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Abstract

The interactions between covariates may change with learning domains. Discover-
ing such transitions may offer key information helping us transfer our knowledge
from one domain to another. We study the problem of learning sparse structure
changes between two Markov networks P and Q. Rather than fitting two Markov
networks separately to two sets of data and figuring out their differences, a re-
cent work proposed to learn changes directly via estimating the ratio between two
Markov network models. In this paper, we give sufficient conditions for success-
ful change detection with respect to the sample size np, nq , the dimension of data
m, and the number of changed edges d. More specifically, we prove that the
true sparse changes can be consistently identified for np = Ω(d2 log m2+m

2 ) and
nq = Ω(n2p/d), with an exponentially decaying upper-bound on learning error.

1 Introduction

Learning changes in interactions between random variables plays an important role in many real-
world applications. For example, genes may regulate each other in different ways when exter-
nal conditions are changed. EEG signals from different regions of the brain may be synchro-
nized/desynchronized when the patient is performing different activities. Identifying such changes
in interactions helps us expand our knowledge on these real-world phenomena.

We consider the problem of learning changes between two undirected graphical models. Such a
model, also known as a Markov network (MN) [2], expresses interactions via the conditional inde-
pendence between random variables. Naively, one may utilize existing MN learning methods (e.g.
Graphical Lasso [1]) to approximate two separated MNs and compare their differences.

One most recent effort based on density ratio estimation, proposes to learn the changes directly
between MNs without modelling each individual MN [3]. In this paper, we theoretically investigate
the success of such approach and provide sufficient conditions for successful change detection with
respect to the number of samples np, nq , data dimension m, and the number of changed edges d.

More specifically, we prove that if np = Ω(d2 log m2+m
2 ) and nq = Ω(

n2
p

d ), changes between two
MNs can be consistently learned under mild assumptions, regardless the sparsity of individual MNs.

2 Direct Change Learning between Markov Networks

2.1 Problem Formulation

Consider two sets of independent samples drawn separately from two probability distributions P
and Q on Rm:{x(i)

p }np

i=1
i.i.d.∼ P and {x(i)

q }nq

i=1
i.i.d.∼ Q. We assume that P and Q belong to the

family of Markov networks (MNs) consisting of univariate and bivariate factors, i.e., their respective
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probability densities p and q are expressed as

p(x;θ(p)) =
1

Z(θ(p))
exp

 m∑
u≥v

θ(p)u,v
>ψ(xu, xv)

 , (1)

where x = (x1, . . . , xm)> is them-dimensional random variable, u ≥ v is short for u, v = 1, u ≥ v
(same below), > denotes the transpose, θ(p)u,v is the parameter vector for the elements xu and

xv , and θ(p) = (θ
(p)>
1,1 , . . . ,θ

(p)>
m,1 ,θ

(p)>
2,2 , . . . ,θ

(p)>
m,2 , . . . ,θ

(p)>
m,m)> is the entire parameter vec-

tor. ψ(xu, xv) : R2 → Rb, and Z(θ(p)) is the normalization factor defined as Z(θ(p)) =∫
exp

(∑m
u≥v θ

(p)
u,v
>ψ(xu, xv)

)
dx. q(x;θ(q)) is defined in the same way.

Given two parametric models p(x;θ(p)) and q(x;θ(q)), the goal is to discover changes in parame-
ters from P to Q, i.e., θ(p) − θ(q).

2.2 Density Ratio Formulation for Structural Change Detection

The key idea in [3] is to consider the ratio of p and q:

p(x;θ(p))

q(x;θ(q))
∝ exp

(∑
u≥v(θ

(p)
u,v − θ

(q)
u,v)
>ψ(xu, xv)

)
, where θ(p)u,v − θ

(q)
u,v encodes the difference be-

tween P and Q for factor ψ(xu, xv), i.e., θ(p)u,v − θ
(q)
u,v is zero if there is no change in the factor

ψ(xu, xv).

Once the ratio of p and q is considered, each parameter θ(p)u,v and θ(q)u,v does not have to be estimated,
but only their difference θu,v = θ(p)u,v−θ

(q)
u,v is sufficient to be estimated for change detection. Thus,

in this density-ratio formulation, p and q are no longer modeled separately. We directly model the
ratio between p and q as

r(x;θ) =
1

N(θ)
exp

∑
u≥v

θ>u,vψ(xu, xv)

 , (2)

where N(θ) is the normalization term. The normalization term N(θ) is chosen to fulfill∫
q(x)r(x;θ)dx = 1, and is defined as N(θ) =

∫
q(x) exp

(∑
u≥v θ

>
u,vψ(xu, xv)

)
dx, which

is the expectation over q(x). This expectation can be easily approximated by the sample average
over {x(i)

q }nq

i=1
i.i.d.∼ q(x).

2.3 Direct Density-Ratio Estimation

For a density ratio model r(x;θ), the Kullback-Leibler importance estimation procedure (KLIEP)
minimizes the Kullback-Leibler divergence from p(x) to p̂(x) = q(x)r(x;θ):

KL[p‖p̂] =

∫
p(x) log

p(x)

q(x)r(x;θ)
dx = Const.−

∫
p(x) log r(x;θ)dx. (3)

In practice, one minimizes the negative empirical approximation of the second term in Eq.(3)

`KLIEP(θ) = − 1

np

np∑
i=1

log r(x(i)
p ;θ)

Because `KLIEP(θ) is convex with respect to θ, its global minimizer can be numerically found by
standard optimization techniques such as gradient ascent or quasi-Newton methods. To find a sparse
change between P and Q, one may regularize the KLIEP solution with a sparsity-inducing norm∑
u≥v ‖θu,v‖, i.e., the group-lasso penalty [8].

Now we have reached the final objective provided in [3]:

θ̂ = argmin
θ

`KLIEP(θ) + λnp

∑
u≥v

‖θu,v‖. (4)
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3 Support Consistency of Direct Sparse-Change Detection

3.1 Notation

Before introducing our consistency results, we define a few notations. In the previous section, a
sub-vector of θ indexed by (u, v) corresponds to a specific edge of an MN. From now on, we use
new indices with respect to the “oracle” sparsity pattern of the true parameter θ∗ for notational
simplicity. By defining two sets of sub-vector indices S := {t′ | ‖θ∗t′‖ 6= 0} and its complement
Sc := {t′′ | ‖θ∗t′′‖ = 0}, we rewrite the objective (4) as

θ̂ = argmin
θ

`KLIEP(θ) + λnp

∑
t′∈S
‖θt′‖+ λnp

∑
t′′∈Sc

‖θt′′‖. (5)

The support of estimated parameter and its complement are denoted as Ŝ and Ŝc. Sample Fisher

information matrix I ∈ R
b(m2+m)

2 × b(m2+m)
2 is the Hessian of the log-likelihood: I = ∇2`KLIEP(θ∗).

IAB is a sub-matrix of I indexed by two sets of indices A and B on rows and columns.

3.2 Assumptions

Similar to previous researches on sparsity recovery analysis [6, 5], the first two assumptions are
made on Fisher Information Matrix.
Assumption 1 (Dependency Assumption). The sample Fisher Information Matrix ISS has bounded
eigenvalues: Λmin(ISS) ≥ λmin > 0.

This assumption is to ensure that the model is identifiable. Although Assumption 1 only bounds the
smallest eigenvalue, the largest eigenvalue of I is in fact, also upper-bounded, as we stated in later
assumptions.
Assumption 2 (Incoherence Assumption). The unchanged edges cannot exert overly strong effects
on changed edges: maxt′′∈Sc ‖It′′SI−1SS‖1 ≤ 1− α, α ∈ (0, 1], where ‖Y ‖1 =

∑
i,j ‖Y i,j‖1.

We also make the following assumptions as an analogy to those made in [7].
Assumption 3 (Smoothness Assumption on Log-normalization Function). We assume that the nor-
malization term log N̂(θ) is smooth around its optimal value and has bounded derivatives

max
δ,‖δ‖≤‖θ∗‖

∣∣∣∣∣∣∣∣∣∇2 log N̂(θ∗ + δ)
∣∣∣∣∣∣∣∣∣ ≤ λmax, (6)

max
t∈S∪Sc

max
δ,‖δ‖≤‖θ∗‖

∣∣∣∣∣∣∣∣∣∇θt
∇2 log N̂(θ∗ + δ)

∣∣∣∣∣∣∣∣∣ ≤ λ(3)max,

where |||·||| is the spectral norm of a matrix or tensor. Note that (6) also implies the bounded largest
eigenvalue of Fisher Information Matrix I, because I = ∇2`KLIEP(θ∗) = ∇2 log N̂(θ∗).

A key difference between this paper and previous proofs is that we make no explicit restrictions
on the type of distribution P and Q, as KLIEP allows us to learn changes from various dis-
crete/continuous distributions. Instead, we make the following assumptions on the density ratio:
Assumption 4 (The Correct Model Assumption). The density ratio model is correct, i.e. there exists
θ∗ such that p(x) = r(x;θ∗)q(x).

Assumption 5 (Smooth Density Ratio Model Assumption). For any vector δ ∈ Rdim(θ∗) such that
‖δ‖ ≤ ‖θ∗‖ and every t ∈ R, the following inequality holds:

Eq [exp (t (r(x,θ∗ + δ)− 1))] ≤ exp

(
10t2

d

)
,

where d is the number of changed edges.

The following main theorem establishes sufficient conditions of change detection in terms of pa-
rameter sparsity. Let’s define g(m) = log(m2+m)

(log m2+m
2 )2

which is smaller than 1 when m is reasonably

large.
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(a) Lattice grid, Gaussian
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(b) Lattice grid, Diamond
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Figure 1: Rates of successful change detection versus np normalized by log m2+m
2 (a-c) and d

1
4 (d).

Theorem 1. Suppose that Assumptions 1, 2, 3, 4, and 5 as well as mint′∈S ‖θ∗t′‖ ≥ 10
λmin

√
dλnp are

satisfied, where d is the number of changed edges. Suppose also that the regularization parameter
is chosen so that

8(2− α)

α

√
M1 log m2+m

2

np
≤ λnp

≤ 4(2− α)M1

α
min

(
‖θ∗‖√
b
, 1

)
where M1 = λmaxb+ 2, and nq ≥

M2n
2
pg(m)

d , where M2 is some positive constant. Then there exist
some constants L1, K1, and K2 such that if np ≥ L1d

2 log m2+m
2 , with the probability at least

1− exp
(
−K1λ

2
np
np

)
− 4 exp

(
−K2dnqλ

4
np

)
, the following properties hold:

• Unique Solution: The solution of (5) is unique

• Successful Change Detection: Ŝ = S and Ŝc = Sc.

Note that the probability of success converges to 1 as λ2np
np → ∞ and dnqλ4np

→ ∞. The proof
follows the steps of previous support consistency proofs using primal-dual witness method [6] and
is provided in the supplementary material [4].

4 Experiments

One important consequence of Theorem 1 is that, for fixed d, the number of samples np required for
detecting the sparse changes grows with log m2+m

2 . The first set of experiments are performed on
four-neighbor lattice-structured MNs. We draw samples from a Gaussian lattice-structured MN P .
Then we remove 4 edges randomly, to construct another Gaussian MN Q. We scale dimension m

and np and let np = nq . As suggested by Theorem 1, λnp
is set to a constant factor of

√
log m2+m

2

np
.

The rate of successful change detection versus the number of samples np normalized by log m2+m
2

is plotted in Figure 1(a). It can be seen that KLIEP with different input dimensionsm tend to recover
the correct sparse change patterns immediately beyond a certain critical threshold. All curves are
well aligned around such a threshold, as Theorem 1 has predicted. We repeat the same experiment
on non-Gaussian Diamond dataset [3] and results are shown in Figure 1(b).

Finally, we evaluate the dependency between number of samples np = nq and number of changed
edges d. Our theory predicts np required for successful change detection grows with d. We again
construct Gaussian lattice-structured MNs. As we can see from Fig. 1(c), curves are well aligned,
which suggests that np scales linearly with d

1
4 .
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