma {[60], ch.

YIIX. 84, lemms 4} the middle arrow is also an isomorphism.

1.24.2, BRemark: The same arguments cap be used to prove an analogue
of 1.24 for etale cohomology. This analogue seems to be lacking in the
iiterature on etale cohomology although 18 quite useful {see the proof
of Corolliary 1.28 below).

1.25. Theorem: Let Y €9 X be s closed subscheme, F a sheaf of

abelian groups on xcd

{1} 13{}( .F} iz the sheaf associated with the presheaf

X’ —-9!{3.{)(' F'} on xcd

imge of F on {X‘)cd. The formtion of this sheafl commtes with the

where Y' = X' Xy Y. F' is the inverse

a localization on xcd'
. - Jh 011
{2} For x€X and x E{)b{x let Xx = Spec

Y.—Xh xxY and Fh be the inverse image of ¥ on (!(hj‘_}d
Then

1.25.1.  a%(X .F)x{x')&ﬂzh((x:.)cdf"x&
.

{3) There exists strongly convergent spectral segquence
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1.25.2.  Ep % = #P(X 200X 4. F)) @ @”(xcd.r}

Proof: Statement (i} is a special case for the topos Xcd ‘of the
general results of ([SCA 4]. ¥, 6.4(1).(2)). Statement (2) follows
from {1} and Corollary 1.13 applied to the additive functor

X' “""‘\}xxx'(’" JF*). Condition 1.13.1 of Corollary 1.13 Is satisfied

by Theorem 1.24. The existence of spectral seqﬁmwe 1.25.2 follows
from the general results of {[SGA 4], V, 6.4{3)). Its strong
convergence comes from the vanishing of E;’q for q » dim X which is

proved below (Theorem 1.32}.

1.26. lemm: let ¢ xlmx be an etale morphism, i: Y & X a
closed subscheme of X. Y, =¥ xy Xl.‘ 10 Y C—-OXI the natural
closed immersion. Assume that ¢ induces an fsomworphism

ey : Y, —+Y¥. Let F be a sheaf of groups on X,q (not necessarily
i

abelian), F, = ¢ (F). Then the canontcal homomorphism
i t

1.26.1. -+ T(X,i 1 (F}} -«—ol‘(xl.i“lz{i‘l)}

induced by ¢ 1is an isomorphism.

Preof: Consider the commtative diagm

3 et T(K 4, 8 (F)) s F(X,F) et T(U,F)

Y *x fy
1 s (X, 8 81 (F)) — T(X).F,} —s F(U,.F,)
rows of which are exact by 1.23.1,
(1) Inlectivity of v Let s € Ker 7. Then we can consider s
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as an element of I'(X.F} such that slU=1 and six = 1. But the
: 1

couple of etale morphisms {U & X, X, =+ X} isa covering of X in
the cd-topology (because Y € cd(X,/X)). Therefore, = =1 in I'{X.F)
by & characteristic property of sheaves [[SCA 4]. II. 2.4}, see also
1.2.2 above,

(2) Suiectlvity of 3¢ Llet s € [(X.1,41(F)). Then the
sections i € I(U,F} and s € r{X!.Fi) agree on Ul = Ki xx U, Since
the couple of etale morphisms {U ‘- X, Xx -3 X} is a cd-coveriiy, by
another property which characterizes sheaves in the category of
presheaves ([SCA 4], II, 2.4) there elxists a gection t € F{X.F} such
that ¢y (t) =8 and tl; = 1. Hence, t € I(X.1,4'(F)) mnd

{t) = 5.

1.27. Theorem: (excision for Hy(X ,.F)} Let w7 X, —+X be an
etale map, i1 Y Lo X a closed subscheme, and 2 & X, a closed
subscheme of Xi such that the restriction of ¢ on 7 induces an
1somorphism qu= Z ~:—-r\'. F a sheaf of sbelian groups on X _,. Then

cd
there exists a canonical isomorphlsm

1271, WX, F) <o (X, .e"(F)), for all no.

Prooi: (1) Denote Y, = p"’{'r} =Y xX,. Clearly, Z »Y,. Assume
first that Z = Yi' Since xi € Ob(xcd). the functor inverse lmage
9“: V{Xed) — 9{3(1&6} is exact and has exact left adjoinmt functor
) ’.-J'(Xl.cd) ] ?{Xcd). called the “extension by zero™ {{SGA 43, 1V,
§11). Therefore 9* transforms injective sheaves to injectives

{ISGA 4}. V. 4.11). It follows from a well known peneral result of
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homological algebra {{58], 2.4.1} that it is sufficient to prove the
theorem for n = 0. But since by Definition 1.23 .
H{;(Xﬂd.F} = F(X.i”i!(f’)}. isomorphism 1.2’1.} for n =0 is just
1.26.1.

{2} Consider now the general case of the Theorem. Since
oy Z =+ Y 13 an isoworphism. its inverse i Y::——DZ can be

considered as n section of the etale morphism ¥y ¢ Y, ~+ Y., and by

1
{EECAT. IV. 17.9.3) its image Z = ¢(Y) 1is open in Yi' (If Y is

H

connected, Z coincides as a space with a connected component of 'l'l.}
Hence, Z1 = Yx-—Z is closed in Yl. Since Yl is closed in XI. Zi
is eclosed also in Xl and therefore x2 = Xl—-Zl - is open in Xl.
Notice that Z = Y Xy )(2 by the construction of x2 and, hence, the
pair (X2.Z) satisfies the assumption of case {1} proven above.
Applying the result of case (1} to the etale morphisms

o ,oxz: x2 — X, and {: X2 o xz. one obtains canonical

isomorphisms

Tt -~ ol ~voon »
1.27.2. H(X_;.F) = l-t;(xz’cd,t (F)) e H,(X; .. (F))
Notice, that ¢°oi = » and 1“09“ = ‘l'“. Therefore, the

composition of this isomorphisms of 1.27.2 gives 1.27.1.

1.28. Corollary: Let X € X be a closed point, ¥ =& sheaf of

abelian groups on Xcd, F: the inverse image of F under the

canonical map i Spec 0: s X. Then the canonical sap

X
281 X o F) — BReR ) P
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induced by i: is an isomorphism.

Prgof: The wap 1.28.1 can be factored into the composition

iU _,.F) £, HI((O)

x.xlod'

KXy F) 5 i F)

o
ueob(N_,(x)°)
The map a {resp. P} is an isomorphism by Theorem 1.27 {resp. by
Theorem 1.24).

1.28.2. BRemarks® (1) Anslogues of Theorem 1.27 and Corol lary }.28
are true for Hi(x G}, 1 %0,1 and a sheaf of non-abelian groups G
with essentially the same proofs. These non-abeliasn versions have been

used in the proofs of the results of our works [281-[321.

{2) Virtually the same arguments give the following excision

theorem for etale cohomology:
1.28.3. Theorem: Let ¢: xl ~+ X, ¥, Z be such as in Theorem 1.27,

¥ a sheaf of nbelian groups on X“. Then there exists a canonical

isomorphism
n T o '
By(X, .. F) Mﬂz{xl.et’@ {F)). forall n20
This theorem is more general than the excision theorem of Miine

{f49], ch. II, Theor. 1.27) which corresponds to the case when
z = o ).

1.29. For an arblitrary point x € X and an abelfan sheaf
F € Ob{(#(X ,)} define the local cohomology HI(X_,.F} of X_, module

x with values in F by the formula
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1.29.1. n:{x F) = 1y il p;f
o ¥V '
VN, (x.X)

where x is the closure of x in X with the reduced scheme

{vcd'

structure. Since Xx Xy ¥V 1is closed in V the local cohomology under
the _;3_91 are defined. .

If U 1s an open affine noetherian subscheme of X and
Hgar(x.X} the subcategory of affine open subschemes of U, then its
dual category Ngm{x.xf 18 cofiml in NZar(xi.x)o and we can
replace the limit with respect to NZar(x'x)o in 1.29.1 by the limit

Y o ' Y
with respect to ] Zar(x.x} . The projective system N?ar(x.X}

satisfies the conditions of Theorem 1.24 and we obtain by this theorem:

C1.28.2. H:{xcd.r-*) *“*szox.od*”ox)

where Fax is the inverse image of F on {Spec ox)cd‘

Bince x iy closed In Spec ox. Cornilary 1.28 is applicable to

Hz{ox.cd'F} and 1t gives a cenonical i{somorphism

1.20.3.  BYXF) s 3l P,

1.30. fet Xp be the ser of points of codimension p on X. 1.e.
1.30.1. X = {x€X | dim o, x =Pl

Lat zp{x) be the set of all closed subschemes of X of
codimenaion 2 p. Following the construction of Grothendleck for etale
cchomology ([23]. ITI, 510} consider the coniveau filtration
Patx F) on HUX ,.F):
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1.30.2.

PR = U

zczx)

Ker (H!'(X_,.F) — BI((X-2)_4.F)). 0 < p ¢ dimX

1.31. Propesit {1) There exists a spectral sequence

1.31.1, B9 =) WYX, P (EFe0 i p D din(X).

xexp for all gq 2 0).

whose E_-term is the graded group chnW“{x .F) associated to the
coniveau filtracion.

(2) B9 = z Hﬁ*‘*{{ﬂﬁ)c‘,f:)-

xEX
p

Proof: (1) The construction of Grothendteck ({23]. III, §10) actually
glves spectral sequence 1.31.1 for any topology which is stronger than
the Zariski topelogy and has a reasonable theory of "cohomology with
supports” {see also [56}, %3; {24], ch. VII}.

The presentation of E|'% in the form (2) follows immediately

from 1.28.3.

¥e bave now al} necessary tools to give a complete proof of the
following important theorem of Kato-Saito, which is stated with some
indicatfons on its proof in {[25]. §1.2}). The theory of local
cohomology developed nbove allows us to supply the details lacking in
[25].

1.32. Theorem: (Kato-Saitc [25}1). Let X be a noetherian scheme of
finite Kruli dimensfon d, and F a sheaf of abelian groups on X.
Then
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1.32.1. WYX _,.F} = 0, for all =a>d.

Therefore, coh.dim{xcd) £ n (here coh.dim(xcd) is the cohomological

dimension of xcd}'

Progf: If d=0, X 1s a sum of spectra of fields, and

H“(xcd.l-*} =0 forall n>0 by 1.2(1) and 1.5.1. Assume by
indt:lction that the theorem is true for all ac}m}es of dimension < d.
Lot X:: = Spec 0::. Yz = X: -~ x. Exact sequence 1.23.3 for the pair

(X:.Y:} ifmpiies that
1322, WO P _:..n:((x:)cd,l-‘). n) 2

If x€X. with p<d, dim X} = p, and dim Yo = p-1 ¢ d. By
our inductive assumption Knﬂl({‘(::}cd.?} =0 for m?p and,

P.q Qb
therefore, Ep'9 = § W'Y .
xEX

4
But then the spectral sequence degenerates, and, hence ({21}, ch. I,

F} =0 for g >0, forall p2 0.

4.4.1) H"(xcd,f‘} - E‘;'o for ail p 2 0. In particular,

p.0

(X ,F)} = .

= 0 for p 2> dim{X).

1.33. Corollary: Under the assumptions and notations of 1.32
Ty

1.33.1. Hx(xcd.F) =0, n codlmx(x}.

Proof: The vanishing in 1,33.1 follows from Theorem 1.32, 1.32.2 and
1.28.3.

e
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The ri with other t [

1.34. Denote by x?ar' X the Zariski, small etale and

et ad Xg,

~

smal} flat { = £fpf} sites of X respectively, and let X;r. xet

and X“ be the topoi of sheaves on inr. Xa and X“

t
respectively. For all X' € Ob[XT) let Cov,r(X'} be the category of

coverings of X_r where T is one of the symbols Zar, et or [fl.
1.35. The natural embedding of the categories of coverings

» * a L]
Vi Cavcd{x } —+ Cov_{X'}, for all X' € Ob(Ew/X),

where v {is ene of the symbols et or fi, induces a morphism of

sites v! X_r s Xcd, v = et, f1, It induces alsc a morphism of the

corresponding topol ef sheaves:
T T M, -~
1.35.1, u = (u*.uf). XT --—4xcd, Tz et, fl,
where the functoer "direct image” u:: XT —ch xcd is defined by the
Formula
1.35.2,  ul(F) = Fov", forall F€OB(X).

and the functor "inverse jmge” u:: xcd —.x? 1s defined as the left

adjoint to u: which exists by ([(59}. ch. IX, Theor. 5.1},

1.36.

For a sheaf of abelian groups F on x? congider the

Cartan-leray spectral sequence corresponding to the morphism of topoi

u' ([SGA 4). V, 5.3):
1.36.1, BB = WP BYuiF) 3 HFTOXF), e et SL

If X 1is a noetherian scheme of finite Krull dimension sthen this
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spectral sequence converges strongly, because by Theorem 1.32 the
cohomological dimension of x4 1is {n and, .therei”ore. Eg.q = O
for p > n. As usual, it implfes the existence of the canonical

homomerphisng
1.36.2. WX ,.ul(F) —s B'(X_F). for'all 120
and the exactness of the sequence of lower terms of 1.36.1
H 1 i
1.36.3. . 0 — H (xcd,u:(l?}} — H'(X,,.F} «—«-an“{xud.n u:(F}} w—t
s (X, (F)) — HO(X_, . F)

(see {21}, ch. 1, §4.5},

This exact sequence is still defined and 1s exact (at least in its
first three terms) for a sheaf of nonabelian groupa F on X_r {{s8z],
ch. IXI, IV). A detailed study of this exact sequence in the case when

X is the spectrum of a Dedelind ring and F s a reductive group
scheme over X has been undertaken tn [28}-{31].

1.37. Proposition’ For any point x € X. any separable k{x}-algebra
A' and x' = Spec A' € Ob(x_,) the stalk un:{F}x of the sheaf
un:{!’} on Xcd at x can be described as

1.37.1. R%L(F) (x') Z»n“((a:.;f.r:}. forall q 30, *=et, fl,

where 0}',(. 1s the unique henselain 02 x—algebm such that
0::, @ k{x) = A" {[EGA]., IV, 18.5.15), and P]’:. is the inverse image
of F on (Spec aﬁ.}r.

Proof: Description 1.36.1 follows from Corollary 1.13 applied to the

functer X’ wuq(x;.r') on xcd' vhere F' 1s the inverse image of
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¥ on X;. This functor satisfies Condltion }.13.1 of Coroliary 1.13°
by ([SGA 4], VII, theor. 5.7 for v = et: [23}, IIl., p. 172 for
r = f1}.

1.38. Lemma: Let X be & noetherian scheme of finite Krull
dimension, ¥ a sheaf of abelian groups on X_r. r=et or f}. Then

the following properties are equivalent:
(1) B0(F) =0, 1¢1¢n.
{2} For nmr etale X-scheme X' the canonical homomorphism
B (X, 0 (F)) — H'(X!.F)
is an isomorphism for 0 ¢ % { n anxd a monoworphism for § = n+l.

{3) For any point x € X and x' €0b(xcd}

el My =0 1¢1¢n,
where 0‘,:- and F::. are defined as in Propozition 1.35.

Proof: The implication {1} ® {2) follows from spectral sequence
1.35.3 which converges {even strongly) under the noetherimnness
assumption, and a general property of convergent spectral sequences
{{57]. ¢h. XV, Theor. 5.12}). The implicatien (2} ® (3} follows from
flemma 1.18.1, Theorem 1.20 and 1.9.1, The equivalence (3) <> (1)

follows from Proposition 1.37.

1.39. Pxample: Let X be an irreducibie curve over an mlgebraically
closed field k, € a smooth abeliamn group scheme of finite type oveé'
X with the connected affine generic fibre éﬂ. Since k 1s

algebraically closed, for any closed peint x € X, k{x) — k and the
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category X.d is trivial. Therefore.
1,,,h o hy v g
1301 Bl o) — ey, . (i(x) .G} = 0

by {{23], IIl, Theor. 11.7). On thg other hand, {f 7 is the generic

paint of X, k{n) is a field of cohomological dimenston £ 1 1in the

sense of Serre {54}, ch. II, $3)}. Then Hl{k(n)et'cn) caincides with

the Calois cohomology groups Hi{k(n}.cn). for all 1 20, T = et,
fl, and the Galois cohomology vanish for 1 =1 and 2 by the
theorems of Steinberg and Grothendieck respectively {[54]. ch. II1}.

Therefore,
i o ~ oo
1.36.2. H (xcd.c) et H (Xet.g} s H (X“,G} i=1,2

It is clear, that the conditions of Lemma 1.38B are satisfied oenly
in very special cases. As rule, H’(xﬁd.!’} is very different From

1 i
HUX_F) or H'(X.F).

'
1.40. Consider now relationships with the Zariski topology. For any

Zariski open subscheme U ¢+ X the natural embedding of the categories

of coverings
“x
1.40.1.  t: Cov, (U) C*Cavcd(U}
induces a morphism of sites
1.40.2. x‘:d -—-»xz“.
As in §1.35 t  induces also & morphism of topol of sheaves
L] ~ ~
1.40.3.  r = {r,.r}: xcé M‘xZar

with r(F) =F o ¢, for any sheaf F on X, and r  defined as
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the left ndjeoint functor to L For an abelian sheaf F on xcd

consider the Cartan-Lersy spectral sequence
1.90.4. BP9 = WP, R (F)) 2 HPTR(X LK)

If X 13 a noetherian scheme of finite Krull dimension n. then
Eg'q =0 for p>n by the vanishing theorem of Grothendieck ([58],
Theor. 3.6.5) and therefore the spectral sequence converges strongly.

Again, it implies the existence of the canonical homomorphisms
1.40.5.  H'(X, . (F)) — H X F), 120

and the existence and the exaciness of the seguence of lower terms of

1.40.4:
1.40.6. 0 s H(Xy .1, (F)) — B (X . F) — 5, 8 (F)) —
— By 1 (F)) = HA(X . F).

1.41. lenma: fet y € X, Xy = Spec Oy X Then the stalke of the

sheaf Rirﬁ(‘r’) at y cen be described by the forsula

i ~ i
LAL1. (R'r,(F)), R (xy,cd'Fﬂy}'

vhere Foy is the loverse image of F on (xy)cd.

The proof proceeds as in Proposition 1.37 with Theorem 1.20
replacing the results on limits for etale and fiat cohomology oited

there,

1.42. Lemm:® Let X be a noetherian schewe of finite Krull

dimension, F a sheaf of abellan groups on xcd' Then the following

properties are equivalent:
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(1) R'e (F) =0, 1¢1¢n.
{2} For any open subscheme U Lo X the ca;nonica.l homomorphism
B Uy T (F)) — B (U, F)
ts an iscmorphism for ¢ (1 {(n, anda monomorphism for 1 = n+i.
(3) For any point x € X

Hi{{ax.x}cd‘FO =0, 1<1¢n.
x

where Fox i.s the inverse image F on (Spec t‘-’x.x} od

The proof is snalogous to that of Lemma 1.38.

1.43. Remark: lemmns 1.38, 1.42 and their proofs are analogous to a
lemmas of Grothendieck on the relationships of etale and flat cohomolopgy

([23]. 111, 11.1).

1.44. Examples: {1} lLet X be a regular irreducible noetherian
scheme of finite Krull dimension, X the fileld of rational functions
on X, and € & reductive group scheme over X. It is shown in our

papers [30], [31] that the canonical maps

. gt 1
1441, A 3,{”2.“'0) — B (K::.e:'c)

are injective for all x € X, where B: is the henselization of the
local ring Bx of x on X with respect to its maximal ideal ms
and K: is the quotient field of 02 It foilows from this and exact

sequence 1.35.3 that the sequence

142, 1= H (R u250)) — '(x .0 D k.0)
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is exact, On the other hand it has been conjectured by Serre ([53].
exp. 1) and Grothendieck ([53], exp. 5; {23}, II, 2.10} that

1 et ~
Ker A= H {xhr.u*{c)}. where w = u or: Xoe ﬂxZar is the |
canonjcal morphism of these topoi. Therefore, the exactness of 1.44.2
implies that the remaining part of the conjecture is equivalent to the

bl jectivity of the canonlcal map

1443, H(X, % (G)) — B (X 05 5(6))

The conjecture of Serre and Crothendieck and, therefore, the
bljectivity of 1.44.3 has been proved in the cases when G is an
X-torus {[28], {63]); dimX =1 and G an arbitrary reductive
X~group {307, [31}: and dim X = 2 and ¢ is a quasi-spiit X-group
(30}, [32].

{2) Let D be & Dedekind ring with the quotient field K,

X = Spec K, 1 the generic point of X, Dx the Zariski local ring of

x € X, v{x) the vaiuat\ion of K corresponding to x. Denote by

ﬁv{x) and ﬁv(x} the v{x)}-adic completions of D and K

respectively. _
let ¢ be a flat affine group D-scheme of a finite type over D

B

with a smooth generic fibre Gn =G0 K. ‘
Consider the set of double classes cx(G) = G(K}\G{K\r(x)}/ﬁ{ﬁv

(x))
which we shall call the local class set of G. It has been proved in
{287-[30] that thers exists a canonical bijection

i LY
Lad, WD, 4.6) — ¢ (C).

A global, adelic analogue of 1.44.4 i5 also established there.
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We say that G?1 {er G} has the weak appro._xtmttm property with
respect to v{x) if the group G{K} is dense in G{ﬁ\r{x)) in the
vi{x)~adic topology.

if Gﬁ has the weak approximation property with respect o v(x)},.

c{ﬁv(x)) " c(x)c(ﬁv{xjj and, hence, by 1.44.4.
1445 B 4.6) —c (G) = 0

If G has the weak approximation property with respect to any
vix). x € X~ 17 then 1.44.5 and Lemm 1.42 imply that the canonical

mep
1 1 et
1.44.6.  H (X, w0 (G)) == H'(X_,.u."(G))
is a bijection. This assumption is satisfied in the following cases:

{i} KX 1s a number field and Gn is & simply connected

semisimple K-group [681. [60].

{11} K is a number field, and Gn is a K-torus which splits

over & cyclic extension of K {79}, [71].

‘Notice, that if Gn is semisimple but is not simply connected, or
if GT! is a K-torus which splits over a non-cyclic extension, the weak
approximation may fail even over number fields {see examples in {68],
{793}}. For other (non-arithmetic} flelds the weak approximation
Property ooccurs -(or. at least, is lmown} only in very few and speclal
cases [68], {44], [31]. The following example shows that the loss of
the weak approximatfon implies non-surjectlivity of the canonical map

1.44.6 for certain affine and fiat models of Gﬂ over D,
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(3) Let D, X, G ... as in (2} above, Assume that Cﬂ is
semisimple but does not have the weak approximation property with
respect to v{x} for some x € X. Let R (x) be the maximal ideal of
f’v{x)‘ Consider the family of congruence subgroups

ro- !{er{G{ﬁv(x}) —t Gfﬁv(x)"":(x)))' n > 0.

-~

rn is open in G(n\r(x))-' and it follows from the definition that
1f G does not have the wesk approximation c{?cv(x}} # GK)T_ for
sufficiently big n > 0. On the other hand, it is known that for
n > 0 there exists an affine and flat model Gn of Gr, over D
such that Gn(f’v(x}} =T,. Hence, H (D _4.0) — ¢ (G ) #0. and by
Lermma 1.42 the canonical map
1497, BHU, o, (6)) —— H' (U g5 (6))
is not surjective for some open subscheme U of X (it is always
injective). .

Exemple (1) shows, however, that map 1.44.6 is still bijective if
the reduction moduio m 1is the best possible, i.e. semisimple for all
x € X. Therefore, the bijectivity of 1.44.6 cccurs, as rule, only in
very regular situations: a regular base X end regular {ibres of the

sheaf G, no degenerationst
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2. THE SIMPLICIAL GODEMENT COMPLEX AND THE HYPERCOHOMOLOGICAL SPECTRA
O THE CD-TOPOLOGY

2.1. In this secticon we shall review and specify for the cd-topolegy
some general homotopy-theoretical and sheaf-theoretical constructions
of {5}, [41]. [38] which wil] be used through the rest of this paper.

The cosimplicial resolutfon of a sheaf t;f topologlical spaces was
introduced by Codement {{21}, Appendix) and extended to sheaves of
spaces on & topos by Deligne {[SGA 473, XVII, 4.2} and Illusie {{45], I,
1.6.3; 11, 6.1}, see nlso Johnstone {83]. Thomason ([38], §1},
combined the Godement resclution and the inverse homotopy limit
consturction (see [51) defined the hypercobomological spectrum H{X,F}
of a presheaf of spectra on a site < wﬁich has sufficiently many
points, for all X € Ob(€). This construction allows one to define on
the spectrum level a sort of a sheal "hyperhomotopy”, which
"interpolates” the sheaf cohomology and the homotopy groups of a
spectrs, It complements the Cech simplicial "hyperhomotopy” theory of
a simplicial spectra which emerged in the works of Grothendieck (see
Segal [52]). Deligne ({SGA 4. Y'%; [9]). Bellinson [4] and Gillet
[16] on cohomologlical descent for simpiicial schemes in various
cohomology and homotopy theories. See also works of Illusie [45],
Brown [7], BrownGersten [8], Hreen [§], Jardine [468], [66], [67] for
related or intermedian hem:opy—theorétical constructions.

Our notion of points of the topos xcd requires a careful
reexamination of all steps of the general schemes used In {21], [45]}

and {38] for the constructions of the cosimplicial Godement resolutfon
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of F, the hypercohomological spectrum _H(Xcd.F} and a related
hypercohomological spectral sequence convergent te w*(IB(Xc d.F}}. as
these schemes applied to xcd' This reexamination is carried out in
this section. Most complications are due to n difference between the
presheaf~theoretic stulk {or the presheaf inverse image) Fz ™ i:(?}.
and the sheaf-theoretic stalk {or the sheal inverse image) F, = i (F)
which srises with our definition of points {see alse §51.10, 1.11}. '
However, it does not affect the final result of this section — Theorem
2.22.

By the sajgn " Zs " tn §$82-4 we shall denote weak homotopy

equivaiences of simpiicial sets or spectra.

2.2. For a scheme X and apoint x €X let it x s X be the
natura} embedding. and ixz x:d ———k x;'d the corresponding morphism of
topoi of sheaves on the cd-topology of the corresponding schemes {see,

§1.4}. Consider the product

2.2.1. P =01 x.
xex ©d

For a sheaf F on 'xod put

2.2.2.  p(F) = N 1£(F) € ob(F )
xeX
and for G = 0 cxec)b{?“) put
x€X '
2.2.3.  p(6) = xzx t w6y € Ob(X_.}.

The pair (p*.p“) of adjoint functors defines the morphism of

topoil



292 THE CONMPLETELY DECOMPOSED TOPOLOGY

224, p ¥ X
o - P
let T=pp: xcd — xcd‘ The adjunction morphisms

»* )
7 Id - pp and e pp, -+ Id induce the natural transformations

of functors 1 Jd 2T and u: 77 - T which satisfy to the

-

relationship § = p.& .

The cosimplicial sheaf

. Y
2.25. TF = ({IF = TIF

def

TTE . v e}

Ul
LI

iz called the cosimplicial Godement resolution of F. The term in the

codimension n of this sheaf is F = Tnﬂl’. The coface maps are

2.2.6.

d; = Plyptti-l, g e e 2 G o ¢l

amd the codegeneracies are

2.2.7. s:‘ = hrh P L L P LM 5 ¢

i

One can check that d;‘s and sn‘s satisfy the standard

cosimplicial identities {[21]}. App.., 52) or ([B]. ch. X, §2.1) using
the mothod of Godement {{2173, App., §82,3).

The map 7' Id ~» T {nduces a canonical augme‘ntation ‘
2{F): F wa T F.

Let u: F «=»F' be a morphism of sheaves on Xcd. Then it gs
easy to see that u  induces a morphism of cosimplicial presheaves

T'(u}: TF ~ TF' which is compatible with the augmentations. i,e.
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such that

2.28. T{u)en(F)=n{F)ou

2.2.9, Remark. Let € be a faithfull subcategory of Sch/X which
satisfies all conditions of 1.13 and has fibre products. Let

F: € -+ {Sets) be a contravariant functor satisfying all conditions of
1.13, and let F be the sheafification of the restriction

Fi: X 4= {8ets} of F on X . Then on an affine X-scheme X' the

ed
sheaf TF 15 given by a formula:

~ -
2.2.10. TFX') = N (I F)X') = N FO8.R').
xex XX xex X R

where K = F(X.Ox} {resp. R' = I‘(X.Ox,}) are the rings of global
sections of the structure sheaf 0, of X {resp. Oy, of X'}). and
02 iz the henselization of the local ring ﬂx of x on X with
respect to its maximal ideal Ry [ Ox. This formula underiines the

geometric adelic censtructions of 82 of Ch. ¥ of {31}].

2.3. For a simplicial pointed set Y let 0¥ = Hapn(Sl.Y) be the
loop space of Y, where Sl is the simplicial l-sphere and Map, is
the function complex of based maps of the pointed set Sl into Y
{{51. VILI, §1).

Recall. that a prespectrum of stmp.ltctnl sets E = {En. nz2 0} is
a coliection of pointed simplicial sets En together with the
structurnal maps un: En — m‘ml'

A Fibrant spectrum E = {ﬁn. n 2 0} is a prespecirum E such
that all simplicial sets E  are fibrant (i.e. satisfy the Kan

condition ([§], VIII, 3.3). and all the structural maps «_  are weak
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homotopy equivalences).
The homotopy groups fk{E) of a prespectrum E = {En} are given

as the direct limit

2.3.1. rk{E) = lri: ka{En}. for all k€Z

with respect to the system of the canonieal meps on the homotopy groups
2.3.2. 'lﬁn{zn) — 'km(mml} -y 'k+n+1{En+z)' forall kel

induyced by Wy En -—-rfEml.
If E i3 a flbrant spectrum, " E s L EO' for a}l k 2 0O,

and En for all k¥ <0, where n » —k.

" E = Teen
Amp f = {fn}= E ~+E" of prespectra is a collection of maps
fn= En -—-»E;l. for sl n 2 0 such that fn-bl e = w‘; o fn.

A map of prespectra f: E ~— E’ {5 a weoh homotopy equivalence
if 1t induces an isomorphism on their homotopy groups. A map _
f= {In}t E—E' of fthrant spectra is a weak homotopy equivalence if
end only if each f : E “+E' is a weak homotopy equivalence of
simplicial sets., A mp of fibrant spectras ‘I = {fn} is a ftbration if
each f 1is {fan} fibration of simplicial sets.

A sequence of maps of fibrant spectra E' g Lag s a
homotopy fibre sequence &f for &ll n the corresponding seciuences of
maps of thelr n-th components

z;i“-snn—{!‘—;s!;. no,
are homotopy fibre sequences of {ibrant simplicial sets, f.e. f  lsa

n:
hoemotopy Fibration, and £, is & weak homotopy equivalence onto the
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homotopy fibre of fn'
The category of prespectra has a structure of a closed model
category in the sense of Quiilen [54] such that the corresponding

homotopy category is the usual stable category {[42], §2}.

2.4. The category FSp of fibrant spectra is closed under filtered
direct kimits. A flltered direct limit of fibrations {resp. of weak
homotopy equivalences) is n fibration {resp. wesk homotopy equivalence
([38]}, §5.5.85, {451, I. 2.1.21).

let F = {Fn}: € ~+ FSp be a functor from a sml.l category € to
¥Sp. Then for each X € 0Ob{¢) !-‘n{X} is a fibrant simplicial set for

all n and the homotopy limit holim Fn{){) is defined in the category
€

of fibrant simplicial sets {[5]. XI, 3.2). The structural weak
homotopy equivalences o : F (X) -:MﬂFnﬂ{X} of the spectrum ({F,_(X).

n 2 0} induce weak homotopy equivalences

2.4.1, haéim F(X) - boéim 0F_,(X) e mm}em' F LX)

Thus, holim Fn{)() is & fibrant spectrum, for all X € Ob{€}.
%

Let F.G! € -+ FSp be two contravariant functors with values in
FSp. A morphism u: F ~+ G is a family of maps of spectra
u{X): F{X) ~+ G{X) for all X € Ob('€} such that for the map

w: X* X in ¥ the diegram

2.4.2, F(¢) Gle)
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i1s commutative in the category of fibrant spectra,

Ve say that a worphism u: F -+ G s a weak homotopy equivalence
of the functors if the maps u(X}: F{X)} - G(X) are weak homotopy
equivalences for all X € Ob{€) 1.e. if the induced maps
rq{u}: wq(F) — rq(!-"] are isomorphisms of ‘the presheaves of groups,
for all q € L.

We say that a map u: F — F’ of contravaariant functors
F.F't € — FSp 45 a homotopy Fibration if for any X € Ob{€) the map
u{X}: F{X} ~» F'(X} is a homotopy [ibration.

¥e say that a sequence of maps Fl Ay F F2 of contravariant
functors F'Fi'Fz: €—FSp $sa ho;otopy Fibre sequence if for all

X € Ob(¥} the sequence of maps of spectra
F,(x) 281, pexy X Fy(X)
is a homotopy fibre sequence of spectra.

2.5. Definition: {[38]. 1.52) We say that a presheal ¥F: xcd — FSp
is odditive Uf for any xi.xz € Ob(xcd) the canonical map of 'spectral
250 F(X; U Xp) — F(X,) x F(X,).

induced by the natural embeddings X, ~+X, U X, 1= 1,2, is a weak
homotopy equivalence, f.e, {f for all ¢ € ¥ the induced map on the
homatepy groups

2.5.2. W (F)X; U Xp) = w (F)(X)) x 7 (F)(Xy)

is an isomoerphism.

Hence. F 1s additive if and only 1f the pfesheaves of abelian
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groups tq(f") are additive for all q € I in the sense of Definition
1.2.4.
For a sheaf of spectra ¥ )(mi —s FSp map 2.5.1 is actually an

equality.

2.6. Example: The presheaves of K-theory spectra @@ X' — G(X') and
G{T/T): X' - QX" A€}, f{resp. K X' -+ K{X') and

K{Z/ex): X' = K{X'.2/82)) of the category Coh{X} {resp. LF{X})
with the integral and Z/EL - coefficlents constructed in {80}, [70].
[r2]. [423, [38] are additive [33]. Notice. that all these

constructions are weakly homotopically equivalent {81].

2.7. Let x = Spec k¥ be the spectrum of & field k, and
Fi Xoq ™ FSp be an additif presheé.f of fibrant spectra, Foas
sheafification. Then condition 2.5.1 shows that the natural map
F-oF isa veak_homtopy eguivalence of presheaves.

If x = Spec k{x)} is a point of a scheme X and F: Xcd—w*FSp
is an additive presheal then the presheaf inverse image i:{l’-‘} is an
additive presheaf as the arguments of the proof of Propesition 1.11(3)

show. Hence, the canonical map into lts sheafifleation
2.7.1. iNF) — i(F

T.d g(F) = £ (F)

is a weak homotopy equivalence of additive presheaves,

2.8. Let f: X—Y be a morphism of schemes, F = {F“}: Xcd -+ FSp
{resp. G = {Gn}: Y 4= FSp) a presheafl of fibrant spectra on X ,
(resp. on Y .}. Then applying I, (resp. f“} to the family of
presheaves F : X ., — {FSSets} {resp. Gm: ch -+ {FSSets)) with
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values in the category (FSSets) of fibrant simplicial pointed sets,
we obtain a family of presheaves fu(F) = {f”{i"m]. m 2 0} {resp.
I“{G) = {l‘a(Gu). m 2 0}} which forms a presheaf of fibrant spectra
f4(F): Y 4 = FSp (resp. f"(C): X_, —+ FSp). On the other hand, if
Fa {?n. m 2 0} is the sheéfifieation of F on Xod. it is easy to
ses from the construction of the assoclated sheaf in ([SCA 4]. I11) that
F 1s also a sheaf of fibrant spectra.

In particular, for a point x € X and a presheaf (resp. sheaf)
F: xcd —4 FSp the presheaf iz(F} {resp. the sheaves i:{F). p*{F}.
and T'F, forall m> 0} are well defined in the category of

presheaves {resp. sheaves) of fibrant spectra.

2.9, Lemma: Let x be s point of X, E: xodw-rl“Sp a presheal of

fibrant spectra ¥ the associated sheaf on Then

Xeod'
{1) The functors rq. and rq commate with ix.#:

2.9.1. rq('ix’“(?.)} = 1x'"(#q{£1}]. for all g €X;

2. . . bl .
9.2 :rq(i

«ulE)) = ix‘“(;q{g)). for all g ¢Z.

- {2} If E 1is additive then ‘l’q{E} and I’q{ix ”{E)) are sheaves and
for all q €2 '

q
{3) The functors 1

293, wi, yE)) = 1, (7 (E)) =1 L (E)) = w (1, (ED).
x4 and Py = xf‘éx ix.ﬁ preserve weak homtopy
equivaiences, homotopy fibrations and homotopy fibre sequences.

Broof: (1) Forall X' €Ob(X_) let x' = X'xk. Using the

definitions of the functors involved we gbtain:

©2.9.4.
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L g ENE) = T (E)x') = 7,04, f(ENX)) = 7 (3, y(EDIX).

This proves 2.9.1. It is easy to see that ix u(;q{E)} iz the
sheafification of the presheafl ix i‘{'w'q{i-‘.}) an xcd. This fact and

2.8.1 impiies 2.9.2.

{2) For an additive presheaf E the presheaf of its homotopy groups
rq{E) is additive (see $2.5). By 51.2(1) ‘l‘q{E) is sheaf on x ..
and, therefore, 1,(.“(1‘1(5)) is & sheaf equal to 2x.”{wq(E)} by
1.4.9. The first equality in 2.9.3 follows now from 2.9.1, and it
shows that wq{ix’a(E}) is a sheal on X ..

For an additive presheal E the canonical map E — E induces

the cancnical isomorphisms

2.9.4. ¥ (E) N rq{E). for all q€Z

{see §2.7). This together with the proven part of {2) gives the middle

canonical isomorphism and the last equality of 2.9.3.

{3) Let u: E ~=2 E' be a weak homotopy equivalence of presheaves of

spectra on X ;. For all g € Z consider a commutative diagram of

the presheaves of the hometopy groups
7,1y 4(B)) == % (1, ((E"))
8 ' i
....—.—--‘:mm .
1 4(7g(ED) e 4T (E'D)
where the vertical maps are the equalities of 2.8.1. Since

tq{u): rq(E) = tq(E') is an isoworphism of presheaves hy our
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assumption, the bottom horizontal wap is an isomorphism of the
presheaves. Hence, the top horizontal map is an isomorphism of
presheaves on Xoqr for all q € 7, {.e. the presheaves ix,ﬁ(EJ and
ix‘#{E') are weakly homotically equivalent.

The preservation by 1x.ﬂ of homotopy fibrations and homotopy
fibre sequences of presheaves on X.d Follows directly from the

definitions,

2.10. For a presheaf of sets F: Xeq = {Sets}. i:{F) is defined as

the sheafification of 12(F) on see §1.10, and

xcdt
p(F) = n 1:{1'-*) is & sheaf on P. Hence, TF = pp (F), T°F, n > 0,
weX

and T F are defined as before for the sheaf pNF. It is clear from
this definition and the bijection F N ﬁx of Proposition 1.11{4)
that

2.10.1. TF=T%, forall m>O0.

Analogously, for a presheaf of spectra F: xcd -~ FSp, T°F, .
n > 0, and T F are defined using the sheaves i:{F) and p (F) as
above. We shall see below {Lemma 2.11(3)} that for any presheaf F,
™% s weakly homotopically equivalent to T'F, where F is the _

sheafification of F om xcd’

2.11. Lemma: LEt F: Xcd ~+ FSp be a presheaf of spectra on’ xcd.

and x a point of X. Then

{1) the fuenctor T 9 € ¥, commtes with the functors i:. i: and

™, md>o:
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2.11.1. :qu:{m = x:(fq{m

2.11.2. ?qu:(?)) = rq(I:{F)) T i:(tq{l'-‘}} = 12(¥(F))

2.11.3,
%(1“(?)} = rq(f“?) — P(:Q(F)_) — ﬁ(rq{?)). for all m > 0;

In particuiar, rq(i:(F}} and rq{‘l‘“{?)}, for all m > O, are

sheaves on X d and Xcd respectively.

#

2. The functors ix'

1:. T", m>0, and T preserve weak homotopy
equivalences. homotopy fibrations and homotopy fibre sequences of

presheaves of spectra on Xc g

3. Let ¥ be the shealiffcationof F on X F-auF the

cd W
canonical map. Then

2.11.4. 1 (F}(x') i:(F}{x'} iy i:{F){x‘) S L (F}(x")
for any irreducible x’ € Ob(xcd}. and u induces canonical
isomorphisms of spectra and homotopy groups:

2116 %(u): F. = (F) 0 £°(F) = F.. for all x €X;
1. x(u}'x'x{) x(]"x' or a % € X;

2.11.6. %’q(u}: ?q(?) J»?q{?}. for all q € Z:

2.11.7.

rq('imF) — tq{’l'n?). for all q €Z, for aill = > 0.

In particular, the canonical map Tm{u): T — T'F induced by u

is a weak homotopy equivalence, for all m > 0.
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Proof: (i} 8Since the homotopy groups of & specira commute with

Filtered direct limits {[45], I, 2.1.2.1) we have by 1.11{1} and

1.11.5 for x' € Gb{xcd):
TP = Uy F(X'))
X' €ob(¥(x’ . X))
= lm " (F)(X’)

X €0b(M{x".X}")
= 1(r () (x")

This proves 2.11.1. Furthermore, for an irreducible x' € Ob(xcd)

using 1.11.3 for F and rq(F} and 2.11.1 we obtain:
(r(RN) = x (N 0 x (15F) D)

“ ] ~ »* L]
= L (F)(x') = L (x (F)(x")
This gives the middle isomorphism of 2.11.2 for an irreducible

x' € Ob(xcdj‘

If now %" € Ob{xcd} is reducible, and has the decomposition
k

x' = K x.’i inte irreducible components x.’i' then applying 1.11.3 to
3=t '

R(F) and 1§(wq(r)) and 1.2.3 to the sheaf z:{rq'{:r)) we obtain:

»* . M N ~ k » R ~ k !\ .
(rgULFIEE) = w1, (P Fo 2yl LR} = B r (£ FNx))
g B (F)(x; ; M (F))(x)) = " (F}Hx'
= AP = 1 L EN ) = Ll FEe)
This proves the middie isomorphism of 2,11.2. It impl!es. that

rq(i:(F)) is o sheaf, i.e. the first equality of 2.11.2. The third
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foliows from Proposition 1.11{4). The equalities of 2.11.3 follow from
2.11.1, 2.11.2 and 2.5.1 because by our definitions T = pp  where

3 N
p =Ni and p*:xgx""“'

x€X
{2} Let u: Fl " F2 be o weak homotepy equivalence of
presheaves of spectra on xcd' Then for all x' € Ob{xcd] passing to
the limit over the filtered category HRi{x'.X} {see 51.10) of the weak
equivalences w{X'}: FI(X'} — F2{X‘} and using 1.11.5 and the fact
that the filtered direct limlts preserve weak homotopy equivalences ai’

fibrant spectra by 2.4 we see that the map

2.10.8. iHu){x') = iy

w(X): AR(F 3x) — £ (F)x)
X' eob{M{x" X))

is a weak homotopy equivalence.
Furthermore, for an irreducible x’ € Ob{xcd)’

i:(l'-‘}{x‘) =it 1:{?)(:(‘} by 1.11.3, and for a reducible x' € Db(xcd}

k
with the decomposition x' = U x“j into the irreducible components x
3=t

we have o commtative diagram

b

D (F ' ) s £5(F, }x)
/ !i
k # ~ k #
B4 {F M%)} e [} 1 {F,}{x})
=1 x 17 J=1 x 27y
Since the bottom horizontal map is & weak homotopy equivalence by

2.11.8, the top horizontal map is also a weak homotopy equivalence,

»
Since ix preserves wenk homotopy equivalences, the functor



304 THE COMPLETELY DECOMPOSED TCPOLOGY

L3 E
p o= i1 ix also preserves them.
x€X

The same is true for p =T 1 by Lemma 2.9{(3)}. Hence, the
x€X

X "
functor T°, m > 0, which is an lterated composition of p* and Dy
preserves such equivalences.

Similarly. we can prove that these functors preserve homotopy

fibrations and homotopy fibre sequences.

{3) Bijections 2.11.4 and 2.11.5 are true for a presheaf ot:
spectra F = {F . m » 0} because they are true for each component Fo.
by 1.11(3). To prove that §q(u) in 2.11.6 is an isomorphism of
sheaves it is sufficient by Froposition 1.15 to check that it induces
isomorphisms of stalks:

i . L P o~ [T -
2.11.9. wq{u)x- ix{wq(?)} — ix(rq{F)}. for all x € X.

The last isomorphisms follow from 2.11.2 and 2.11.5, feor all x € X.
Finally, using 2.11.3 and 2.11.6 we obtain for all g € ¥, and for all

m > O
T (T (F)) — T (F)) = T(F (F)) — 7 (T"(F))
This proves 2,11.7.

2.12. Lemma: let Fi X, — FSp be an additive presheaf of fibrant
spectra, u: F <+ F the canonical map of F into its sheafification

¥ on xcd’ x a point of X. Then
{1) the presheaf 1z{F) is additive;

{2} the canonical maps in the diagram
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B
4 ~
y P 1 (F)
2.12.1.
1 u, l
# ~ " Y
N G R S
€x
are weak homotopy equivalencas.hwhem u s i“{u) and e i"(u) a
b X X x e

induced by u, and g ‘(resp, E} is the inclusion of i“(F) {resp.
“ o~
i {h) into its sheafification !:(F} {resp. i:(F)}.

Progf: (1} Let xl.x2€0b(xcd). Since F is additive, the presheaf
7.(F) 1s additive, for all q €Z and by 1.11(3) i:(wq{F)) is

also additive. for all ¢ € Z. Using (2.11.1) we obtain:
#
TPy} = 10x (I Gxythey) = $10r (P} x,) % 1hr (F))(xp)
= T ORFD(xy) X ¥ (150D} ().

as desired in {1}.

k
{2) letnow x' =U xj € Oh{xcd}' where x, are irreducible
i=1 4
summands, } x"i £ k. Consider a commutative diagram of the home topy
groups:
R - x #
T (L FNx') I TN
2.12.2.
ve ! i
» (i) - o e
Uy = R ACOICH
q
k

8,
where Yy ® tq{ux(x . Ya.d

=7 (ax 1)), w, =

i
4 j=1vq.j and the
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horizontal maps aq and Eq are the natural maps, induced by the

k
canonical embeddings xi — tjxj =x', 1£J<k
=1
. Since presheaf F 15 additive, i:[F} is also additive by {1}

and, hence. a, and 'a"q are tsomorphisms. All maps v, . 1¢J ¢k
are isomorphisms by 2.11.4. The com,ttat!vi:ty of the diagram implies
that Y 1s an isomorphism, for all q € Z, i.e. u: is a weak
homotopy equivalence. Simllarly, we can prove that the maps u:. By

and Ex “in £.12.1 are weal homotopy equivalences.

2.13, The hypercohomological spectyum. For a presheaf F:xcd -+ FSp
of fibrant spectra define the hypercochomologtcal spectrum H(X'..F) of
F as the homotopy limit of the cosimplicial fibrant spectrum (T.F)(X}
{see 352.2, 2.10):

2.13.1.  M(X_,.F} = holim (T F}{X'}.
)

where A is the category of standard simplices An = {1, **+, n} and
nondecreasing maps [5], [9]. [84]. .

lLet ui F~+F' be a map of presheaves of spectra. Then it
follows from the covariant hehavior of T and polim witfl respect to
such maps 52.2 and {[5]. Ch. XI, 53.2) that .u induces a map of
: hypercahmlogitlml spectra :

2.13.2. W) H(X_,.F) = H(X_,.F')

compatible with the canonical argumentations of ' F and F', i.e. such
that

2.13.3.  H(u) © n(F} = n(F') o u.
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Since the functors 10, m » 0, and M - preserve weak
equivalences, homotopy Fibrations and homotopy fibre sequences by Lewma
2.131{3} and ({5}, Ch. II, §55.5-5.6). the functor u(xcd,-) also
preserves them. In particular, for & presheaf F the canonical map
u: F = F induces the weak homotopy equivalences
Tu): THF) — T'F. forall m >0 by 2.11,7 and, hence, the weak

homtopy equivalence
2.13.4.  WH{u): B(X_,,F) — (X, F).
To preceed further we need some acyciiclty results.

2.14, Lemma: Let ix:xf—»x be o polnt of X, H: x

cd--w-odb he a

sheaf of abelian groups on x d” Then
2.14.1. H"(xcd.ix.n{u)} = 0. forall p>o0.

Proof: Write down the Cartan-Leray spectral sequence for H and the

morphism of sites 0 xg = cht

Y = WP(X 0 B () % W x ).

By definttion m“ix «(H) 1s the sheaf associated with the

presheaf

" "'} ’
2.14.2. X -—-—b}iq(ix (X'} -8
k

on Xcd. But 1;1(!(‘} = %y. is & finite disjeint union Xy » m}gixi .

of the spectra xj = Spec Lj of finite separnble field extensions l..j
of the residue field kix} = ox.x/"x.x because Ko 1y an etale

x~scheme when - X' -+ X is etale. Therefore,
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k
2.14.3. H(Q l{X'}cd.H) = e Hl(x; M) =0. forall q>0
J=1 .

and R ix'“(l-l} = 0, for all q 2 0, Hence spectral seguence 2.14.2

degenerates to the canonieal isomorphisms

HP(X 4 b ) —» WP(x_ 4} =0, forall poO.

2.15. Corollary: let L be a sheaf of abellan groups on xcd. Then

the sheaves L™ = T'L are acyclic, for all = > 0.

Proof: Since T'L = p“(p“{'lm_l{l,}}). Lemma 2.14 applied to
H= p*(Tm_l(L)} implies the Corcllary.

2.16. Corollary: Let E: %.q —+ FSp be a presheaf of fibrant
spectra, ;q(E} the sheafification of the presheaf of {ts homotopy

groups !’q(E). q € Z. Then

2.16.1.

u"{xcd,wq(ix_#(a)n = H"{xcd,ix.*{?q(n)}} =0, for aill p > 0.
Prooi: The equalitfes of 2.16.1 follow from Lemmas 2.9(1) and 2.14

respectively.

2,17, Let L= Xcd -3 #r be a sheaf of abelian groups on xcd,
L" = (L™ = T™IL. m 2 0} the Godement cosimplicial resolution of L

{see 32.2). Consider the complex of abelian sheaves
2.7.1. AQL') = (L7, d:m20)

which corresponds to L' under the Godemen t-Bold-Puppe correspondence
[21], [84]. The differentials d, of A(L’) are
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okl
1.4, w1
2.17.2. 4 = § (-l 1F— 1 w0
10

m1

where d;: P e 1™, 0 <t ( ml are the coface waps defined in

§2.2.

2.18. FProposition: The complex A(L"} of 2.17.1 determines a

resolution of L by acyclic sheaves, i.e. the sequence of sheaves

d d a _
518.1. O-ap At 2 22,3 2

i
where w(L} is the canonical augmentation 7 Id -+ ThL =L, 13

exact.

Progf: The acyclicity of the sheaves l,i is proved in Corollary
2.15. Since the family of points {xcd. x € X} 1is conservative. to
prove that A(L.} is a resolution of L 1t is enough.tn prove that
the{corresponding compiex of stalks )\(L;) is a resolution of ]"x’
for all x € X {see §1.16-1.17), or, by taking the product on x € X

that the complex

2.18.2. AR = (70T, P » 2 0)

is & resolution of p*(i.}.

It is shown in {{21]. App.. 38} that for this it {s enough to
construct a retraction hi p*pnp‘{l.] -d p"(l.} of the natural
augmentation 1(p (L)}: P (L} — P PP (L), i.e. a mp such that
hen(p (L)) = Id w(): 1o fact, it 1s enough to show that the map

h o= e(p (L)) P PP (L)) — p'(L) induced by the adjunction
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€: 1:!”}‘@,,l ~+ 1d, 1s such a retraction, f.e.

2.18.3  €(p (L))on(p (L)) = X .

Equality 2.18.3 can be checked stalkwise. According to Remmrk

1.17.1 it is enough to check that the composition

n(x') e dx")

(TL) (x') ~E——s L (x’)

2.18.4. L (x')

where 7 and ¢ are the x-components of 'q{p*{i.)) and e(p“L))
respectively, 1s the identity on Lx(x'}. for all x € X, ' and any
irreducible x' € Ob(xcd)‘ The last fmct can be checked by the

arguments of {{21]. App. §84.5). We omit details.

2.19. For a presheaf F: X cd FSp consider the sheaves of abelian

groups
2.19.1. L:’:{F) g;—-f-rq{z:’“) = ?q{#‘). m20, q€L.

cd®
2.18.1 follows from 2.11.3. This equality shows that  (F') are

on X where F" = TmlF as in §2.2. and the second equality of

actually sheaves, for all w32 0 and q € Z.
For a fixed q € Z, L;{F} = {L:(F}. m > 0} 1is & cosimplicial
shenf of abelian groups with the coface maps
i ., (el . m
'q(dm—i}' Lq {F) MLq{F), Cgigdm and the:codegeneracies
i,, .ml ™ i. i
rq(sm}» !‘q {F} --DLQ{F). 0<1i<m, vwhere dm and 5

are defined

for F  in $2.2. To this abelian sheaf corresponds a cochain complex

. " '
2.19.2.  MLU(F)) = {L7(F). 4, ;w2 0)

i1

where the differentials dq n BTe defined by the formuja
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mtl
1 H
2193, 4 = Y 1) 7, (4). forall m2o0.
i=0Q
The complex A(L;(F)} has a canonical augmentation
"~ . Rl .r 0 O
M * tq{n)- ‘l'q(F} b 1rq{F } Lq(l“} induced by the aupgmentation
7 F s Fo = TF.

2.20. Propgsition: The complex A{L;(F}} with the augmentation 7
defines a resolution of ;q(F} by acyclic sheaves, i.e. the sequence

of sheaves
2.20.1.
d 4
0 — ¥ (F) e, xq(r”) -5l :q{r‘) -1, rq{rz} — ..

is exact.

Proof: Since rq(f"{?}} = 'z"’(rq(r-*)), for all m > 0, and for all
q€F by 2.11.3, the acyclieity of the sheaves L:(F} = rq{Tmﬂ{F)}
follows from Corollary 2.15. Moreover, the same equality shows that
L;{F] is the Codement cosimplicial resolution T'(;q{!?)) of the sheaf
of abe}ian groups ;q(F} on Xcd. Hence, the exaciness of 2.20.1

follows from Proposition 2.18,

The construction of the hypercohomological spectral sequence given
below iz based on the following special case of a resule of Bousfield
and Ken [5], extended to spectra in [38]:

2.21. Theopem: (5], XI, 7.1, 7.3; {SBj, 5,13, 5.31}. le:
X = {Xm. m 2 0} be a cosimplicial fibrant spectrum with the coface
mpy d;:x'“—-ox"”. 0 ¢ § mi,
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mel _
=3 (mx}‘rq(d;); = 3 0}
£=0

* W
2201 ML) = {L] = xq(x“‘). 4 m

the cochain complex of the homotopy groups of X". Then there exists a -

spectral sequence

P.q P .
2212, 9= v () »rq_p(ho;m {(X)).g€Z. p20,

with the Ezmterm Eg'q = HP{A{L;}} and the differentials

dr: Er;‘q ME‘:‘”'(‘”—l of bidegrees {r,r-1i). 'Ihis spectral sequence
cotverges strongly if there exists N 2 0 such that HP(A{L;)) =
for all p >N and for all q €2, or z,: = rq{x“‘} =0 for all

g >N and for all m X} O.

2.22. Theorem: Let F: xcd -+ FSp be a presheaf of fibrant spectra,
;q{?) the sheafification of the presheaf tq(F} of q~th homotopy
groups of F,

for all 4 € Z. Then there exists a hypercohomological

type spectral sequence which abuts to the homotopy groups of ﬂ(xcd.}"‘}:

2.22.1. Eg-q = ﬂi’(xcd.:q(xr)} » ¥ (MX 4 F)). a€Z p2o.

The differentials d_: E5'S s P91 or 2799 1 have the

bidegrees {r.r~1}. If there exists N > 0 such that
prcd.';q{i‘)) =0, forall p)>N and for all q € Z, then spectral

sequence 2.22.1 converges strongly. In particular, if X s a

noetherian scheme of finite Xrull dimension, then Eg'q =0 for
p 2 dim X and for all

q €I, and spectral sequence 2.22.1 converges

strongly.
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Froof:
F.{X} = {E"‘(x) = (TM'IF)(X}. m ) 0} gives the spectral sequence

Theorem 2,21 applied to the cosimplicial fibrant spectrum

i?.‘;'q " rq((TPHF)(X)} ratq_p(&!(xcd.l“}}. q€Z p:20.
arnd Eg'q is the p-th cohomology group of the complex
. - )
ML(FY0) = (R = % (D). 4 ,(%): m 2 O}.

This complex is the complex of global sections of #cyciic
reselution 2,20.1 of ;q(F). Therefore, the p-th cohomelogy group of
AL {FMX)) is isomorphic to H’(X cd.?q(r}). This shows cthat
Eg"* = HP(X cd.?q(r)),

The statement about the strong convergence follows from Theorem
2.21. The venishing of Eg"l for p>dimX and for all g €12

follows from Theorem 1,32.

2.23. Remark: Theorem 2.22 jusctifies the term “hypercochomological

spectrum” for HM(X ,,F). It is & variant for the cd-topology of a

result of Thomason {[38}. Prop. 1.36). However, it does not follow
formally from this result because the use of our non-classical
definition of points of xcd‘ Netice, that this definition was
motivated in part by the necessity to make the Codement reseclutien T'F
and, hence, the hypercohomological specirum H(X ..F} functorial in

X.

3. LOCAL HOMOTOPY THEORY FOR x(:d

In 883, 4 we shall assume that X (s a locally noetherion scheme.
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3.1. In this section, we shall develop formalism of local sheaves of
spectra [Y{F}. {resp. L‘Y(F)} associated with n sheaf of spectra F°
on the cd~topology and a locally closed subscheme Y ©» X (resp. a
point y € X}. Notice, that the sheaves [y(l-‘), Yy € X, are more
compiicated in our setting, than the corresponding shesves on the
2Zariski topology. More precisely, they are not constant ;)n the closure
¥y of ¥ in X. HNevertheless, they are stil} acyclic as we wiil see
in §4. and the acyclicity is the main property of these sheaves which

will be used for the construction of spectral sequence 0.5.1 and {ts

variants.

3.2. Let X be a scheme, {: Y CoX a closed subscheme, ¢! X’ —» X
an etale morphism, Y' = X' Xy Y. Assume that ¢ lnducas.an
isomorphism Pyt ¥' «s Y. Denote U =X - Y.:
U = X' X U= X' - Y0, eyt U~ U Let §: Uta X, U Ly
and 1': Y' €X' be the canonical embeddings..

Let F: xcd ~+ FSp be a presheaf of fibrant spectra on X .. For

cd
amp u E-+E' of spectra dencte by hf{u}  its homotopy fibre.

Constder the diagram _
BEF(§) s E(X} ——ilddy Fu)

3.z2.1, A 130} | Fley.)

BEF(§*) memem—s F(X') —E ) Futy

where all maps are natural.
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3.3. Definition: (1) We say that the presheaf F has the excision
property for the patr (¢? X' =X, Y C4X) with Y' = X' x, ¥ — Y
as above, if the canonical map M: hfF{}) — hWiF{)'} induced by ¢

is 8 weak homotopy equivaience.

{2) VWe say that F has the excision property for the cd-topolegy if.
for any coupie (e X' ~+ X, Y ¢+ X) as sbove F has the excision
property ¥

3.4. If the pair {p: X' =2 X, 13 Y C» X} is as above, the pair

for X' =2 X, J: U =X} can be considered as a cd-covering of X. The
fact that A in 3.2.1 {s a weak homotopy equivalence {= w.h.e.} is
equivaisnt to the fact that diagram 3.2.1 is homotopically cartesian in
the sense of {[33]. %I: [8], 52}. l.e. the canonical map

h

F{X) — F(X') x F{U) into the homotopy theoretical fibre product
Fu'}

is 2 weak howotopy equivalence. Equivalently, it can be said that the
presheaf ¥ satisfies the Mayer-Yietoris property for the covering

{p: X" =2 X, §: U Ss X} as it is shown in §3.5 below.
3.5. Denote for simplicity W = hfF(j}, ¥ = hiF{i'}. Then we have

the comsitative dlagram of the homotopy groups:

frr et (W) et 7 (F(X)) 7 (FU)) et w (W) s <o

| |

e s ,-q(w‘) J— tq(F{X‘}) — rq{F(U')} ] LY

(ﬁ"} —

It fs imown [65] that such a diagram §s equivalent te the

Mayer-Yietoris exact sequence for the homotopy groups of the cd-cover

w sep the Mote Added on LTS
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{X'.U} of X:

36,1, evr = (F(X) = ¥ (FU))OX (F(X')) — 7 (FUXX") — ++

3.6. Definition: Ilet F: {Sch(X)” s FSp be a contravariant functer '

from the category of X-schemes and flat morphisms (Sch/X) ot the
category FSp of fibrant spectra. Assume that for any , X' € op{xcd)
and a closed subscheme £': Y' ©» X' a Gysin map :
Gy{i"): F(Y')} — P(X'} 1is defined, which iz a morphism of spectra
natural on the pair (X',Y'}.

We say that F has the localization sequences if the maps’
as.1 reyy S pxey B puy

define a homotopy fibre sequence for any such péxir {X*.7'}.
Botice that to homotopy fibre sequence 3.6.1 corresponds the

Quillen type localization sequence of Ity homt;:tpy groups

3.6.2 vob ey rq{F('{‘}} e vq{F{X’}} — wq(F(U'}) — s

which justifies our terminology. ‘

3.7, Lemmar Let F: xcd -+ ¥Sp be a presheal of fibrant spectra on

cd
U’ be such as in 3.2. Then the pair {yp: X' — X, Y — X} has the

X . which has the locallzation sequences. Let ¢ X' — X, Y, Y', U,

cd-excision property,
Proof: Consider the diagram
F(Y) _GI.Q)._, F(X) ..........E.U.L... F(U)

l F{’PY') F('F) F{?u*}
rerey S0, pexey D peu)
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where al} maps are the natural maps induced by 1, £°, §, }'. #. Pyoa
and Py By our assumptions both rows are homotopy fibre sequences,
f.e. hi{F(J) Tﬁ—:;-:—?(‘l’} and hE(j')) *i”'i:"”é"' F(Y'). Since ey, is
an isomorphism, F{p,.) 1is also an isomorphism, and it induces a weak

homotopy equivalence

BE(F(3)) 5 bE(F(IN))-

3.8. Examples: {1) For a scheme X Jet G{X)} {resp. G(X,Z/£Z) be
the Fibrant K-theory (resp. K-theory with Z/2f-coefficients} spectrum
of the category Coh(X} of coherent Ox—llodules. {see 52.6G}. Then the
contravariant functors G: X' -+ G(X') and G{Z/8Z): X' ~— G(X'.1/87}
on [Sch/X}“ have the Gysin maps and the localization sequence {[33],
§7, prop. 3.2, [38], §2.7). Therefore, they have the cd-excision

property.

{2} Let K{X) {resp. K{#/8%})) be the fibrant K-theory {resp.
K-theory with ¥/82-coefficients) spectrum of the category ALF(X) of
locally free 0x~Mules. let K: X' -~ K{X') snd

K(t78d): X' - K{X.2/8Z) be the correspomiing contravariant functop}i
on Sch/X. It has been proved recently by Thomasen and Trobaugh [62]
that {f X is quasi-compact and quasi-separated, K and K{Z/£Z}
essentially have the cd-excision, ﬁare precisely, they constructed in
[62] spectra K°(X) and K(X.Z/€Z), such that the families of their
homa topy groups Kﬁ(:{} = rn(KB(X}} and Kﬁ{)ﬁ.l/&} = rn(KE{X.thl}}_.
n € ¥, are Bass~type extensions of the usua] K-groups Kn{XJ and

XR(X,Z/EZ) raspectively to non-positive degrees (K: = Kn wnd
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KM#/e2) = K (2/67) for n > 0). and proved that they have the
cd-excision property.

If X 1is reguiar, there exists cenonical weak homotopy
eqguivaiences
.81 KPR T KO Te G(X).  KC(X/EZ) Su K(X/EL) o G(X.Z/8T)

([33]. %4, Cor. 2: [38]. [62]). Hence, these classes of mmpies;'

coincide.

3.9. Definition: Let 1: ¥ S X be a closed subscheme,

F: xcd - ¥Sp a presheaf of fibrant spectra which has the exz:isit-m
property on Xcd. Define the preshecf of local elzpecl.m of F modulo
Y. [Y{F)i X.q — FSp. as the presheafl whose ‘vallue on an etale scheme

#: X' — X 1is given as the homotopy fibre of F(J'):

3.9.1:  LF)X'} = H(F(3')s F(X') — F(X'-¥")),

where Y' =Y XKX'. UxX-Y, ¥ =X'~¥', and §: Y& X, and
§': U C4 X' are the natural open embeddings. -

Notice, that this definition implies the canonleal i1dentification
3.8.2. I,:Y{X‘} = [Y.(X‘}.

3.10. Let Y be now a locally closed subscheme of X, {1.e. there

. exists an open subscheme V of X such that
3.10.1. ¥=Vxxi"

where ¥ is the closure of Y 1in X. Let M{(Y} be the category of
all open V¥ Lo X for which presentation 3.10.1 exists. It 1s easy to

see that the category M(Y} s pseudo-filtered and the dual category
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N(Y}° 1s filtered {(compare with Proposition 1.11{1}}.
For all V¥ € Cb(M(Y)})} define a presheaf of spectra

IY(F): Xy — FSp by the formla
3.10.2. [Y(F)(X')} = RECF(3y): P V) — F(X'x¥ = X' Vi, T))

(Notice, thar X' x, V x, Y 13 cloged In X' ¢ V).
Define now the presheof [y{?} of local spectra of F wmodule Y

as & limit

3.10.3. L{F) = um NP
VeOb(M({Y)°)
Since the category of fibrant spectraz is closed under filtered
direct limits, IZY(F} 1% actually a presheaf of fibrant spectra.
.Let now V, £+ Y be a worphism in M(Y}. Then we have a
commutative diagram
F3y

)
REF(dy)) s (X", V) — FX'%V ~ X %, V% T)

A
F(dy )
hf{F(j",i}} et F(X" Y ) i FOXURY, - X%V 0¥}

rows of which are homotopy fibre sequences. Since F has the excision
Property on xcd’ in particular, on xZar’ the right sgquare is
homotopy carteslan and, hence, the .canonical map

v ~ Vs
3.10.4. )\wi: ry(r){x') = hf{F(j‘}}) ——*h!’(?{j'vz)) = !‘Y ‘P‘)(X')
is » weak homotepy equivalence.

By the definition of the inductive limit we have the canonical map
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3.10.5. Ay Iy(F) — I\(F). for ail ¥ € Ob(A(Y))

Since for & fixed Vo € Ob{¥{Y)) the category of lts 'open
subschemes ¥, CV,, containing in M(Y). is cofinal in M(Y}, ~weak
homatopy equivalences 3.10.4 for all open ¥, s Vo tn N(Y) imbiy

that 3.10.5 1s a weak homotopy equivalence, Tor all V € Ob{M{Y)).

3.10.6. lemma: lLet X, Y, ¥ be as above, ! xl ~t X an etale

~1
morphism, Y; =y "(Y}. Then there exists a canonical weak homotopy

equivalence

3.10.7.  L(F)(X) < Ly (%))

Proof: Let V€ Ob(K(Y))., V, = ¢ 4V}, Then Y, isopen In X, and
it is easy to see that Y =V, x ‘?'1, {.e. v}.e Ob(¥(Y,)). By

Befinition 3.10.2 and equality 3.9.2 we can canonically identify
3.10.8. T "
.10.8. rY(F}{xl) = I‘Yl{F)(Xi)

Combining 3.10.5 for Y, and V, and 3. 10.8 we obtain a

canenical weak homotopy equivalence {(depending om V):

v )\vl

) - V ¥ l 1 ~ +
3.10.9. oyl FY(F}{X ) = I‘YI{F}(X } s I‘YI(F)(X }
Passing to the limit on V we obtain a canonical weak homotapy
equivalence a = lim oyt

3.10.10. @ L(F)(X,) = ln

Ly(F) (X)) — Ly (F)(X,)
VEOL(M({Y)%)

3.11. Proposition: {excisfon for L‘{{F))‘ iet Y beasufaschem of

TR T

Y.A. BISNEVICH -

X locally closed in X, ¢! 'xi ~+ X an etale map such that

induces an isomorphism ¢ly * ¥, = oY) = 1. ‘Then for all
1
X' € Ob{xod) there exists a canonical weak homotepy equivalence:
3.11.1. ex{X'}: LY{F)(X‘} J«[Yi(n(x' *xy xi)
naturally depending on X'.

Proof: Pick V € Ob(N(Y)), so that Y = Vx¥. Let V = ¢ vy
Then it is easy to see that Y, = Vx"x?x‘ It follows now from
Definition 3.10.2 and dlagram 3.2.1 applied to the pair

(X’xxV. X'xxxlxxv) that we have the canonical and paturally depending

on X' map
v Y
31120 ex(X')yt Fy(F(X') == r\'x(”{x"‘x"z}'

for any X' € Ob(Xcd). Since the canonical map

¥ ~
Ay, Ky)¢ Ty (YO ty) > Dy (FYOCxgKy)

is a weak homotopy equivalence by 3.10.5, it is sufficient te prove
that 3.11.2 is a weak homotopy equivalence and to pass to the limit on
¥ € Ob(K(¥)) (as in the proof of Lemma 3.10.6}. So replacing X ‘
{resp. xi) by V ({resp. Vi). we may assume that Y {resp. Yl) is
closed in X {resp. J{l).

et Y = X’xx\’. Xi = X %X, . Ia.nd Yi = xixx.Y' = X'xxiY‘. The
assertion that 3.11.2 is a weak homotopy equivalence follows now from
the excisfon for the pair (¢y.: X} — X, ¥ G X'} (see Definition

3.3}. which satisfles to the conditions of 3.3 because .. induces an
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isomorphism Yi Sy,

3.12. Lepma: Let VC X be an open subscheme of X; Z=Vxx-2-'-bea
local

ocally closed subscheme of X, Z1 CZ 8 closed subscheme of 2,

2.2 = Z«-Zz. Then the natural maps give the homotopy fibre sequence of
presheaves of spectra on Xcd= ’ I

3.12.1. Lzz(r) — [,(F) — [Z2{F)

Prgof: Notice, that under the conditions of the lemma, Z, = Vxxz
- * ) i

and V' =V - Vx.x'i:—l 18 open in ¥, hence, in X. We also have
Zy = V'x,Z, and
3.12.2. V- VeZ= (V- VxZ,) - {Vxx'iz) =V - VinZ,.

let ¢t X' — X be an etale morphism. Censider a 3x3 diagram

L, (FY(X') s L, (F) (X") ; xzz'(mm

¥ | |

in(l-"){x') s F(X' % V) F(X'x.V - X‘xx\'xxz)
l | l l = F(X'% V')
(pt) F(X' %y ¥ = X' Ve T) =~ F(X"x, ¥ - X% ¥Z) =
= PRV~ X'x V"% 7,)

Columns of this diagra._m\and the middie row are homtopy fibre

sequences by Definition 3.10.2 and {the last column) by 3.12.2. Hence

the top rov is a homotopy fibre sequence by ([2]. 1.2).

3.13. let,
as in §1,30, Xp be the set of all points of X of

codimensi
on p in X, Zp{X} be the set of all closed subsets of
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codimension 2 p. ZP(X} is a directed partially ordered set. which

cars be considered in the usual way as & filtered category.

For & presheaf of f{ibrant spectra F: ch — FSp which has the

cd-exclaion property, define

3.13.1, Sﬁ(l’} = Lim LF)
2eZ.
LX)
Since Zp()(} is filtered S§{F] {s a presheaf of fibrant spectra.
It is n homotopy~theoretical version of the filtration 7 on the
cohomology groups considered by Grothendteck {see §1.30}.

3.14. For & subscheme Z of X and y €7 let NZar(y'z) be the

pseuda-filtered category of Zariski open neighbourhoods of y In z.
If 7 =X we shall write simply H.Lar(_y)' instead of N, (y.X). Let
NZar{u.Zjo and Nzﬂr(y)o be the dual categories. They are filtered.

If X ts an irreducible scheme and X, the generic point of X

the functor ¢ -~ X-Z is an equivalence of categories ZI(X) and

s+
N’Zar{x XY
1.15. For a point y € X define the presheaf %{F}: xad — ¥Sp of
tocal spectra of F wmodulo y by the formula A

3.05.1. L(F) =  lg Ly y (F) = Ln Ly (7).
el vy, (9)° T e, 0.9° 7

1.e. forall X' € m;{xod} we define

3.15.2.

LK) = Ly

RECF(X %V ) = FXGV, ~ X'V %)}
def y en,, ()° (FOy) Oy Xty
‘y T
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The presheaf rq(f__‘y (F}} eof the g-th homotopy groups of Ly(IF) we
shall call the g-th presheof of local homotopy groups of F modulo vy,

Since the category FSp is closed under filtered direct limits,
F_,y[F) 1s again a presheaf of fibrant spectra. The squivalence o.f
categories R?ar(y';] and Zl('y') discussed in 3.14 and the second of
the equalities of 3.15.1 ifmply that
3.05.3. L(F) = L [;,(F).

ZeZ (¥}

et now y = Uy, beafinite sumof points y, €X, p > 0.
ter 1-7p

Define then Ly{F} as the wedge

3.15.4. [ (F) = F
_y( ) 121'[-"1( )

Let k ¢ X' — X be an etale morphism, ¥y € X a point,
¥' = ¢ }(y). It follows then from 3.10.7. and Definitfons 3.15.1 and
3.15.4 that there exists a canonical and naturally depending on X'

weak homotopy equivalence
.16.5, FYX') e [, '
385, LIFNX') < L (F)(X')

The following excision property of the presheaves Ey(F} will be

crucial for our proof of their acyclicity in §4:

3.16. Propesition’ (excision for _I:y{F}}. Let ¢! x1 —+ % be an
etale morphism, y & X, and y, € p"i(y} be a polnt such that
induces an isomorphism of the residue fields ¢ : k(y) k{yl) {i.e.
Y € cd{xlfx} in the notations of 8i.

Let F: Xcd ~+ FSp be a presheaf of fibran: spectra on xcd
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which bas the cd-excision. Then for amy X' € Ob(xcd} there exists a

canonical weak homotopy equivalence
3.16.1. exy(x ¥ [_y(F}{x ) R d [Yz[l'-‘}(x xxl(z).
naturally depending on X',

Broof: Since k(y,) =» k{y) there exist open subschemes V Cy and
v, € ‘y-l such that ¢ 1Induces an isomorphism ¢: V, ¥, Hence, the
categorles of neighborhoods Rzm_(y."[} and NZar{Yl’vl} are
isomorphic. Since N&r{y,\') is cofinal in Nhr(yl';l) and

sz.{yl.vx) is cefinal in NZar{yi';x}' we obtain:

L(F)= g Ly (F).

3.16.2. vyeuzﬂr(y,vf Y
LM = g L, (F).

o 'y
vylen?ar(yl vy) i

By Proposition 3.11 we have a canonical weak homotopy equivalence

induces by ¢
316.3. exy(X): LIFR') — Iy (FHX'XX))

depending functerially on X', Using 3.16.2 and the isomorphism
By (y.V) = N, (y,.V,}, define the map ex (X') in 1.16.1 as the
filtered direct limit:
3.16.4. wﬁy(X‘} = lig . exV(X_ )
veob(N,, {v.V)°)

It is clear that it has all the required propertles.
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g L€ I} be the set of irreducible

componernts Y! of Y and y!erz the generic point of Yi. et 2

347, Let YeZ(X). (Y

be a proper closed subscheme of Y, such that Z € Z,(Y). Then.

le Zpﬂ(}(). Applying 3.12.1 we obtain a homotopy fibre sequence '
3.317.1. [Z(F) ] ]:Y{F) —_ EY-—Z{F}'

By taking & limit of sequences 3.17.1 over the filtered category

ZI{Y} and using 3.15.3 we obtain again hometopy fibre sequence:

3.17.2. L [,(F) = L(F} =V L[ (F)
zez,() €1 Y1

Passing now to the filtered direct limit on 'Y € ZP[X} we obtain

a homotopy fibre sequence

3t sfthr) ~— B(F) My::x L, (F).
P

3.18. lemma’® Let ¥: xcd ~+ ¥Sp be a preshead which has the
cd-excision property, Assume that F is additive. Then for any
lecally closed subscheme Z €9 X and any point x € X the presheaves

FZ(X} aod I‘x(l“} are additive.

Proof: Assume first, that Z s closed in X. let U= X~ Z. F¥or
all xl.xz € Oh{xal) consider a commtajtve diagram with the natural

maps
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F((UxX, (U %5))
il

L (FY{X, U Xp) —— F(X; U X,) FUxy{X, U X,}}
l a{I,(F)) / 1 a(F) J {“‘”u’

L (F}(X,) % L,(F}Xy) = F(X;) % F(Xy) —— F(UnX,) x F(lxXy)

In this diagram rows are homotopy fibre sequences by the
definition of [,(F}, and the vertical maps a(F} and a{!’-‘[“} are
weak homotopy equivalences. Hence, u{{Z(F)) is a weak homotopy
equivalence. |

Assume now that 7 is locally c¢losed, 1.e. Z = ZnvV, where ¥
is an open subscheme of X. Then the restriction F!v of F on V
is additive, and Z 1s closed in V. Hence. as shown above,

LY(Fly) = [,(F) 1s addttive. The additvity of L (F). x €X
w.h.e.
follows from the additivity of [;‘-xxvx(l’}. for all V € NZar{x,X). )

shown sbove, Definition 3.15.1 and the fact that flltered direct limits

preserve weak equivalences in Fp.

4. ACYCLICITY OF THE LOCAL HOMOTOPY PRESHEAVES AND A CONSTRUCTION OF
THE DESCENT SPECTRAIL SEQUENCE

4.0, lLet ¥: xcd —s FSp be a presheaf of {ibrent spectra on xcd
which has the excision property for the cd-topelogy. Then the
presheaves of local spectra L\,{F) and [x(F) are well def%ned for
any locally closed subscheme ¥ “+X and a point x € X.

Under these assumptions we shall show in 4.1-4.3 that the

presheaves [x{F) are weakly homotopically equivalent to the direct
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images of certain sheaves on Xod and this will imply their acyclicity
with respect to the cd-hypercohomclogy described in §2. The acy;::lici ty
of these sheaves will allow us to prove that the cancnical augmentétion
nt F{X) — H(X ..F} is a weak homotopy equlvalent;e of presheaves of
spectra on X ; using the inductive process of [38]. 2.4. Then the
hypercohomelogical spectral sequence 2.22.1 correa;ponding to a%{xcd.?)
#ill give to us spectral seguence 0.5.1, its generalizations and

variants.

4.1. jemm: Letr F: xcd — FSp be a presheaf of fibrant spectra
which has the cd-excision property, x @ point of X. Then the

canonlcal morphism of presheaves on xcd

. ~ #
4.1.1. J\x- Lx(F} o 1)"“!’({[“{?}}
is a weak homotopy equivalence.

Proof: Llet Y~ X be an etale X-scheme y = Y Xy X. Then
# # :
L1200 O L ENO) = L) = ln LAF)(Y')
Y €0b{N cd(y.’{}g}
by Proposition 1.11(2).
Therefore, )‘x is the canonical map
4.1.3. [x(F){Yj vt 1 [x{F)(Y’)
Y eob(N_,(y.Y)")
of a member of the inductive system into the inductive limit. Denote
y' o= Y‘xxx. Using the canonical weak homotopy equivalences
I_x{F}(Y] —-r[y{F)(Y} and Q‘(F)(Y‘) --#_I,'?.{F)(Y') of 3.15.5 we can

rewrlte 4.1.3 as
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4,1.4. Ly(F}{Y} e lim Ly,(F}(Y'}
[ 1]
Y eOb{ch{y.Y) }
k .
Llet y= U ¥y be the decomposition of ¥y into the sum of its
i=i

k
irreducible components ¥y Denote kiy) = @ k(yi).
i iz}

By Definition 1.8, for every cd-neighborheod ¢! Y' — ¥ of ¥
there exists y, € ¢ Y y) = y' such that the induced maps ¥o ¥
and ¢ k{y} — k(yy) are isomorphisms. 1f. moreover, Yo =¥

then by Definition 3.15.4 and Proposition 3.16 the natural map
4.1.5, Ey(?)('f) N [y.(F}{Y')
is a weak homotopy equivalence.
Replacing Y' by its open subscheme Y" =Y' - {y'-—y{‘)} as in the
step (2} of the proof of Theorem 1.27 we can achieve that for
¥z gl YT Y,y = vl(y) and, hence,
416, L(FI(V) -T'—«»Ly.{r}(w")
1% a weak homotopy equivalence. Jt shows that the subcategory A{y.Y)
of all Y' € Ob[ch{y.Y}) for which 4.1.5 is a weak homotopy

equivalence is cofinal in ch{y,‘f}. Therefore, 4.1.4 and 4.1.1 are

weak homotopy equivalences, _ Q.E.D.

4,.2. Corgllary: Let F: xcd —+ FSp be an additive presheaf which has

the cd-exclsion property, x a point of X. Then
{1} the canonical maps

~ # ~ »
4201 L) o 4 0, (F) = 4 LT (F))




are weak homotopy equivalences.

(2} The presheaves of the local homotopy groups rq(rx(r)) are

sctually sheaves on X ,. for all q €Z, and

4.2.2. n”{x‘__d.wq{&(?}} =0, forall p>0, and forall q€Z

Praef: (1) Since F is an additive presheaf L(F) s also an
additive presheaf by Lemma 3,18, Hence. by Lemma 2.12(2) the canonical

map

423, g AMLAF)) — 1 ()

is n wenk homotopy equivalence, Since the functor 1x.# presepryes
weak homotopy equivalences by Lemma 2.9(3). this implies that the
second map in 4.2.1 is a weak homotopy equivalence., The first map in
4.2.1 iy & weak homotopy equivelence by Lemma 4.1,

{2) The aditivicy of J;‘(F} and weak homotopy equivaience 4.2.1
imply that 'q{Ex{F}) is o sheaf by Lemmm 2.9{2) applied to
E= i:(fx{F}). The vanishing property 4.2.2 follows from this fact,
equivalences 4.2.1 and Corollary 2.16.

4.3. Proposition. Let F: xcd —+ FSp be an additive presheaf which

has the cd-excision property. Then the natural asugmentation

13.1. (L AFY): LAFHK) == H(X 4L, (F})
is a weak homotopy equimlm. for all x € X.

Proof: Consider the hypercohomological spectral sequence for _I_‘_x(F)l

B9 = HP(x cd.;q(Lx(F))) > 7 (X L (F)).
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{see Theorem 2.22}. Since rq([x{i:')) fs a sheaf by 4.2(2) we can

replace in it rq([;({f‘)) by tq(];‘(f‘)}. ,.
By 4.2.2 E5"% =0, p > 0. Hence, the spectral sequence

degenerates and gives the isomorphism of groups

4.3.2, Hotxcd.rq([x(r-‘})} s ¥ (WX g L(F)), forall q€Z.

By definition HO(X ot TalIn(FI) = T (L(FYX)). Hence. 4.3.2
inpites 4.3.1.

4.4. Thegrem: Let X be a noetherian scheme of finfite Krull

dimension, F: X , - FSp an additive presheaf of f{ibrant spectra on
xcd, which has the cd-excision property. Then

(1} The canonical augmentation
4.4.1.  n(SP(F)): SP(FMX) — B(X_,.8P(F)).
is a wenk homotopy equivalence for all p 2 0. In particular, for
p=0, SYF)oF
4.4.2. n(F): F(X) H(X ;.F)

13 a weak homotopy equivalence.

{2} There exists a strongly convergent spectral sequence

4.4.3. %= n"(xcd.?q{r)) sv (X)), p20.acZ

Proof: We shall prove statement (1} by a descending induction on p.
I p>dimX, 2,(X) = 0. Hence, SP{F} =t (pt) and

li(xcd.pt) “+ pt. This ts the basis of our induction.
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Assume now that the statement is true for _Spﬂ{F). Consider the

diagram

S HFYHK) s SP(FY(X) oy ¥ T (F)(K)
X!
TR O)) 2(sP(F)) % | n(r.p)

BX_ .57 (F)) — H(X_;.5°(F)) B(X 40 V I (F))
x€X

The top row is a homotopy fi.bre seqguence hy:3‘11.2, and the bottom
row is a homotopy [ibre sequence because the functor F —s M(Xcd.F}
preserves homotopy fibre sequences by 2.13. By Proposition 4.3 HT.p)
is a weak homotopy equivalence. Hence, n{S’(F)} 1is a weak homotopy

equivalence ({21,1.2}. -

(2} Consider now the hypercohomological spectral sequence for

WX _,.F):

xcd'
P P ~

4.4.4, I-:2 =z B (Xcd.vq{F)} arq_p(ii{x F}}

which is strongly convergent by Theor. 2,22, ‘The weak homotopy

equivalence 4.4.2 allows us to replace in it :q“p{m{x F1} by

7, pFXD). QE.D.

4.5. Examples: let F be one of the presheaves of spectra § or
G{I/eL) (resp. _K__B or KB{D’tZ}}, corresponding to the K-theories of
coherent sheaves (resp. to the Bass extensions of the K-theories of
locally free sheaves) as in §3.8. Then these presheaves satisfy the
conditions of Theorem 4.4 {see §3.8). Therefore, the specialization of

spectral sequence 4.4.3 for these presheaves give gpectral sequence
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0.5.1, 1ts analogue with L/&f~coefficients:

0 B = (X .8 (Wet) 56 (X.2/el). p20. ap 2 00

'5"1'1/82

and analogues of 0.5.1 and 0.5.1 K3(X) and KD(X.Z/02):

2/82 for

151 B98P .ﬁg} " xg_p{x). P20, g€

15.1,,, 9= n"(xcd.iﬂ(zm)) » xﬁmp{x.vm. P20, g€

Here Eq{l/tl) . KB

¢ are sheafifications of the presheaves

Gt X' G (X') FoF A (GX')). K X' — KXY g3 (G -
respectively.

Recall that Kz = K, and Ki{z/a) = K (T/€T} for 4> 0. so
spectral sequences 4.5.1 and 4.5, 11182 give some information about the
usual K-groups of a singular X as well. |

If X is regular, then spectral sequence 0.5.1 coincides with

4.8,1, and 0.5.1 colncides with 4.5.1 .

y 7474 L/EL

The following lemma gives a description of the fibres of the sheaf
wed .
l(n (Z/eX) on LIPL
4.6. Lemm: Let x € X be a point. Assume that £ is an integer:
which is prime to the charscteristic of the residue field k{x} of

%. Then for any separable finite field extension k'/k{x} we have
4.6.1.  Blwen () - K (k. 1).

Proef: Let U: X be the henselization of the local ring Ox X of x
on X with respect to its meximal ideal n and et Uhx. be the

unique local henselian ring which is etale over 0:: X and has the
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residue field k' {[EGAJ. IV, §18: [SGA 1], II):

Then for the sheaf §§d we have by Propositien 1.13.
d *
4.6.2. K (') = K (O, .vew).

On the other hand by the rigidity theorem of Gabber [12] {see also
{20}, [36]) we have for & prime to the char k{x) and the henselian
local ring 0:,:

4.6.3. Kn(ohx..vez) K (k°,0/eL).
Equality 4.6.1 follows from 4.6.2 and 4.6.3.

4.7, Egm;_k The filtration by éodimensiou of puints of X was used
in the proof of Theorem 4.4 only to establish required homotopy
equivalence 4.4.2, This proof does not give, however, & comparison of
spectral sequences 0.5.1 and 0.5. lz/ez with the Quillen spectral
sequence

4.7.1. EPYX) -
7 &K x‘éx Gtrp
p

(k{x)) #Gq(X}, p20.q-p20,

and 1ts analogue 4.7. lzﬂz for cq(x.z/u} arising from this
filtration {[33], §7. theor. 5.4). or comparisen of the corresponding
filtrations on their common sbutments Gq(X} or cq{x.zxm. Such
comparisons for our speciral segquences are open questions.

The coincidence of the (uillen and the Brown-Gersten spectral
sequences from thefr 52 terms upward for a smooth scheme X of
finite type over a field is proved in ([33], §§7.5.6 -~ 7.5.11) and
{£19], 52}. One of the crucial Ingredients of the proofs was the.

Cersten conjecture, proved in {[33], §7} under these assumptions.
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On the other hand, the conjecture of Serre [51] and Grothendieck
[51]. [23] on the Zariski local triviality of rationally trivial
principal hemogeneous spaces modulo the results of [30], {31] is

equivalent to the bijectivity of the canonfcal map
7.2, #(x, _r 8D S HX LK)
for a regular X and a reductive X-group H (see 1.44.3}. This
eonjecture and bijection 4.7.2 have been partially proved in [30}-[32]
(see §1.44 for details}. It can be considered as a group-theoretical
analogue of the Gersten conjecture.

These results and the conjecture of Serre and Grothendieck

motivate the following conjecture:

4.8. Conlecturs: Let X be a regular scheme. Then spectral sequence
0.5.1, Brown-Cersten spectral sequence 0.4.2 and Quilien spectrai
sequence 4.7.1 coincide beginning from their Ez—-terms upward.
Similarly, their analogues with finite coefficlents 0'4'21/82'

0.5.1 and 4'?'12/82 coincide beginning from their Ez—tams upward,

1/e2
Notice, that at least in the case of finite coefficients. the
sheaf ﬁ:d{x.zzzz) {8 much easler to compute than the sheaf
@’{x‘zxm due to Lewmsm 4.6. Hence, if Conjecture 4.8 ks true, our
spectral sequence 0.5, l.z/ez can be used to compute terms of two ather
spectral sequences involved.

However, one can show that for a singular X the canonfeal map
H (X, o r (H)) — HY(X 1)

is not always bijective already for i = 2 and the multiplicative
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group scheme H = Gm.
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Since K,(R) = G (R} =R~ for a local ring R,

this implies that spectral seguences 0.4.2 and 0.5.1 are different, in

general, for a singular X. Spectral sequences 0.4.2 and 4.7.1 are

known to be different, in general, for a singuiar X as well,
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NOTE ABDED IN PROOF:
(1} To make our definition of a neighbourhood of a point of x

it by including the data of an X-section:

1.8 Definition. Let x be a point of X. A pair (IJ,;!} consisting of an
etale X-scheme ¢t U3 X and an X-section six— U of ¥, is called a
neighbourhood of the point X.q Of the site X ..

{2} The cd-excision condition for a presheaf F: X , — FS5p in §3.3 must
be formlated and actually is used in §§3.4 in théciocaiized form, i.e,
as the excision for any pair {w: V'ws Vv, YV}, comsisting of an etale
morphism ¢: V'eudV In X _and 2 closed subacheme Y€,V such that the

induced map Pyl s T°%8 an isomorphism, where Y' = ¥ "e

With these definitions all statements and procfs remain the same,

B

. 0 {Def. 1.8)
compatible with that in ( [SCA 4], 1V, §6) it {s necessary to Yeformulate
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TORSION ALCEBRAIC CYCLES ON VARIETIES OVER LOCAL FIELDS

¥ayne Raskind!

Dept. of Mathematics
Harvard University
Canbridge, XA 02138
USA .

ABSTRACT. 1In this article we study the torsion in the second Chow
group of n smooth, projective scheme over a Hepnsellan discrete
valuation ring with [inite or separably closed residue fieid. ¥e show
that the prime to p torsion of this group injects into the prime to
p torsion of the speclal [ibre (whers p {3 the charmcteristic of the
residue field), Using this result, we prove the finiteness of the
prime to p torsion in the second Chow group of certaln varieties over
p-adic fields, Y¥e also prove simiiar results for other K-cohomology
groups. _ .

0. INTRODUCTIOR

in a previous paper with Colifot-Théléne [CIRi}. we used the work of
Merkur‘ev-Suslin [MS]., Suslin [Su] and the Riemann hypo thesis for
etai§ cohomology over finite fields ms proved by Deligne [B] to prove
some finiteness theorems for the torsion in the second Chow group
C‘Hzi)(} for certain varieties X over various flelds k of arithmetic
interest. Except when the {ield k 1is finite, all these fariuties
have the property that Hz(x.ox) = (), and we were quite worried that
this assumption might be indispensable even for the study of torsion

tycles (one knows how jmportant this assumption is in the study of
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