
Multi-task Linear Bandits

Marta Soare ∗

INRIA Lille - Nord Europe, Team SequeL
Ouais Alsharif †

McGill University & Google

Alessandro Lazaric∗

INRIA Lille - Nord Europe, Team SequeL
Joelle Pineau‡

McGill University

1 Introduction
For a learning algorithm to be able to learn from only a few samples, it is necessary to exploit some
structural bias in the environment of the task at hand. Such bias has been defined and included
in the learning algorithms in many different ways, from Bayesian priors to regularization (e.g.,
smoothness, sparsity). One particularly successful way todefine such bias is to learn it directly from
multiple different, yet related tasks. While this approach,known as multi-task or transfer learning
(see [7] for a survey), has made significant gains in supervised learning scenarios (see e.g., [3]), it
received less attention for sequential decision making problems with limited feedback. In a recent
work [5], it is shown that sequential transfer may indeed have a positive impact also in the multi-
armed bandit problem with a significant reduction in the regret. In multi-arm bandit, the goal is to
learn the reward (e.g., a click through rate or a star ranking) of different arms (e.g., items) and to
sequentially select the arms that lead to the highest reward.

In this paper we propose an alternative multi-task approachand we move the focus from the multi-
armed bandit scenario to thelinear banditsetting. In the particular setting of linear bandit, each arm
is characterized by a feature vector and the reward functionis assumed to be a linear combination of
the feature vector with an unknown parameter vectorθ (e.g., a vector characterizing the preference
of a user). Solving this problem requires to find a suitable balance between choosing arms that
can contribute to better learn the parameter vector (e.g., learn user’s preference) and selecting arms
which are more rewarding. The introduction of multi-task learning in this particular setting would
allow to exploit the fact that if two users have similar parameter vectors, then knowledge of one’s
interactions can be exploited to minimize “regret” of a learning algorithm while interacting with the
other. In this paper, we focus on this setting and we explore how multi-task learning can contribute
to boosting the performance of linear bandit algorithms.

2 Preliminaries
Multi-task linear bandits. We formalize the multi-task learning problem in the linear stochastic
bandit setting. The learner is given a finite set of armsX ⊂ R

d with ||x||2 ≤ L for anyx ∈ X .
We assume that the learner has to solve a sequence of tasks. Ateach taskj in the sequence, the
learner is given a limited sampling budgetnj and it can sequentially choosenj armsx ∈ X . At
any time steps ≤ nj , after an armxj,s ∈ X is chosen, the learner observes a noisy realizationrj,s
corresponding to the selected arm. In particular, here we assume that the reward is given by a linear
function, characterized by an unknown parameterθj ∈ R

d, where||θj ||2 ≤ S, ∀j. More precisely,
the noisy realization (orreward), denotedrj,s, is given by the following model:

rj,s = x⊤
j,sθj + ηj,s, (1)

whereη is a random R-sub-Gaussian noise. Typically at each taskj, the learner’s objective is to
maximize the sum of expected rewards

∑nj

s=1 x
⊤
j,sθj . Since the parameterθj is unknown, the learner

faces the so-calledexploration-exploitation dilemma, where the exploration of the arms improves

∗{marta.soare,alessandro.lazaric}@inria.fr
†ouais.alsharif@gmail.com
‡jpineau@cs.mcgill.ca

1

the estimate of the unknown parameterθj , while the exploitation of the estimated best-arms would
supposedly maximize the sum of rewards. The performance of the learner is evaluated with respect
to the sum of rewards obtained by an oracle-algorithm, whichknows the value ofθj . Denoting
x∗
j = argmaxx∈X x⊤θj the best arm for taskj, thepseudo-regretsuffered by the learner is given

by the difference between the two sums of rewards. More precisely, for a taskj, we compute the
pseudo-regret at the end of taskj as follows:

Rnj
=

nj∑

s=1

x∗ ⊤
j θj −

nj∑

s=1

x⊤
s θj =

nj∑

s=1

(x∗
j − xs)

⊤θj . (2)

In any multi-task/transfer scenario, it is crucial to definea suitable notion ofsimilarity between tasks
that can be exploited by a multi-task learning algorithm. Similarly to [4], we define the similarity
between tasks with respect to the similarity between their corresponding parameters (or targets).
Thus, whenever the characterizing vectors of two tasks are close to each other (in aℓ2-norm sense),
we say the two tasks are similar.

Definition 1. Letθ, θ′ ∈ R
d be the parameters characterizing the linear functions corresponding to

two different tasks. If||θ − θ′||2 ≤ ε, then tasksi andj are similar.

Given the assumption that all the tasks considered by the learner are similar, the goal of this paper
is to study how the overall performance (the sum of regrets for all tasks) can be improved if the
task similarity is exploited by transferring the information collected from the rewards observed in
the previous tasks. Before providing a multi-task version of the LinUCB algorithm, we introduce
additional technical tools.

Tools. For a single-taskj, at each time steps = 1, . . . , nj the parameterθj is estimated using
the available sample-rewards obtained during taskj, through the regularized least-squares solution.
Thus, the estimate ofθj , after observingt ≤ nj rewards is given by:

θ̂λj,t = (Aj,t + λI)−1bj,t = (Aλ
j,t)

−1bj,t, (3)

whereAj,t =
∑t

s=1
xj,sx

⊤
j,s is the design matrix,λ is the regularization parameter (Aλ

j,t is a short-

hand for the regularized design-matrix), andbj,t =
∑t

s=1
xj,srj,s is the sum of all observed rewards.

For the typical linear-bandit (single-task) setting, the regret is given by [1, Theorem 2].

Preposition 1(Theorem 2 in [1]). Let θ̂j,t be the single-task regularized least-squares estimate, for
anyδ ≥ 0, with probability at least1− δ and , for anyt ≥ 1, it holds that:

∣∣x⊤
θ̂
λ
j,t − x

⊤
θj
∣∣ ≤

∣∣∣∣x
∣∣∣∣(

Aλ
j,t

)
−1

(
R

√√√√
2 log

(
det

(
Aλ

j,t

)
1/2

det(λI)−1/2

δ

)
+ λ

1/2
S

)
= Bj,t(x). (4)

3 Multi-task confidence bounds
We now extend the previous single-task result to the multi-task scenario where at taskm + 1 the
learner uses all the rewards observed from the past tasks(θ1, . . . , θj , . . . , θm). Using the similarity
assumption between tasks, we define the multi-task estimate, θ̃λm+1,t computed as the “global” reg-
ularized least-squares solution. More precisely, supposethat we are at time stept in taskm+ 1. By
denotingAj the design matrix for taskj andbj the vector of rewards observed during taskj, we can
compute the the multi-task estimate ofθm+1 as follows:

θ̃λm+1,t =
(m∑

j=1

Aj +Am+1,t + λI
)−1(m∑

j=1

bj + bm+1,t

)

=
(m∑

j=1

nj∑

s=1

xsx
⊤
s +

t∑

s=1

xm+1,sx
⊤
m+1,s + λI

)−1(m∑

j=1

nj∑

s=1

xsyj,s +

t∑

s=1

xm+1,sy
⊤
m+1,s

)

= (Ãm+1,t + λI)−1 · b̃m+1,t = (Ãλ
m+1,t)

−1 · b̃m+1,t (5)

where in the last step we introduce the notationÃm+1,t for the global design matrix (containing all
observed rewards), its regularized versionÃλ

m+1,t, andb̃m+1,t the vector of all observations, from
all tasks.

2

Also, we introduce the “average” task implicitly defined in computingθ̃λm+1,t characterized by the

multi-task parameter vector̃θ∗m+1,t:

E
[
θ̃m+1,t

]
= θ̃∗m+1,t. (6)

In the following, we discuss the construction of confidence ellipsoids around the empirical multi-
task estimatẽθλm+1,t, such that with high probability the true parameter vector of taskm + 1 is
included in the confidence set at each time step. Intuitively, while one can expect the confidence sets
to be much tighter compared to the corresponding bounds for the single-task estimatêθλm+1,t thanks
to the much larger number of samples transferred from past tasks, one must also consider the fact
that these rewards come from tasks withθs different fromθm+1, thus potentially introducing a bias.

We proceed by bounding the error in estimating the expected rewardx⊤θm+1 of any armx. We
decompose the error of the multi-task least-squares estimate (Eq. 5) into the estimation error due to
the use of random rewards and the approximation error causedby the difference between the tasks:

∣∣x⊤θ̃λm+1,t − x⊤θm+1

∣∣ ≤
∣∣x⊤θ̃λm+1,t − x⊤θ̃∗m+1,t

∣∣
︸ ︷︷ ︸

1

+
∣∣x⊤θ̃∗m+1,t − x⊤θm+1

∣∣
︸ ︷︷ ︸

2

.

1 While the following is true for anyt ∈ [1, nm+1], to simplify the notation, we suppose that we
are at the end of taskm+ 1. Thus, we useAm+1 instead ofAm+1,t andt becomesnm+1.

θ̃λm+1 =
(
Ãλ

m+1

)−1(m+1∑

j=1

nj∑

s=1

xj,syj,s
)
=

(
Ãλ

m+1

)−1(m+1∑

j=1

nj∑

s=1

xj,s(x
⊤
j,sθj + ηj,s)

)

=
(
Ãλ

m+1

)−1 ·
(m+1∑

j=1

nj∑

s=1

xj,sηj,s
)
+ θ̃∗m+1 − λ

(
Ãλ

m+1

)−1 · θ̃∗m+1.

Then, following the derivation detailed in Appendix A, we obtain that w.p.≥ 1− δ it holds that:

∣∣x⊤θ̃λm+1,t − x⊤θ̃∗m+1,t

∣∣ ≤
∣∣∣∣x

∣∣∣∣(
Ãλ

m+1

)
−1

(
R

√√√√
2 log

(
det

(
Ãλ

m+1

)1/2
det(λI)−1/2

δ

)
+ λ1/2S

)
.

Thus, assuming that the R-sub-Gaussianity condition holdsfor the noise in any task, we recover the
same type of bound as in the single-task setting (Prop. 1). The only difference is that the single-task
matrixAλ

j is replaced here with the multi-task matrix̃Aλ
m+1.

2 We begin with a convenient rewriting of̃θ∗m+1,t (Eq. 6). LetAj = nj

(
1

nj

∑nj

s=1 xsx
⊤
s

)
= nj ·Cj

andN =
∑m

j=1
nj + t. Then we havẽAm+1,t = N

(∑m
j=1

nj

N Cj +
t
NCm+1,t

)
= NC̃m+1,t and

θ̃∗m+1,t =
m∑

j=1

nj

N
C̃−1

m+1,tCjθj +
t

N
C̃−1

m+1,tCm+1,tθm+1 = C̃−1

m+1,t

(m∑

j=1

nj

N
Cjθj +

t

N
Cm+1,tθm+1

)
.

Then, using the steps described in Appendix B, it follows that

∣∣∣∣θ̃∗m+1,t − θm+1

∣∣∣∣ ≤
∣∣∣∣

m∑

j=1

nj

N
C̃−1

m+1,tCj

∣∣∣∣ ·
∣∣∣∣θj − θm+1

∣∣∣∣ ≤ ε.

This result shows that although the arms were chosen mostly according to the estimations of some
parameters different fromθm+1, the current notion of similarity ensures that the total approximation
error is upper-bounded byε. Keeping the same assumptions and notation as defined above,we can
now use1 and 2 to define the multi-task confidence bound.

Theorem 1. Let θ̃λm+1,t be the multi-task regularized least-squares estimate defined in Eq. 5. Then,
for anyδ ≥ 0, for anyt ≥ 1, with probability at least1− δ it holds that:
∣∣x⊤(θ̃λm+1,t − θm+1)

∣∣ ≤ (7)

∣∣∣∣x
∣∣∣∣(

Ãλ
m+1,t

)
−1

(
R

√√√√
2 log

(
det

(
Ãλ

m+1,t

)1/2
det(λI)−1/2

δ

)
+ λ1/2S

)
+ x⊤ε = B̃m+1,t(x).

Relying on the multi-task confidence bound, we now introducean algorithm that selects arms ac-
cording toB̃m+1,t, whenever this is tighter than the corresponding single-task boundBm+1,t.

3

4 Multi-task LinUCB Algorithm

Input: budgets{nj}j , armsX ⊂ R
d, regularizerλ

j = 1

A = λId, b̃ = b = 0d, Ãj = λId, θ̂j = A−1b
for t = 1, . . . , nj do

Choose:xt = argmaxx∈X (x⊤
t θ̂j +Bj,t(x))

Observe reward:rt = x⊤
t θj + ηt

UpdateA, b and the estimatêθj = A−1b
end for
for j = 2, . . . ,m+ 1 do

Ãj = Ãj +A− λId, b̃ = b̃+ b, θ̃j = Ã−1

j b̃

A = λId, b = 0d, θ̂j = A−1b
for t = 1, . . . , nj do

xt = argmaxx∈Xmin
(
x⊤θ̂j +Bj,t(x);x

⊤θ̃j + B̃j,t(x)
)

Observe reward:rt = x⊤
t θj + ηt

Update:A, b, θ̂j , Bj,t, Ãj , b̃, θ̃j , B̃j,t

end for
end for

Figure 1:Multi-task LinUCB

Similarly to L INUCB[2, 6], MT-
L INUCB relies on confidence
bounds for the arms’ values to
select the arms to be pulled. The
difference comes from the fact
that here after each arm pull,
both the single-task (Prop.1) and
the multi-task (Th.1) bounds are
updated and the arm selected at
the next time step will depend on
the two bounds. More precisely,
for the first taskj = 1 one can
only construct the task-specific
estimate and use the bound
Bj in Eq. 4 (as in L INUCB).
Starting with taskj = 2, after
each observation we can update
simultaneously the task-specific
estimateθ̂j,t, the multi-task esti-
mateθ̃j,t, and their corresponding
confidence bounds (Bj,t(x) andB̃j,t(x)). Since both bounds are valid upper-confidence bounds on
the reward of the arm, we only retain the tightest (smallest)of them, that is, the one closest to the
true value of the arm. Then, we select the armx ∈ X with the largest retained confidence bound.
The resulting algorithm is sketched in Fig.1.

Numerical simulations. We illustrate the performance of the multi-task strategy ina setting con-
sisting of 200 tasks, with parametersθ1, . . . , θ200 ∈ R

2, generated at random, but bounded, with
maxθ ||θ||2 = 1.1 ·

√
2, and||ε||2 = 0.2 ·

√
2. The decision setX consists of five arms withℓ2 norm

smaller than 1. The regularization parameterλ is set to 0.02, the noiseη is distributed uniformly
on (−0.5, 0.5) andδ = 0.05. In Fig. 2 we report the regret for each task, averaged over 1000 runs,
where the sampling budget is limited to 100 samples for each task.

−50 0 50 100 150 200 250
1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

Task number

R
eg

re
t f

or
 e

ac
h

ta
sk

LinUCB
MT−LinUCB

Figure 2:Per-task regret

We compare the per-task regret obtained by
MT-L INUCB with the regret ofL INUCB that
only uses the samples from the current task for
the arm selection. These preliminary numerical
results show that while the regret forL INUCB
remains constant over time, in the case of the
multi-task algorithm the regret decreases with
every additional task. Indeed, given the strong
similarity between the vectorsθ and the fact
that the sampling is done on only five arms, we
gain valuable knowledge by exploiting the sim-
ilarity between tasks and transferring samples
from the past, while the bias introduced does
not penalize the regret performance. In fact, we can expect that the regret ofMT-L INUCB will be
reduced down to the task-similarity termε with the increase in the number of tasks.

5 Conclusion

This preliminary work shows the potential impact that multi-task learning could have in a sequence
of decision-making tasks such as in the linear bandit setting. The transfer of samples strategy im-
plemented inMT-L INUCB is relatively simple but already shows that the improvementwith respect
to single-task learning could be significant whenever the tasks at hand are similar. In the future we
intend to provide a regret analysis forMT-L INUCB and test the similarity assumption through the
empirical evaluation on recommendation system datasets. In addition, a number of interesting future
challenges arise, such as defining a less restrictive notionof similarity between tasks or weighting
the samples from past tasks according to their relevance forthe current task.

4

Acknowledgments This work was supported by the French Ministry of Higher Education and
Research, Nord-Pas de Calais Regional Council, European Communitys Seventh Framework Pro-
gramme under grant agreement no 270327 (project CompLACS) and French National Research
Agency (ANR) under project ExTra-Learn ANR-14-CE24-0010-01.

References

[1] Yasin Abbasi-Yadkori, D́avid Ṕal, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. InAdvances in Neural Information Processing Systems 24 - NIPS, pages
2312–2320, 2011.

[2] Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff
functions. InProceedings of the Fourteenth International Conference onArtificial Intelligence
and Statistics - AISTATS, pages 208–214, 2011.

[3] R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural
networks with multitask learning. InInternational Conference on Machine Learning - ICML,
2008.

[4] Koby Crammer, Michael Kearns, and Jennifer Wortman. Learning from multiple sources.Jour-
nal of Machine Learning Research, 9:1757–1774, 2008.

[5] Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Brunskill Emma. Sequential transfer in
multi-armed bandit with finite set of models. InAdvances in Neural Information Processing
Systems 26 - NIPS, 2013.

[6] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. InProceedings of the 19th International Conference
on World Wide Web - WWW, pages 661–670, 2010.

[7] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowl-
edge and Data Engineering, 22(10):1345–1359, October 2010.

5

A. Derivation of results in 1

Following the same steps as in the proof of [1, Theorem 2], we obtain:

∣∣x⊤θ̃λm+1,t − x⊤θ̃∗m+1,t

∣∣ ≤
∣∣x⊤

(
Ãλ

m+1

)−1 ·
(m+1∑

j=1

nj∑

s=1

xsηs
)
+ λx⊤

(
Ãλ

m+1

)−1 · θ̃∗m+1

∣∣

≤
∣∣∣∣x

∣∣∣∣(
Ãλ

m+1

)
−1

(∣∣∣∣
m+1∑

j=1

nj∑

s=1

xsηs
∣∣∣∣(

Ãλ
m+1

)
−1 + λ

∣∣∣∣θ̃λ ∗
m+1

∣∣∣∣(
Ãλ

m+1

)
−1

)
(by Cauchy-Schwarz)

≤
∣∣∣∣x

∣∣∣∣(
Ãλ

m+1

)
−1

(∣∣∣∣
m+1∑

j=1

nj∑

s=1

xsηs
∣∣∣∣(

Ãλ
m+1

)
−1 + λ1/2

∣∣∣∣θ̃λ ∗
m+1

∣∣∣∣
2

)
(by [1, Th.1])

≤
∣∣∣∣x

∣∣∣∣(
Ãλ

m+1

)
−1

(
R

√√√√
2 log

(
det

(
Ãλ

m+1

)1/2
det(λI)−1/2

δ

)
+ λ1/2S

)
, w.p. ≥ 1− δ.

B. Derivation of results in 2

Using the notation introduced in Sec.3, we obtain:
∣∣∣∣θ̃∗m+1,t − θm+1

∣∣∣∣

=
∣∣∣∣

m∑

j=1

nj

N
C̃−1

m+1,tCj

(
θj − θm+1

)
+

m∑

j=1

nj

N
C̃−1

m+1,tCjθm+1 + C−1

m+1,t

t

N
Cm+1,tθm+1 − θm+1

∣∣∣∣

=
∣∣∣∣

m∑

j=1

nj

N
C̃−1

m+1,tCj

(
θj − θm+1

)
+ C̃−1

m+1,tθm+1

(m∑

j=1

nj

N
Cj +

t

N
Cm+1,t

)
− θm+1

∣∣∣∣

=
∣∣∣∣

m∑

j=1

nj

N
C̃−1

m+1,tCj

(
θj − θm+1

)
+ θm+1 − θm+1

∣∣∣∣

≤
∣∣∣∣

m∑

j=1

nj

N
C̃−1

m+1,tCj

∣∣∣∣ ·
∣∣∣∣θj − θm+1

∣∣∣∣

≤
∣∣∣∣I

∣∣∣∣ · ε = ε.

6

	Introduction
	Preliminaries
	Multi-task confidence bounds
	Multi-task LinUCB Algorithm
	Conclusion

