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Abstract

Current learning-based brain tumor classification methods show good perfor-
mance but require large datasets of manually annotated training examples. Since
image acquisition hardware and setup vary from clinic to clinic, training has to be
repeated and the required time-consuming labeling effort limits a wider applicabil-
ity of these approaches in clinical routine. We propose an approach that allows la-
belling of only small and unabiguous parts of the training data. Domain adaptation
is applied to correct for the induced sampling error. We validated our approach
using multimodal MR-scans of 19 patients and showed that our approach reduces
the labeling time significantly while giving results that closely match those from a
fully annotated training set. This is an important step towards bringing automatic
tumor segmentation into clinical routine.

1 Introduction

Manual segmentation of tumors in the context of treatment planning or therapy control is time-
consuming and error-prone. It often requires the simultaneous consideration of complex imaging
features and partial volume effects (blurry and unclear borders) in multiple 3D images. Mazzara
et al., for example, reported that it takes between 20 min and 1 hour to label a 3D-MR-scan that
contains a malignant glioma – the most common primary brain tumor [1]. They also reported an
intra-rater and inter-rater volume variability of 20 ± 15% and 28 ± 12% respectively. Menze et
al. reported that they needed about 4 hour to label a single training patient [2]. An automated
segmentation can reduce the work-load while giving more consistent segmentations [1].

Automated machine learning-based methods were previously shown to successfully learn glioma ap-
pearance from training databases [3–8]. The tumor in new images is then segmented by predicting
the label of each voxel separately. This step integrates multiple sources of information such as dif-
ferent modalities (e.g. different magnetic resonance imaging (MRI)-protocols which are commonly
available in clinical routine), derived features, or brain atlas-based information.

One common drawback of these approaches is that the training and labelling has to be repeated
if the clinical setup changes. MRI-images have a high variability depending on the scanner type,
sequence, and configuration, so for optimal performance each clinic has to create a unique training
base reflecting their setting. The above mentioned problems of this tedious process often render
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Figure 1: a: An exemplary slice of a T1w-MR image of the brain of a patient with glioma tumor. b:
The corresponding slice of a T2-Flair image. The tumor is outlined in yellow. c: The T2-Flair with
the small segmentations. Green is healthy - red, blue and yellow are tumor. Note that border regions
are included in all labels.

learning-based methods inadequate for clinical use. To alleviate these problems, Verma et al. [9]
avoided full manual segmentations and learned from nearly complete segmentations excluding am-
biguous areas. We hypothesize that this introduces a domain adaption problem since the test and
train data are generated from different distributions. In this work, we also exclusively label nonam-
biguous regions in only small fractions of the data. We correct the resulting sampling selection bias
using a domain adaptation technique that assumes a covariate shift.

2 Method

Labeling only small parts of the image leads to a sampling bias. Some areas are over-represented
while others are under-represented. This is true for the tissue classes as well as for the feature
distribution. We assume that the small segmentations are representative for the labels, i.e. the
likelihood P for a label y and a given feature vector x was assumed to be the same in the complete
and the small segmentation. Only the likelihoods for given feature vectors were assumed to be
different:

PSmall(y | x) = PComplete(y | x)
PSmall(x) 6= PComplete(x) .

We therefore assumed a covariate shift within the training data and corrected it by weighting all
samples as suggested by Shimodaira [10] with

w(x) =

(
PComplete(x)

PSmall(x)

)λ
.

There are several ways to estimate the correction factor w. Since the tissue appearance is learned
voxel-wise the training-base is rather large. A single 3D-MR scan contains usually more than
100.000 voxels. We decided to use a logistic regression classifier (LRC) to calculate w because
it was previously successfully used [11] and we found that it works fast on large data sets. We
trained a LRC that predicts if a voxel is in the complete or the small segmentation. According to
Sugiyama and Kawanabe [12] w can be estimated with the trained LRC-parameters θ(x) by

w(x) = (c · exp (θ(x)))λ .

We calculated the voxel-weights for each image separately instead for all images at once. This is
important since the tissue appearance differs greatly between different MR images. Consequently
we set c = 1. The sum of all weights for a single image match the number of voxels instead of
the number of voxels from the small segmentation as it would be if we used c from [12]. This is
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important in order to ensure that size of the small segmentation does not influence the importance
of an image during training. We set λ = 1 as we found this to give the best result.

For the classifier we chose random forests since they have previously shown good performance in
brain tumor segmentation [3, 4]. The noise sensitivity was reduced by limiting the tree depth as
suggested in [13] and the weights were incorporated by extending the Gini Impurity. Instead of
estimating the label probability by the number of elements with this label the sum of all weights
corresponding to this label is used:

I(V ) = 1−
∑
yc∈Y

 1∑
wi
·
∑
yj=yc

wj

2

.

3 Experiments and Results

The evaluation of the proposed method was carried out using 19 patients with malignant gliomas.
Each patient had 16 different MR images, including T1 with contrast enhancement, T2, T2 Flair,
and MR-Diffusion-tensor-imaging derived maps. The feature vector of a voxel contains the intensity
of the 16 images at the corresponding positions after a MR histogram normalization step.

Trained experts created both, a complete tumor segmentation with two classes (healthy and tumor-
ous) and small segmentations with 5 classes (fluid, healthy brain, edema, active tumor, and necrosis).
They performed multiple refinement steps for the full segmentation to increase the quality of these
segmentations. To compare the results we fused the 5 labels of the small segmentations into two
labels which match those of the full segmentations.

Contrary to a complete segmentation for which all slices (usually between 40 and 50) of an image
are labeled, the small segmentations are usually located only in a single slice. (The labeled regions
within these slices is small.) The small regions were drawn in locations that the expert evaluated as
being representative. Figure 1 shows an example of both a complete- and a set of small segmenta-
tions.

Using these segmentations, we ran leave-one-out experiments. Excluding one patient from the train-
ing base we trained 3 different classifiers using the remaining 18 patients. The first two classifiers
are based on the small segmentations - one with and one without domain adaptation. The third clas-
sifier is based on 0.5% random samples from the complete segmentations which is roughly the area
covered by the small segmentations.

3.1 Timing analysis

The time required for the different steps is listed Table 1. It shows a significant reduction of the time
necessary for the creation of the training base. Since it takes less than 5 minutes to generate the
labels for a single patient it is possible to label all patients within 2 hours. Thus, a radiologist may
label patients prospectively during daily routine. This allows for a continuous growth of the training
base and fast adaptation to changes in the imaging protocol.

Table 1: Durations of different tasks

Method Labeling Training Prediction

Small Seg. < 5 min 12.4± 1.1 sec 45.7± 4.3 sec
Small Seg. with DA < 5 min 63.8± 14.4 sec 74.4± 8.3 sec
Complete > 240 min 46.9± 1.1 sec 149.3.4± 16.3 sec

The training time is minimal if small segmentations are used and no DA is performed during the
training. Due to the estimation of w, the training takes significantly longer if DA is used. Since the
training is fully automated this is usually not a problem. It is also worth noting that the prediction
times for the small segmentation based classifiers are only half of those of the complete segmentation
based classifiers. This is important for interactive applications where a fast response is important.
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3.2 Quality analysis

The evaluation of the produced predictions is based on the DICE-score [14]. The prediction for
each patient is compared to the manually created complete segmentation and the results are given
in Fig. 2. Compared to a complete segmentation trained classifier the small segmentation trained
classifier shows a significant1 (p = .008) drop in the segmentation quality. We think that there are
two reasons for this drop. First the small segmentations contain less information than the complete
segmentation, therefore the classifier is less general. A second reason for this drop is the sampling
bias within the training data.
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Figure 2: Leave-one-out results of the classifier trained on 3 different training bases. The DICE
score is calculated against the manually created complete segmentation.

As expected the correction of the sampling bias improves the results. A classifier with DA gives sig-
nificantly (p = .015) better results than one trained without domain adaptation. The DA results are
comparable to the results obtained from a classifier trained on the whole segmentation. There is no
significant (p = .10) difference between the two results although the complete segmentation-trained
classifier seems to have a better generalization. This difference could be reduced by adding more
patients to the training base, which is now much easier than extending the complete segmentation
training base.

4 Conclusion

We showed that domain adaptation allows training classifiers for tumor segmentation on partially
labeled data. It reduces the sampling error made during the creation of the training base and the
so-trained classifiers perform similar to classifier trained with complete segmentations. This is an
important step towards including automatic brain tumor segmentation in clinical routine since it
allows creating a custom training base in reasonable time. Further research needs to evaluate the
choice of the weight estimation algorithm and to validate the effect of an extended training base on
small segmentation-trained classifier.
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