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Abstract

Multi-task feature selection methods often make the hypothesis that learning tasks
share relevant and irrelevant features. However, this hypothesis may be too restric-
tive in practice. For example, there may be a few tasks with specific relevant and
irrelevant features (outlier tasks). Similarly, a few of the features may be rele-
vant for only some of the tasks (outlier features). To account for this, we propose
a model for multi-task feature selection based on a robust prior distribution that
introduces a set of binary latent variables to identify outlier tasks and outlier fea-
tures. Expectation propagation can be used for efficient approximate inference
under the proposed prior. Our experiments show that a model based on the new
robust prior obtains better predictive performance than other benchmark methods.

1 Introduction

Multi-task feature selection methods are used to improve the learning of model coefficients from
the observed data under the sparsity assumption [1, 2| |3, 4} 5]. In these methods several learning
tasks that have a common feature space are solved simultaneously. Furthermore, it is often assumed
that the tasks share relevant and irrelevant features, as illustrated by Figure [2| (left). Unfortunately,
in some situations this hypothesis may be too restrictive [6]. Figure [2|(right) shows this scenario,
in which a few of the tasks may have specific relevant and irrelevant features (outlier tasks) and a
few of the features may be arbitrarily relevant and irrelevant across tasks (outlier features). In this
situation, traditional multi-task feature selection methods are expected to perform poorly. To deal
with these situations, in this paper we propose a multi-task feature selection model that is expected to
have better properties in the presence of diverse tasks, i.e., data with the properties described above.
The model is based on a robust prior distribution for enforcing sparsity in the model coefficients.
Exact inference is intractable under this prior. However, expectation propagation can be used for
efficient approximate inference [7]. Our experiments illustrate the benefits of the model proposed.
Specifically, it has better prediction properties than other methods from the literature. This model
can also be used to identify relevant attributes for prediction, and outlier tasks and outlier features.

2 Model Description

Assume K regression tasks with data {X(k), y(k)}szl, where X(*) and y(*) are the design matrix
and the vector of targets for task k, respectively. All tasks share the same d attributes or features.
A linear model is considered for each task, i.e., y*) = X®Fwk) 4+ ) where w*) € R? is
the vector of model coefficients for task k and €*) ~ A(0, Ia(zk)). Let W be a K x d ma-



trix whose k-th row is w(*) and Y a matrix whose k-th row is y(*). The likelihood for W is
p(YHXWY W {of 1)) = e, N(y®X®wk) To?,,)). Furthermore, feature selec-
tion for each task, or equivalently, sparsity in w(*) is expected to be beneficial. We also assume
that the K tasks share, in general, relevant and irrelevant features, but we allow for small deviations
from this hypothesis. All this prior knowledge is introduced in the model by a robust prior for W.

2.1 Robust prior distribution

To favor sparse solutions we use the discrete mixture prior described in [8]. After reviewing this
prior we extend it to perform feature selection across several tasks in a robust way.

2.1.1 Discrete mixture prior

This is a spike and slab prior in which the i-th coeffi-
cient of task k satisfies wgk) ~ (1—p)dg +p7r(w£k) ),
where p is the prior inclusion probability, Jg is a
point of probability mass at zero, and 7(+) is a den-
sity that specifies the distribution of the coefficients
that are not zero. Each wgk) is a priori zero with
probability (1 — p). In [8] it is suggested for () »
the Strawderman-Bergen prior [9, [10], which has R e S S
Cauchy-like tails and yet allows for a closed form w®
convolution with the Gaussian likelihood. This dis-
crete mixture prior is a scale mixture of Gaussians:
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Figure 1: Density of different priors.
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where | - | denotes absolute value, and ®(-) and A/ (-|0, 1) respectively denote the cdf and density of
a standard Gaussian distribution. Figure [I|compares the discrete mixture prior with other priors (an
arrow denotes a point of probability mass). We observe that the discrete mixture has heavy tails to
explain coefficients that significantly differ from zero. It also has a point mass at zero that allows for
exact zeros in the coefficients. Thus, such a prior is very convenient for feature selection [8].

2.1.2 A robust prior to favor sparse solutions across tasks

The discrete mixture prior is extended to carry out feature selection across several tasks. We assume
that these tasks have in general jointly relevant and irrelevant features. However, we consider a few
outlier tasks with specific relevant and irrelevant features. Similarly, we also consider a few outlier
features that may be arbitrary relevant and irrelevant for each task. This is illustrated in Figure [2]
(right). Tasks 4 and 8 are outlier tasks and features 19 and 21 are outlier features. The remaining
tasks and features follow the main assumption of jointly relevant and irrelevant features.
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Figure 2: (left) Traditional multi-task feature selection: All tasks share relevant and irrelevant features (model
coefficients). (right) Dirty multi-task feature selection: Most tasks share relevant and irrelevant features, but we
allow for outlier tasks (tasks 4 and 8) and for outlier features (dimensions 19 and 21). White squares represent
irrelevant coefficients, i.e., equal to zero. Colored squares represent relevant coefficients with non-zero values.

To model this type of prior knowledge we introduce the following binary latent variables:



z; Indicates whether feature ¢ is an outlier (z; = 1) or not (z; = 0). If it is an outlier it can be
independently relevant or irrelevant for each task.
wi Indicates whether task k is an outlier (wx = 1) or not (wr, = 0). If it is an outlier it can have specific
relevant and irrelevant features for prediction.
v; Indicates whether the non-outlier feature ¢ is relevant (; = 1) for prediction or not (; = 0) in all
tasks that are not outliers, i.e., those tasks for which wy = 0.

Ti(k) Indicates whether, given that task & is an outlier task, i.e., wy = 1, feature ¢ for that task is relevant
(Ti(k) = 1) or irrelevant (Ti(k) = 0) for prediction.

nik) Indicates whether, given that feature ¢ is an outlier feature, that particular feature is relevant for

prediction in task k (n*) = 1) or not (n*) = 0).

(3

Consider €2 to summarize all these latent variables, i.e. @ = {z,w, v, {T®) 1 {n®) 1} We

specify the prior distribution for the model coefficients to be p(W|€2) = H?:l Hle p(wfk) |€2),
N 1o (k) _ k) s
where p(uw(®|2) = {r(w™)n” 657"y {m(w Py g e fr(w® yrag e i,

(k)

Under this prior a coefficient w;"’ is different from zero if (i) it corresponds to an outlier feature

(z; = 1) which is relevant for task k (ngk) = 1); or (ii) it does not correspond to an outlier feature
(z; = 0), but it corresponds to an outlier task (w; = 1) and the feature is relevant for that task
(Ti(k) = 1); or (iii) it does not correspond to an outlier feature (z; = 0), nor an outlier task (w, = 0),

but the feature is relevant for prediction across tasks (y; = 1). Otherwise, the coefficient is zero.

We fix the hyper-priors for the latent variables to Bernoullis with parameters p., p., p, pr and
. d K d
py- Thatis, p(z) = [[;_; Bern(zi|p:), p(w) = [[;—; Bemn(wk|pw). p(7) = ;= Bern(yx|p,),

(MY, =TI T, Bem(rYlp,) and p({n )} ) =TT T Bem(n;” |py). The
hyper-prior for each p., p.,, py, pr and p, is a beta distribution with parameters ao and by, e.g.,
p(p~) = Beta(p,|ag, by) for the case of p,. We set ag = 1 and by = 10. These values favor sparse
solutions (hyper-parameter values close to zero) and, at the same time, produce high variance to
identify of the correct hyper-parameter values from the training data.

3 Expectation Propagation

Define p = {pz;pw:py,prippt and p(p) = [l,c,p(p) The joint distribution
p(Y, W, Q, p{XB N {of 1) = p(YHX® N, W, {03, 1 )p(WIR)p(2p)p(p)
can be normalized with respect to W, €2 and p to get a posterior distribution over the latent variables,
p(Y, W, Q, pHX(k) }i(:p {U(2k)}kK=1)

p(Y {07 1) ’
whose exact computation is intractable in most real applications. To circumvent this problem, EP
approximates (2) by replacing each factorin p(Y, W, Q, p[{X*)} K| {0 }i=1) thatis not inside
a particular exponential family F of distributions with an approximate factor inside that particular
family [7]. We set F to be the product of Gaussian distributions on W, Bernoulli distributions on
Q and beta distributions on p. Therefore, the only factors not in F are p(W|2) and p(Q2|p). The
likelihood is Gaussian and the hyper-priors are beta. Thus, these factors need not be approximated.

p(W,Q, plY, {X(k)}szlv {U(Qk;)}i(:ﬂ = @)

In our EP method each factor p(wgk)\ﬂ) in p(W|Q) is approximated as p(wgk)m) S

SN (w52 Bern(z]58 ) Bern(wy 55 Bern(y; 5 ) Bem(r" |5 )Bern(n "

p‘sf’k)). Each factor in p(§2|p) is approximated similarly. Namely, for the particular case of
p-. Bern(zi|p.) ~ #iBern(z|p\”)Beta(p,|al”,b”). Furthermore, all the parameters with the
superscript ~ are to be adjusted by EP. EP does this so that the approximate factors look similar
to the corresponding exact factors in regions of high posterior probability. Once this fitting
process is finished, the EP approximation of (2)) is obtained by replacing in the joint distribution
p(Y, W, Q, p|{X®} K| {U(Qk)}szl) each exact factor by the corresponding approximate factor.
Denote with g the resulting approximate joint distribution. After normalization, ¢ becomes the EP
posterior approximation ¢, which is inside of F because F is closed under the product operation.



4 Experimental evaluation

We compare the proposed model for dirty multi-task feature selection (DMFS) with single task
learning (STL) and with a model for multi-task feature selection (MFES) that assumes jointly relevant
and irrelevant features across tasks. STL and MFS are particular cases of DMFS where all tasks are
outliers (STL) and where there are no outlier tasks nor outlier features (MFS). We also compare
with the dirty model (DM) described in [6], the robust multi-task feature selection method (RMFS)
given in [[11] and the model for learning feature selection dependencies (MFSp,,) proposed in [12].
Besides these, other works from the literature also model outlier tasks, e.g., [13,14]. However, they
do not consider sparsity in the model coefficients and are expected to perform poorly in our setting.

We generate 12 tasks where the model coefficients are sampled from a Student’s distribution with
5 degrees of freedom. Each task k has d = 200 associated attributes and n; = 100 samples. The
sparsity pattern employed for the model coefficients is displayed in Figure [2] (right). All coefficients
above dimension 26 are set to zero. The noise is Gaussian and O'(Qk) = 0.5 Vk. Each entry of X(*)
is standard Gaussian Vk. We use 90% of the instances for training and 10% for testing. We average
results over 100 repetitions. For each method we report the test root mean squared error (RMSE) and
the reconstruction error of W, i.e., 1/K S 1, |[[w®) — w(®)||5, where w(¥) is either the posterior
mean (probabilistic models) or a point estimate of w(¥) (DM and RMFES). In the probabilistic models
we set O'(Qk) = 1/2, Vk. In DM and RMFS we choose hyper-parameters using a grid of values and an
inner cross-validation method. In MFSpe, we use type-II maximum likelihood [15]] for this purpose.

Table 1: Avg. Test RMSE and Reconstruction Error.
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0 05 1
|

Method Test RMSE Rec. Error L

MFS 0.80£0.06  0.41£0.03 12 3 4 s e 7 8 8 now o
DMFES  0.74+0.05  0.27+0.02 E -

DM 0.894+0.06  0.5840.04 E oi ||

MFSpe,  0.7640.05  0.324:0.02 oo ‘ ‘ ‘ ‘
RMFS  0.95+0.08  0.6540.06 ! 50 100 150 200
STL 0.784+0.05  0.3640.03

Figure 3: Avg. Posterior Prob. for wy = 1 and z; = 1.

The average results obtained are displayed in Table[I] The best method is DMFS. This model makes
the hypothesis most compatible with the the data. The differences of DMFS with respect to the other
methods are statistically significant (p-value < 5% using a paired Student’s T test). MFSp, also
performs well since the hypothesis made is also very flexible. DM and RMFS perform poorly in
general. The reason for this is that DM is unable to model outlier tasks [6]. It can only model outlier
features. Similarly, RMFS is unable to model outlier features [[11]. Furthermore, in RMFS outlier
tasks cannot be sparse. All the model coefficients of these tasks are expected to be relevant. Another
reason for the bad behavior of DM and RMFS is that the norms employed by these methods cannot
provide very sparse solutions without shrinking relevant coefficients [8, [L6]. The better results
obtained by DMFS are also explained by Figure [3] which shows the average posterior probability
that each task and each feature is an outlier, as estimated by DMFS. DMFS successfully identifies
tasks 4 and 8 as outlier tasks and features 19 and 21 as outlier features.

5 Conclusions

Most methods for multi-task feature selection assume jointly relevant and irrelevant features across
tasks. This may be too restrictive in practice. In this work we have proposed a prior distribution that
considers that most tasks share relevant and irrelevant features, but that allows for some tasks to have
different relevant and irrelevant coefficients (outlier tasks), and for some features to be arbitrarily
relevant or irrelevant for each task (outlier features). This is a more flexible assumption. Exact
inference is infeasible under the proposed prior. However, a closed-form expectation propagation
algorithm can be used for approximate inference. A model using such a prior has been evaluated
showing gains in the prediction performance and in the identification of relevant features. Such a
prior is also useful to better understand the data by identifying outlier tasks and outlier features.
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