
Learning unbiased features

Yujia Li1, Kevin Swersky1, and Richard Zemel1,2

1University of Toronto
2Canadian Institute for Advanced Research

{yujiali, kswersky, zemel}@cs.toronto.edu

1 Introduction

A key element in transfer learning is representation learning; if representations can be developed that
expose the relevant factors underlying the data, then new tasks and domains can be learned readily
based on mappings of these salient factors. We propose that an important aim for these representa-
tions are to be unbiased. Different forms of representation learning can be derived from alternative
definitions of unwanted bias, e.g., bias to particular tasks, domains, or irrelevant underlying data di-
mensions. One very useful approach to estimating the amount of bias in a representation comes from
maximum mean discrepancy (MMD) [5], a measure of distance between probability distributions.
We are not the first to suggest that MMD can be a useful criterion in developing representations that
apply across multiple domains or tasks [1]. However, in this paper we describe a number of novel
applications of this criterion that we have devised, all based on the idea of developing unbiased
representations. These formulations include: a standard domain adaptation framework; a method
of learning invariant representations; an approach based on noise-insensitive autoencoders; and a
novel form of generative model. We suggest that these formulations are relevant for the transfer
learning workshop for a few reasons: (a). they focus on deep learning; (b). the formulations include
both supervised and unsupervised learning scenarios; and (c). they are well-suited to the scenario
emphasized in the call-for-papers, where the learning task is not focused on the regime of limited
training data but instead must manage large scale data, which may be limited in labels and quality.

2 Maximum Mean Discrepancy

Each of our approaches to learn unbiased features rely on a sample-based measure of the bias in
the representation. A two sample test is a statistical test that tries to determine, given two datasets
{Xn} ∼ P and {Ym} ∼ Q, whether the datasets have been generated from the same underlying
distribution, i.e., if P = Q. Maximum mean discrepancy [5] is a useful distance measure between
two distributions that can be used to perform two sample tests.

MMD(X,Y) =

∥∥∥∥∥ 1

N

N∑
n=1

φ(Xn)−
1

M

M∑
m=1

φ(Ym)

∥∥∥∥∥
2

(1)

=
1

N2

N∑
n=1

N∑
n′=1

φ(Xn)
>φ(Xn′) +

1

M2

M∑
m=1

M∑
m′=1

φ(Ym)>φ(Ym′)− 2

NM

N∑
n=1

M∑
m=1

φ(Xn)
>φ(Ym)

(2)

Where φ(·) is a feature expansion function. We can apply the kernel trick to each inner product in
Equation (2) to use an implicit feature space. When the space defined by the kernel is a universal
reproducing kernel Hilbert space then asymptotically MMD is 0 if and only if P = Q [6].

1

E→B B→D K→D D→E B→K E→K
Linear SVM 71.0 ± 2.0 79.0 ± 1.9 73.6 ± 1.5 74.2 ± 1.4 75.9 ± 1.8 84.5 ± 1.0

RBF SVM 68.0 ± 1.9 79.1 ± 2.3 73.0 ± 1.6 76.3 ± 2.2 75.8 ± 2.1 82.0 ± 1.4
TCA 71.8 ± 1.4 76.9 ± 1.4 73.3 ± 2.4 75.9 ± 2.7 76.8 ± 2.1 80.2 ± 1.4

NN 70.0 ± 2.4 78.3 ± 1.6 72.7 ± 1.6 72.8 ± 2.4 74.1 ± 1.6 84.0 ± 1.5
NN MMD∗ 71.8 ± 2.1 77.4 ± 2.4 73.9 ± 2.4 78.4 ± 1.6 77.9 ± 1.6 84.7 ± 1.6
NN MMD 73.7 ± 2.0 79.2 ± 1.7 75.0 ± 1.0 79.1 ± 1.6 78.3 ± 1.4 85.2 ± 1.1

Table 1: Domain adaptation results for product review sentiment classification task. NN MMD∗:
neural net with MMD trained and tested on word count instead of TF-IDF features.

3 Applications

3.1 Domain Adaptation

In domain adaptation, we are given a set of labeled data from a source domain and a set of unlabeled
data from a different target domain. The task is to learn a model that works well on the target
domain.

In our framework, we want to learn unbiased features that are invariant to the nuances across dif-
ferent domains. The classifier trained on these features can then generalize well over all domains.
We use deep neural networks as the classification model. MMD is used as a penalty on one hidden
layer of the neural net to drive the distributions of features for the source and target domains to be
close to each other. While the use of MMD is similar to that of [1], we use a neural network to learn
both the features and classifier jointly. The distributed representation of a neural network is far more
powerful than the linear transformation and clustering method proposed in [1].

We tested the neural network with MMD penalty model on the Amazon product review sentiment
classification dataset [2]. This dataset contains product reviews from 4 domains corresponding to
4 product categories (books, dvd, electronics, kitchen). Each review is labeled either positive or
negative, and we preprocessed them as TF-IDF vectors. We tested a 2 hidden layer neural net model
on the adaptation tasks between all pairs of source and target domains. For each task, a small
portion of the the labeled source domain data is used as validation data for early stopping. Other
hyper parameters are chosen to optimize the average target performance over 10 random splits of the
data, in a setting similar to cross-validation. The best target accuracy with standard deviation for a
few tasks are shown in Table 1. More results and experiment settings can be found in the appendix.

We compare our method with SVM models with no adaptation, neural net with the same architecture
but no MMD penalty, and another popular domain adaptation baseline Transfer Component Analysis
(TCA) [8]. The neural net model with MMD penalty dominates on most tasks. Even with the more
basic word count features the “NN MMD” method still works better than most other baselines,
demonstrating the ability of our model to learn features useful across domains.

3.2 Learning Invariant Features

In this application we use the proposed framework to learn features invariant to transformations on
input data. More specifically, we want to learn features for human faces that are both good for
identity recognition and invariant to different lighting conditions.

In the experiment we used the extended Yale B dataset, which contains faces of 38 people under
various lighting conditions corresponding to light source from different directions. We created 5
groups of images, corresponding to light source in upper right, lower right, lower left, upper left
and the front. Then for each group of images, we chose 1 image per person to form one domain for
that lighting condition. In this way we had 5 domains with 5 × 38 = 190 images in total. All the
other images (around 2000) are used for testing. The task is to recognize the identity of the person
in image, i.e. a 38-way classification task. For this task, we did not use a validation set, but rather
report the best result on test set to see where the limits of different models are. Note that the lighting
conditions here can be modeled very well with a Lambertian model, however we did not use this
strong model but rather choose to use a generic neural network to learn invariant features, so that the
proposed method can be readily applied to other applications.

2

0
1 2

3

4

67
8

9

10
11

12

13

14

15
1617

1819

20

2122

23

24
252627

28 293031 32

33

34
35

36

37
0

1

23

4

56

7

8

9

10 11
12

13

14

15

16
17

18

19

20

21
22

23

24
25

26 27
2829 30

3132

33

34

3536

370

1

2

3

4
6

78

9

10
11 12
13

14

15

16

17

18
19

20

21
22

23

24
2526

27 2829 3031

32

33

34

35
36

37

0

1
2

3

4 56

7
8

9

10
11

12

13

14

15

16
17

18

19

20

21

22

23

24 2526 27
2829 30

3132

33

34

35
36

3701

2
3

4
6

7

8

9

10
11

12

13

14

15

1617
18

19

20

21

22

23

24

25
26 27

28 29
30

31

32

33

34

35

36 37
0

1

2

3

4

6

7

8

9

10 11

12

13

14

15

16
17

18
19

20

21
22

23

24

25
26

27

2829 30

31 32

33

34

35

36

370
1

2

3

4

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21
22

23

24

25
26

27

2829 30

31 32

33

34

3536
3701

2

3

4

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28
29

30
31

32

33

34

35
36

370
1

2

3

4

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

2526
27

2829
30

31 32

33

34

35

36

370
1

2

3

4

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21
22

23

24

2526 27
2829

30

3132

33

34

3536

37

(a) Without MMD (b) With MMD

Figure 1: PCA projection of the representations of the second hidden layer for the training images.
Each example is plotted with the person ID and the image. Zoom in to see the details.

The proposed model for this task is similar to the one used in the previous section, except that the
MMD penalty is now applied to the distribution of hidden representations for 5 different domains
rather than two. We used the following formulation which is a sum of MMD between each individual
distribution and the average distribution across all domains

MMD =

S∑
s=1

∥∥∥∥∥ 1

Ns

∑
i:di=s

φ(hi)−
1

N

∑
n

φ(hn)

∥∥∥∥∥
2

(3)

where s indexes domains, i indexes examples, S = 5 is the number of different domains, Ns is the
number of examples from domain s, N is the total number of examples across all domains, di is the
domain label for example i and hi is the hidden representation computed from a neural network. We
use a two hidden layer neural net with 256 and 128 ReLU units on each of them for this task. The
MMD penalty with a Gaussian kernel is applied to the second hidden layer. Dropout [7] is used for
all the methods compared here to regularize the network as overfitting is a big problem.

On this task, the baseline model trained without the MMD penalty achieves a test accuracy of 72%
(100% training accuracy). Using the MMD penalty with Gaussian kernel, the best test accuracy
improved significantly to around 82%. Using a linear kernel leads to a test accuracy to 78%.

We visualize the hidden representations for the training images learned with the Gaussian kernel
MMD penalty in Figure 1. Note that examples for each person under very different lighting condi-
tions are grouped together even though the MMD penalty only depends on lighting condition, and
does not take into account identity.

3.3 Noise-Insensitive Autoencoders

Auto-encoders (AEs) are neural network models that have two basic components: an encoder, that
maps data into a latent space, and a decoder, that maps the latent space back out into the origi-
nal space. Auto-encoders are typically trained to minimize reconstruction loss from encoding and
decoding. In many applications, reconstruction loss is merely a proxy and can lead to spurious rep-
resentations. Researchers have spent a great deal of effort developing new regularization schemes to
improve the learned representation [11, 12, 9]. Two such methods include denoising auto-encoders
(DAEs) [12] and contractive auto-encoders (CAEs) [9]. With denoising auto-encoders, the data is
perturbed with noise and the reconstruction loss is altered to measure how faithfully the original data
can be recovered from the pertrubed data. Contractive auto-encoders more explicitly penalize the
latent representation so that it becomes invariant to infinitesimal perturbations in the original space.
In the appendix, we show how the CAE penalty can be interpreted as a form of MMD penalty with
a linear kernel.

We experiment with several single-layer auto-encoder variants, including an ordinary auto-encoder
trained on reconstruction loss, a contractive auto-encoder, and a denoising auto-encoder. For com-
parison, we augment both the ordinary auto-encoder and denoising auto-encoder with the MMD
penalty on their hidden layer, sampling a new set of perturbed hidden units with each weight up-
date. We trained each model on 10, 000 MNIST digits and tuned hyperparameters to minimize a
denoising reconstruction loss on held-out data. Further details can be found in the appendix.

3

(a) (b)

Figure 2: (a) visualization of some bottom layer weights; (b) independent samples from the model.

To measure the invariance to perturbation, we created a noisy copy of the test data and trained an
SVM classifier on the latent representations to distinguish between clean and noisy data. A worse ac-
curacy corresponds to a more unbiased latent representation. The MMD autoencoder outperformed
the other approaches on this measure. Surprisingly, the denoising autoencoder performed the worst,
demonstrating that denoising does not necessarily produce features that are invariant to noise. Also
interesting is that a relatively low contraction penalty was chosen for the CAE, as higher penalties
seemed to incur higher denoising reconstruction loss. This is likely due to the difference between
the applied Bernoulli noise, and the infintesimal noise assumed by the CAE. Plots of the filters can
be found in the appendix.

Model AE DAE CAE MMD MMD+DAE
SVM Accuracy 78.6 82.5 77.9 61.1 72.9

Table 2: SVM accuracy on distinguishing clean from noisy data. Lower accuracy means the learned
features are more invariant to noise.

3.4 Learning Generative Deep Models

The last application we consider is to use the MMD criterion for learning generative models. Unlike
previous sections where MMD is used to learn unbiased representations, in this application we use
MMD to match the distribution of the generative model with the data distribution. The idea is MMD
should be small on samples from a good generative model.

Here we train a generative deep model proposed in [4] on a subset of 1000 MNIST digits. The model
contains a stochastic hidden layer h at the top with a fixed prior distribution p(h), and a mapping
f that deterministically maps h to x. The prior p(h) and the mapping f(x|h) together implicitly
defines the distribution p(x).

In [4] the authors proposed a minimax formulation to learn the mapping f , where one extra classifier
looks at the data and the samples of the model and then try to do a good job of distinguishing them,
and the parameters of f is updated to make this classifier do as bad as possible so that samples
generated will be close to the data. As the formulation interleaves two optimization problems with
opposite objectives, careful scheduling is required for the model to converge to a good point.

We propose to directly minimize the MMD between the data and the model samples. Given a fixed
sample of h, we can backpropagate through the MMD penalty and the whole network, to drive
the model samples to be close to the data. This method utilizes a single consistent objective and
completely avoids the minimax problem. Details of our architecture and training can be found in the
appendix.

Figure 2 visualizes some bottom layer weights of the network and a set of samples generated from
the model. We can see that with this method the model learns some meaningful features and is able
to generate realistic samples.

4

References
[1] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. Unsupervised

domain adaptation by domain invariant projection. In IEEE International Conference on Computer Vision
(ICCV), pages 769–776, 2013.

[2] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In ACL, volume 7, pages 440–447, 2007.

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

[4] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. In Advances in Neural Information
Processing Systems (NIPS), 2014.

[5] Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex J Smola. A kernel
method for the two-sample-problem. In Advances in Neural Information Processing Systems (NIPS),
2006.

[6] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

[7] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[8] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via transfer com-
ponent analysis. IEEE Transactions on Neural Networks, 22(2):199–210, 2011.

[9] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-
encoders: Explicit invariance during feature extraction. In International Conference on Machine Learning
(ICML), 2011.

[10] Oren Rippel, Michael A. Gelbart, and Ryan P. Adams. Learning ordered representations with nested
dropout. In International Conference on Machine Learning (ICML), 2014.

[11] Kevin Swersky, Marc’Aurelio Ranzato, David Buchman, Benjamin M. Marlin, and Nando de Freitas.
On autoencoders and score matching for energy based models. In International Conference on Machine
Learning (ICML), 2011.

[12] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with a local denoising crite-
rion. The Journal of Machine Learning Research, 11:3371–3408, 2010.

5

D→B E→B K→B B→D E→D K→D
Linear SVM 78.3 ± 1.4 71.0 ± 2.0 72.9 ± 2.4 79.0 ± 1.9 72.5 ± 2.9 73.6 ± 1.5

RBF SVM 77.7 ± 1.2 68.0 ± 1.9 73.2 ± 2.4 79.1 ± 2.3 70.7 ± 1.8 73.0 ± 1.6
TCA 77.5 ± 1.3 71.8 ± 1.4 68.8 ± 2.4 76.9 ± 1.4 72.5 ± 1.9 73.3 ± 2.4

NN 76.6 ± 1.8 70.0 ± 2.4 72.8 ± 1.5 78.3 ± 1.6 71.7 ± 2.7 72.7 ± 1.6
NN MMD∗ 76.5 ± 2.5 71.8 ± 2.1 72.8 ± 2.4 77.4 ± 2.4 74.3 ± 1.7 73.9 ± 2.4
NN MMD 78.5 ± 1.5 73.7 ± 2.0 75.7 ± 2.3 79.2 ± 1.7 75.3 ± 2.1 75.0 ± 1.0

B→E D→E K→E B→K D→K E→K
Linear SVM 72.4 ± 3.0 74.2 ± 1.4 82.7 ± 1.3 75.9 ± 1.8 77.0 ± 1.8 84.5 ± 1.0

RBF SVM 72.8 ± 2.5 76.3 ± 2.2 82.5 ± 1.4 75.8 ± 2.1 76.0 ± 2.2 82.0 ± 1.4
TCA 72.1 ± 2.6 75.9 ± 2.7 79.8 ± 1.4 76.8 ± 2.1 76.4 ± 1.7 80.2 ± 1.4

NN 70.1 ± 3.1 72.8 ± 2.4 82.3 ± 1.0 74.1 ± 1.6 75.8 ± 1.8 84.0 ± 1.5
NN MMD∗ 75.6 ± 2.9 78.4 ± 1.6 83.0 ± 1.2 77.9 ± 1.6 78.0 ± 1.9 84.7 ± 1.6
NN MMD 76.8 ± 2.0 79.1 ± 1.6 83.9 ± 1.0 78.3 ± 1.4 78.6 ± 2.6 85.2 ± 1.1

Table 3: Domain adaptation results for product review sentiment classification task. NN MMD∗:
neural net with MMD trained and tested on word count instead of TF-IDF features.

4 Appendix

4.1 More Details of the Domain Adaptation Experiments

The dataset contains 2000 product reviews in each of the 4 domains. Each product review is repre-
sented as a bag of words and bigrams. We preprocessed the data and ignored all words and bigrams
occurring less than 50 times across the whole dataset. Then computed the new word-count vectors
and TF-IDF vectors for each product review and use these vectors as input representations of the
data.

To make the experiment results robust to sampling noise, we generated 10 random splits of the
dataset, where each domain is split into 1500 examples for training, 100 for validation and 400 for
testing. For each domain adaptation task from one source domain to a target domain, the training
data in the source domain is used as labeled source domain data, and the training data without labels
in the target domain is used as unlabeled target domain data. The validation data in the source
domain is used for early stopping in neural network training, and the prediction accuracy on the test
data from target domain is used as the evaluation metric. For each of the methods we considered
in the experiments, hyper parameters are tuned to optimize the average target domain prediction
accuracy across all 10 random splits, and the best average accuracy is reported, which is a setting
similar to cross-validation for domain adaptation tasks.

We used a fully connected neural network with two hidden layers, 128 hidden units on the first
layer and 64 hidden units on the second. All hidden units are rectified linear units (ReLU). The
MMD penalty is applied on the second hidden layer. We used Gaussian kernels for MMD. The final
objective is composed of a classification objective on the source domain and a MMD penalty for the
source and target domains. The model is trained using stochastic gradient descent, where the initial
learning rate is fixed and gradually adapted according to AdaGrad [3]. The hyperparameters of the
model include the scale parameter in Gaussian kernel and the weight for the MMD penalty. The
learning rate, momentum, weight-decay and dropout rate for neural network training are fixed for
all the experiments.

For TCA baseline, we tried both linear kernels and Gaussian RBF kernels, and found that linear
kernels actually works better, so the reported results are all from linear kernel TCA models. The
projection matrix after kernel transformation projects the examples down to 64 dimensions (same
as the 2nd hidden layer of the neural net above). Then a Gaussian kernel RBF SVM is trained on
the mean-std normalized projected features (we’ve tried linear SVMs as well but found RBF SVMs
work better). We found the normalization step to be critical to the performance of TCA as the scale
of the features can differ by a few orders of magnitudes.

6

Full results on all source-target pairs are shown in Table 3. NN MMD with word count features are
shown as “NN MMD∗”. Overall all methods gets a significant boost from using TF-IDF features.
But NN MMD method is able to learn useful features for domain adaptation even with word count
features, and performs better than the baselines on most tasks.

4.2 Relationship Between Contractive Auto-Encoders and MMD

It is straightforward to show that the contractive auto-encoder can be written as an MMD penalty
with a linear kernel. First take ei to be an elementary vector with a 1 at index i and 0 everywhere
else. We will take a Taylor expansion of a hidden unit hj(x) around ei [10]:

hj(x+ εei) ≈ hj(x) + εe>i ∇hj(x) + o(ε2), (4)
hj(x+ εei)− hj(x)

ε
≈ e>i ∇hj(x), (5)

hj(x+ εei)− hj(x) ≈ ε
∂hj(x)

xi
. (6)

Squaring both sides and summing over each hidden dimension and data dimension recovers the
contractive auto-encoder penalty.∑

j

∑
i

(hj(x+ εei)− hj(x))2 ≈ ε2
∑
j

∑
i

(
∂hj(x)

xi

)2

. (7)

The left hand side can be rewritten as an MMD penalty ||h(x) − h̃(x)||2, where h̃(x) = [h1(x +
εe1), h2(x+ εe1), . . . , hK(x+ εeD)], assuming K hidden units and D data dimensions. Since there
is no feature expansion, this is equivalent to using a linear kernel.

4.3 Auto-Encoder Training Details

We use a stochastic variant of the contraction penalty, where we sample h̃(x) from a noise distribu-
tion. As in [12], we use Bernoulli noise where each data dimension is zeroed out with probability
p, which is tuned along with the other hyperparameters. We use MMD with a Gaussian kernel
K(h(x), h̃(x)) = exp(− 1

σ2 ||h(x) − h̃(x)||2). The networks each have one layer of 100 sigmoidal
hidden units and are trained using stochastic gradient descent with momentum.

4.4 Auto-Encoder Weight Filters

Figure 3 shows the weight filters, the weights from the each hidden unit to the data visualized as
images. The MMD filters tend to be cleaner and more localized than the other variants.

4.5 Training Details for the Generative Experiments

We learn a generative deep model with 32 stochastic hidden units with independent uniform prior
distributions in [−1, 1], the deterministic mapping is implemented by a feedforward network with
two ReLU layers with 64 and 128 units each, and then a final sigmoid layer of 784 units (MNIST
images are of size 28 × 28 = 784). We use a Gaussian kernel for the MMD. For training, a set of
new samples h is generated from p(h) after every 200 updates to f .

7

(a) AE (b) DAE (c) CAE

(d) MMD (e) MMD+DAE

Figure 3: Visualization of the weight matrices for each variety of auto-encoder.

8

	Introduction
	Maximum Mean Discrepancy
	Applications
	Domain Adaptation
	Learning Invariant Features
	Noise-Insensitive Autoencoders
	Learning Generative Deep Models

	Appendix
	More Details of the Domain Adaptation Experiments
	Relationship Between Contractive Auto-Encoders and MMD
	Auto-Encoder Training Details
	Auto-Encoder Weight Filters
	Training Details for the Generative Experiments

