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Abstract

Generalization bounds for time series prediction and other non-i.i.d. learning sce-
narios that can be found in the machine learning and statistics literature assume
that observations come from a (strictly) stationary distribution. The first bounds
for completely non-stationary setting were proved in [6]. In this work we present
an extension of these results and derive novel algorithms for forecasting non-
stationary time series. Our experimental results show that our algorithms sig-
nificantly outperform standard autoregressive models commonly used in practice.

1 Introduction

Given a sample ((X1,Y1),...,(Xm, Ym)) of pairs in Z = X x ), the standard supervised learning
task consists of selecting, out of a class of functions H, a hypothesis h: X — ) that admits a small
expected loss measured using some specified loss function L: ) x Y — R.. The common assump-
tion in the statistical learning theory and the design of algorithms is that samples are drawn i.i.d.
from some unknown distribution and generalization in this scenario has been extensively studied in
the past. However, for many problems such as time series forecasting, the i.i.d. assumption is too
restrictive and it is important to analyze generalization in the absence of that condition. A variety of
relaxations of this i.i.d. setting have been proposed in the machine learning and statistics literature.
In particular, the scenario in which observations are drawn from a stationary mixing distribution has
become standard and has been adopted by most previous studies [} 18, 9} [10} [13} [15]] and most of
the modern time series prediction methods either assume stationarity or attempt to transform the
data in order to satisfy this assumption. For a more detailed survey of state-of-the-art results in this
area we refer the reader to [6]. However, a wide spectrum of stochastic processes considered in
applications, such as for example Markov chains, are in fact non-stationary. In this work, we present
generalization bounds under the more realistic assumption of non-stationary data. Furthermore, we
argue that under some additional assumptions our generalization bounds lead to novel algorithms
for forecasting non-stationary time series.

2 Generalization bounds

To state our main results we will first need to introduce some notation. Suppose we are given a
doubly infinite sequence of Z-valued random variables {Z;}$2 _ __ jointly distributed according to
P. We will write Zg to denote a vector (Z,, Zy+1, - - -, Zp) Where a and b are allowed to take values
—o0 and oc. Similarly, P® denotes the distribution of Z%. Recall that a sequence of random variables
Z>__ is (strictly) stationary provided that, for any ¢ and any non-negative integers m and k, Z:t™

and Zfﬂf*k have the same distribution. We will not assume that the process that we sample from

is stationary but we will assume that it is mixing. Following [3l], we define S-mixing coefficients for



P as follows. For each positive integer a, we set 3(a) = sup, [P’ . @ P5S, — P AP, [|l7v,
where P __ APgS , denotes the joint distribution of Z __ and Zg% . and || - || 7y is the total variation
distance. Roughly speaking, this means that the future has a sufficiently weak dependence on the
distant past. Often, processes that arise naturally in applications are S-mixing. For example, one
can show that Markov processes are geometrically S-mixing with 8(a) = O(d~*) for some d > 1.

The goal of the learner is to find a hypothesis h that will have a small generalization error in the
near future: L4 4(h) = Bz, [l(h, Zr4s)], where £(h, z) = L(h(x),y) and L is some given loss
function. For alternative definitions of the generalization error for time series prediction see [6].

Finally, a key ingredient of the bounds we present is the notion of discrepancy between two proba-
bility distributions that was used by Mohri and Mufioz Medina [12]] to give generalization bounds for
sequences of independent (but not identically distributed) random variables. In our setting, discrep-
ancy can be defined as d(t1,t2) = suppeq |Lt, (h) — L4, (h)]. Discrepancy is a natural measure of
the non-stationarity of a stochastic process with respect to the hypothesis class 1 and a loss function
L. For instance, if the process is strictly stationary then d(t1,t2) = 0 for all t1,t5 € Z.

Generalization bounds for non-i.i.d. scenarios that can be found in the machine learning and statistics
literature assume that observations come from a (strictly) stationary distribution. The first bounds
for completely non-stationary setting were proved in [6]. Here we present an extension of these
results and use it to derive novel time series prediction algorithms. Our main result is the following.

Theorem 1. Let L be a loss function bounded by M and H an arbitrary hypothesis set. For any
a and m such that T = 2am, partition the given sample Z7 into blocks 2m blocks each of size a.
Fix any wy, . .., wr, such that 23:1 wy = 1 and wy > 0. Then, for any 6 > 2(m — 1)3(a), with
probability 1 — 6, the following holds for all hypotheses h € H:

T 2a—1 T

4
Lris(h) < wil(h, Z;) + - SR +2) wd(t, T+ ) + e(Vallw — ] + =)
t=1 §=0 t=1
where R; = LE[supney >oivy 0il(hoaitj, Zoai+j)] are Rademacher complexities, ¢ =

2M ,/log % and  is the uniform distribution.

The main difference of this result with the result presented in [6] is that w; is not required to be
uniform anymore. Unlike in i.i.d. setting, it is natural to weight the errors of a given hypothesis
h differently on different sample points since distances between their distributions and distribution
that we are trying to predict may vary. As we shall see below this also leads to new algorithms for
time series prediction. The proof of this result follows the same arguments as in [6] which are based
on independent block technique of [[15]. We omit the proof and refer the reader to [|6] for details.

The learning bound of Theorem|I]indicates the challenges faced by the learner when presented with
data drawn from a non-stationary stochastic process. In particular, the presence of the third term in
the bound shows that generalization in this setting depends on the “degree” of non-stationarity of
the underlying process. The dependency in the training instances reduces the effective size of the
sample from 7" to m (if choose uniform weights w; = 1/7).

3 Algorithms

In this section we will show how the bounds of Section [2]can be used to derive novel algorithms for
forecasting non-stationary time series. We will assume that that d; = d(¢,T + s) can be computed
analytically or has been estimated from the data. Either of these assumptions can naturally arise
in applications. For instance, the discrepancy measure d; can be replaced by an upper bound that,
under mild conditions, can be estimated from data [[7, 4]]. Alternatively, suppose L is a quadratic
loss L(y,y') = (y —y')?> and X = Y4 x X', i.e. our feature vector x; = (Ys_1,---,Yi_d,T})
consists of the d previous values of the stochastic process that we are trying to predict and a side
information x} at time ¢. If we use a set of linear hypothesis H = {x — h - x: ||h||s < A}, then
we can compute d; explicitly in terms of the autocovariance function of the underlying stochastic
process. In particular, if for simplicity we omit side information then we observe that for any ¢ we

can write E[(Y°70_, 7Y —Y1)?] = Y00 hihiE[Y:—;Yi—i] = 320 o hahjp(t—i,t—j), where

i,j=0 i,j=0



p(r,s) = E[Y,Y;] and we take hy = —1. Therefore, we can write

d
di=sup | Y hih(p(t it = j) = p(T =i, T = j)|.
hed [T
In particular, the last expression implies that if the process is only weakly stationary, i.e. there is a
function f such that p(r,s) = f(r — s) and EY,. is constant as a function of r, then d; = 0 for
all . Note that this result together with Theorem [I] gives strong theoretical guarantees for learning
autoregressive processes (AR) with linear hypothesis, since these processes are weakly stationary.

More generally, for linear hypotheses with quadratic loss, d; is completely determined by the co-
variance structure of the underlying stochastic process. In particular, d; < O(||P; — Pr||), where
P, = (p(t —i,t — j))i,;j is (d + 1) x (d + 1) matrix. Consider, for instance, a process defined by
Y41 = aY; + €, where ¢;’s are mean zero independent random variables with E[¢?] = o;. One
can show that the autocovariance function is given by p(t + s,t) = 0ya®/(1 — a?) and the process
is not (weakly) stationary unless o, is constant. Recall that a standard approach when dealing with
non-stationary processes is so called “differencing”, i.e. considering Y/ = Y; — Y;_; and higher
order differences to obtain a stationary processes. This approach, for instance, leads to a celebrated
ARIMA model. However, this method will fail for the process Y; that we have just defined. On the
other hand, process Y; can arise naturally in the applications in which the variance of the stochas-
tic process evolves with time. In summary, in many practical applications, d; can either be found
analytically or estimated from the data and under this assumption we will present our algorithms.

3.1 SRM-style Algorithm

The first algorithm that we present here is a meta-algorithm that is close in spirit to Structural Risk
Minimization (SRM) of [[14]. The major difference is that now we also need to control the weighted
discrepancy term that appears in the bound. Suppose we have access to an infinite nested sequence
of hypothesis sets Hy C Hy C Hs.... Foreachn € N, we find a hypothesis h,, that optimizes the
trade-off between weighted discrepancy and weighted empirical error. More precisely,

T
hn = aIglninheHn lrelfA (Zwt(g(hv Zt) + dt) + CHW - 11”2) = argminhEH" w(h)a
t=1

where A is a probability simplex and 1(h) = infwea (31—, wi(€(h, Z;) + di) + c|lw — ul|2). We
set the SRM hypothesis to be h,, that achieves the optimal trade-off between complexity term and
discrepancy-risk functional :

2a—1
4
h = i - i .
SRM argmlnhn (w(hn) + a Z ERJ(I{?L))
=0
This algorithm directly optimizes the upper bound of Theorem [I| however, it is tractable only in
certain special cases and we consider some of these special cases below.

3.2 EM-style Algorithm

Here we consider the case of quadratic loss function L with a set H of linear hypotheses with
bounded norm. Recall that Rademacher complexity of such hypothesis set H is bounded above by
Ar/+/m (see for example [11]]). Then Theoremleads to the following optimization problem:

T
rv{,li}rll MW —u|Z 4+ \o||h||2 + ZU}t(dt + (h-x; —y:)?)
’ t=1
T
subject to: Zwt =landw, >0,Vt=1,...,T
t=1
where A1, Ay are parameters to our learning algorithm that can be set via cross-validation. It should

be noted that this optimization problem can viewed as a special case of optimization problem con-
sidered in Subsection [3.1] with these particular L and H. Note also that this problem is not convex,



Table 1: Stochastic processes for ADS1, ADS2, ADS3 (Z; i.i.d N(0,0.01)).

ADS1 ADS2 ADS 3
Yi=atYi_1+ 2y Yi=atYi_1+ 2y Yi =arYi-1+ (1 —a)Yio + Z,
a; = 1if ¢ < 1800 and —1 otherwise | a; = 0.9 — 1.8(¢/2000) ar = 0.9t/2000

Table 2: Average Lo error (st.dev.)

ADSI ADS2 ADS3 FX1 FX2
WRA 0.0099 (0.0155) | 0.0997 (0.1449) | 0.1026 (0.1509) | 0.0072 (0.0102) | 0.0069 (0.0112)

ARIMA(g,0,0) | 0.1432(0.2091) | 0.4797 (0.6942) | 0.2598 (0.3696) | 0.0366 (0.0329) | 0.0252 (0.0254)
Ratio 145 i3 26 5.1 37

but we observe that for a fixed w it is a QP. The same is true in reverse: when h is fixed, we have
a different a QP. This suggests an alternating scheme, similar to EM algorithm, where we alternate
between solving QP for h and keeping w fixed and vice verse. Of course, this algorithm is not
immune to the usual problems that one faces when objective function is non-convex. In particular,
there is no guarantee that this algorithm will converge to a global minimum.

3.3 Weighted Ridge Regression (WRA)

In some special cases optimal w; can be computed explicitly or set to some fixed values according
to some natural heuristic. For example, in many applications d; may increase as t decreases and one

can choose an increasing sequence ws, . . . , wr such that Zthl w; = 1 and wy > 0. This leads to a
simple optimization problem:

T
. 2 e o2
min - Af[hff; + > wi(hxp — )

t=1

where \ are parameters that can be set via cross-validation. This is can be viewed as an instance of
weighted Ridge Regression, or more generally, QP problem and we can use standard techniques of
convex optimization to find the solution.

4 Experiments

We have compared WRA against standard autoregressive model (ARIMA(q,0,0)) that is commonly
used in practice. In our experiments we have used a number of artificial (ADS1, ADS2, ADS3) and
real (FX1, FX2) datasets. For artificial datasets we have generated time series with 2,000 sample
points, trained on the first 1,999 points and tested on the last point. To gain statistically significance,
we repeat this procedure 1,000 times. The processes used to generate these time series are sum-
marized in Table [l We have also used daily foreign exchange rates (12/31/1979 - 12/31/1998) for
CAD/USD and FRF/USD pairs (FX1 and FX2 respectively) found in [2] as examples of real life
non-stationary time series. Both FX1 and FX2 contain 4,774 points and we train on the first 7' — 1
points and test on the 7T-th observation, where T" = 250, ...,4,774. Results of our experiments
are summarized in Table[2] Observe that results of each experiment are statistically significant us-
ing paired ¢-test and in each case WRA significantly outperforms the standard approach. Moreover,
WRA has a better performance on at least 80% of individual runs in each experiment and the average
error of ARIMA(q,0,0) is at least two times larger than that of WRA.

5 Conclusion

We presented generalization guarantees for learning in presence of non-stationary stochastic pro-
cesses in terms of a weighted discrepancy measure that appears as a natural quantity in our general
analysis. We show that our results provide learning guarantees for some well-known approaches
such as learning autoregressive processes with linear models. We argued that our bounds can guide
the design of time series prediction algorithms that would tame non-stationarity in the data by min-
imizing an upper bound on the discrepancy that can be estimated from the data [7, 4] or computed
analytically. Our empirical results show that our algorithm significantly outperform standard au-
toregression models. In this work we focused here on the problem of time series prediction but
the same learning guarantees and algorithms with only minor modifications can be formulated for
random fields with more complex temporo-spatial or any other dependence structure.
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