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1 Introduction

In a classical transfer learning setting, we have sufficient fully labeled data from the source domain
(or the training domain) where we fully observe the data points Xtr, and all corresponding labels
Y tr are known. On the other hand, we are given data points, Xte, from the target domain (or the
test domain), but few or none of the corresponding labels, Y te, are given. The source and the target
domains are related but not identical, thus the joint distributions, P (Xtr, Y tr) and P (Xte, Y te), are
different across the two domains.

The real-world application we consider is an autonomous agriculture application where we want
to manage the growth of grapes in a vineyard [3]. Recently, robots have been developed to take
images of the crop throughout the growing season. The measured yield after each harvest season
can be used to learn a model to predict yield from images. Farmers would like to know their yield
early in the season so they can make better decisions on selling the produce or nurturing the growth.
Acquiring training labels early in the season is very expensive because it requires a human to go out
and manually estimate the yield. Ideally, we can apply a transfer-learning model which learns from
previous years and/or on other grape varieties to minimize this manual yield estimation.

In this paper, we focus our attention on real-valued regression problems. We propose a transfer
learning algorithm that allows both the support on X and Y , and the model P (Y |X) to change
across the source and target domains. We assume only that the change is smooth as a function of X .
In this way, more flexible transformations are allowed than mean-centering and variance-scaling.

As an illustration, we show a toy problem in Fig. 1, where neither the support of P (X) or the support
of P (Y ) overlap across the two domains. In Fig. 2, we show the labels (the yield) of two real-world
grape image dataset (Fig. 3), along with the 3rd dimension of its feature space. We can see that
the real-world problem is quite similar to the toy problem, which indicates that the algorithm we
propose in this paper will be both useful and practical for real applications.
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Figure 1: Toy problem
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Figure 2: Real grape data
Figure 3: A part of one image
from each grape dataset

We evaluate our methods on synthetic data and real-world grape image data. The experimental
results show that our transfer learning algorithms significantly outperform existing methods with
few labeled target data points. This work is included in our paper [1].
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2 Related Work

Transfer learning is applied when joint distributions differ across source and target domains. Tradi-
tional methods for transfer learning use Markov logic networks [4], parameter learning [5, 6], and
Bayesian Network structure learning [7], where specific parts of the model are considered to be
carried over between tasks.

Recently, a large part of transfer learning work has focused on the problem of covariate shift [8, 9,
10]. However, this work suffers two major problems. First, the conditional distribution P (Y |X) is
assumed to be the same, which might not be true under many real-world cases. Second, the KMM
method requires that the support of P (Xte) is contained in the support of P (Xtr), i.e., the training
set is richer than the test set. If it is not true, one might mean-center (and possibly also variance-
scale) the data to ensure that the support of P (Xte) is contained in (or at least largely overlapped
with) P (Xtr). More recent research [12] made a similar assumption on the support of P (Y ). In
this paper, we provide an alternative way to solve the support shift problem that allows more flexible
transformations than mean-centering and variance-scaling.

3 Approach

3.1 Problem Formulation

We are given a set of n labeled training data points, (Xtr, Y tr), from the source domain where each
Xtr

i ∈ <dx and each Y tr
i ∈ <dy . We are also given a set of m test data points, Xte, from the target

domain. Some of these will have corresponding labels, Y teL. When necessary we will separately
denote the subset of Xte that has labels as XteL, and the subset that does not as XteU .

3.2 Transfer Learning Approach (SMS)

Our strategy is to simultaneously learn a nonlinear mapping Xte → Xnew and Y te → Y ∗. This
allows flexible transformations on both X and Y , and our smoothness assumption using GP prior
makes the estimation stable. We call this method Support and Model Shift (SMS).

We apply the following steps (K in the following represents the Gaussian kernel, and KXY repre-
sents the kernel between matrices X and Y , λ ensures invertible kernel matrix):

1. Transform XteL to Xnew(L) by a location-scale shift: Xnew(L) = WteL �XteL + BteL,
such that the support of P (Xnew(L)) is contained in the support of P (Xtr);

2. Build a Gaussian Process on (Xtr, Y tr) and predict on Xnew(L) to get Y new(L);

3. Transform Y teL to Y ∗ by a location-scale shift: Y ∗ = wteL � Y teL + bteL, then we
optimize the following empirical loss:

arg min
WteL,BteL,wteL,bteL,wte

||Y ∗ − Y new(L)||2 + λreg||wte − 1||2, (1)

where WteL,BteL are matrices with the same size as XteL. wteL,bteL are vectors with the same
size as Y teL (l by 1, where l is the number of labeled samples in the target domain), and wte is an
m by 1 scale vector on all Y te. λreg is a regularization parameter.

To make the transformation smooth w.r.t. X , we parameterize WteL,BteL,wteL,bteL using:
WteL = RteLG,BteL = RteLH,wteL = RteLg,bteL = RteLh, where RteL = LteL(LteL +
λI)−1, LteL = KXteLXteL . Following the same smoothness constraint we also have: wte = Rteg,
where Rte = KXteXteL(LteL + λI)−1. This parametrization results in the new objective:

arg min
G,H,g,h

||(RteLg � Y teL +RteLh)− Y new(L)||2 + λreg||Rteg − 1||2. (2)

We use a Metropolis-Hasting algorithm to optimize the objective (Eq. 2) which is multi-modal due
to the use of the Gaussian kernel. The proposal distribution is given by θt ∼ N (θt−1,Σ), where Σ
is a diagonal matrix with diagonal elements determined by the magnitude of θ ∈ {G,H,g,h}. In
addition, the transformation on X requires that the support of P (Xnew) is contained in the support
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of P (Xtr), which might be hard to achieve on real data, especially when X has a high-dimensional
feature space. To ensure that the training data can be better utilized, we relax the support-containing
condition by enforcing an overlapping ratio between the transformed Xnew and Xtr, i.e., we reject
those proposal distributions which do not lead to a transformation that exceeds this ratio.

After obtaining G,H,g,h, we make predictions on XteU by:
(1) Transform XteU to Xnew(U) with the optimized G,H: Xnew(U) = WteU �XteU + BteU =
RteUG�XteU +RteUH; (2) Build a Gaussian Process on (Xtr, Y tr) and predict on Xnew(U) to
get Y new(U); (3) Predict using optimized g,h: Ŷ teU = (Y new(U) − bteU )./wteU = (Y new(U) −
RteUh)./RteUg, where RteU = KXteUXteL(LteL + λI)−1.

With the use of W = RG,B = RH,w = Rg,b = Rh, we allow more flexible transformations
than mean-centering and variance-scaling while assuming that the transformations are smooth w.r.t
X . We will illustrate the advantage of the proposed method in the experimental section.

3.3 A Kernel Mean Embedding Point of View

Under the kernel mean embedding point of view, it is easy to see that step (2) in the SMS approach is
equivalent to estimating µ̂[PY new(L) ] using conditional embeddings [11] with a linear kernel on Y :
µ̂[PY new(L) ] = Û [PY tr|Xtr ]µ̂[PXnew(L) ] = ψ(ytr)(φ(xtr)>φ(xtr) + λI)−1φ>(xtr)φ(xnew(L)) =

(KXnew(L)Xtr (KXtrXtr +λI)−1Y tr)>. In step (3) we want to find the optimal G,H,g,h such that
the distributions on Y are matched across domains, i.e., PY ∗ = PY new(L) . The objective function
Eq. 2 is effectively minimizing the maximum mean discrepancy: ||µ̂[PY ∗ ] − µ̂[PY new(L) ]||2 =

||µ̂[PY ∗ ]− Û [PY tr|Xtr ]µ̂[PXnew(L) ]||2, with a Gaussian kernel on X and a linear kernel on Y .

The transformation {W,B,w,b} are smooth w.r.t X . Take w for example, µ̂[Pw] =

Û [Pw|XteL ]µ̂[PXteL ] = ϕ(g)(φ>(xteL)φ(xteL) + λI)−1φ>(xteL)φ(xteL) = ϕ(g)(LteL +

λI)−1LteL = (RteLg)>.

4 Experiments

Synthetic Dataset. We generate the synthetic data with (using matlab notation): Xtr =
randn(80, 1), Y tr = sin(2Xtr + 1) + 0.1 ∗ randn(80, 1); Xte = [w ∗ min(Xtr) + b : 0.03 :
w ∗max(Xtr)/3 + b], Y te = sin(2(revw ∗Xte + revb) + 1) + 2. The synthetic dataset used is with
w = 0.5; b = 5; revw = 2; revb = −10, as shown in Fig. 1. We compare the SMS approach with
the following approaches:
(1) Only test x: prediction using labeled test data only; (2) Both x: prediction using both the train-
ing data and labeled test data without transformation; (3) Offset: the offset approach [16]; (4) DM:
the distribution matching approach [16]; (5) KMM: Kernel mean matching [9]; (6) T/C shift: Tar-
get/Conditional shift [12], code is from http://people.tuebingen.mpg.de/kzhang/Code-TarS.zip.

To ensure the fairness of comparison, we apply (3) to (6) using: the original data, the mean-
centered data, and the mean-centered+variance-scaled (mean-var-centered) data.

A detailed comparison with different number of observed test points are shown in Fig. 4, averaged
over 10 experiments. The selection of which test points to label is done uniformly at random for
each experiment. The parameters are chosen by cross-validation. As we can see from the results,
our proposed approach performs better than all other approaches.

As an example, the results for transfer learning with 5 labeled test points on the synthetic dataset
are shown in Fig. 5. The 5 labeled test points are shown as filled blue circles. First, our proposed
model, SMS, can successfully learn both the transformation on X and the transformation on Y ,
thus resulting in almost a perfect fit on unlabeled test points. Using either only labeled test points,
or training+labeled test points, results in a poor fit towards the right part of the function because
there are no observed test labels in that part. The DM/offset approach also results in a poor fit
because simple variance-scaling does not yield a good match on P (Y |X). The KMM approach, as
mentioned before, applies the same conditional model P (Y |X) across domains, hence it does not
perform well. The Target/Conditional Shift approach does not perform well either since it does not
utilize any of the labeled test points. Its predicted support of P (Y te), is constrained in the support
of P (Y tr), which results in a poor prediction of Y te once there exists an offset between the Y ’s.
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Figure 4: Comparison of MSE on the synthetic dataset with {2, 5, 10} labeled test points
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Figure 5: Comparison of results on the synthetic dataset: An example

Real-world Dataset. The two grape datasets we use are riesling (128 labeled images) and traminette
(96 labeled images), as shown in Fig. 3. The goal is to transfer the model learned from one grape
dataset to another. The results are shown in Table 1. In each row the result in bold indicates the
result with the best RMSE (* means statistically significant at a p = 0.05 level with unpaired t-
tests). We can see that our proposed algorithm yields better results under most cases, especially
when the number of labeled test points is small.

Table 1: RMSE for transfer learning on real data

# XteL SMS DM Offset Only test x Both x KMM T/C Shift
5 1197±23∗ 1359±54 1303±39 1479±69 2094±60 2127 2330
10 1046±35∗ 1196±59 1234±53 1323±91 1939±41 2127 2330
15 993±28 1055±27 1063±30 1104±46 1916±36 2127 2330
20 985±13 1056±54 1024±20 1086±74 1832±46 2127 2330
30 960±19 921±29 961±30 937±29 1663±31 2127 2330
50 893±16 925±59 935±59 926±64 1558±51 2127 2330
70 860±40 805±38 819±40 804±37 1399±63 2127 2330
90 791±98 838±102 863±99 838±104 1288±117 2127 2330

5 Conclusion

In this paper, we proposed a transfer learning algorithm that handles both support and model shift.
The algorithm transforms both X and Y by a location-scale shift, then the labels across domains are
matched to learn both transformations. Since we allow more flexible transformations than mean-
centering and variance-scaling, the proposed method yields better results than traditional methods.
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