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1 Introduction

For a learning algorithm to be able to learn from only a few gl&s it is necessary to exploit some
structural bias in the environment of the task at hand. Sua$ lhas been defined and included
in the learning algorithms in many different ways, from Bsig@ priors to regularization (e.g.,

smoothness, sparsity). One particularly successful wdgfioe such bias is to learn it directly from

multiple different, yet related tasks. While this approdaimown as multi-task or transfer learning
(seel7] for a survey), has made significant gains in supedvisarning scenarios (see e.gl, [3]), it
received less attention for sequential decision makinglpros with limited feedback. In a recent
work [5], it is shown that sequential transfer may indeedeha\positive impact also in the multi-

armed bandit problem with a significant reduction in the eegin multi-arm bandit, the goal is to

learn the reward (e.g., a click through rate or a star rankifiglifferent arms (e.g., items) and to

sequentially select the arms that lead to the highest reward

In this paper we propose an alternative multi-task appreachwe move the focus from the multi-
armed bandit scenario to thinear banditsetting. In the particular setting of linear bandit, eaah ar
is characterized by a feature vector and the reward funitiaesumed to be a linear combination of
the feature vector with an unknown parameter veét@e.g., a vector characterizing the preference
of a user). Solving this problem requires to find a suitablea@e between choosing arms that
can contribute to better learn the parameter vector (@arnluser’s preference) and selecting arms
which are more rewarding. The introduction of multi-tasirleing in this particular setting would
allow to exploit the fact that if two users have similar paedern vectors, then knowledge of one’s
interactions can be exploited to minimize “regret” of a léag algorithm while interacting with the
other. In this paper, we focus on this setting and we explove inulti-task learning can contribute
to boosting the performance of linear bandit algorithms.

2 Preliminaries

Multi-task linear bandits. We formalize the multi-task learning problem in the linetrchastic
bandit setting. The learner is given a finite set of ahs- R? with ||z||; < L for anyz € X.
We assume that the learner has to solve a sequence of tasleacltaskj in the sequence, the
learner is given a limited sampling budget and it can sequentially choosg armsz € X. At
any time step < n;, after an arme; , € X' is chosen, the learner observes a noisy realizatjon
corresponding to the selected arm. In particular, here weras that the reward is given by a linear
function, characterized by an unknown paraméfee R?, where||0;||, < S, Vj. More precisely,
the noisy realization (oreward), denoted-; , is given by the following model:

Tjs = x;ﬁj + 7j,s Q)

wheren is a random R-sub-Gaussian noise. Typically at each tatike learner’s objective is to
maximize the sum of expected rewadds” , ! .0;. Since the parametéy is unknown, the learner
faces the so-calledxploration-exploitation dlliemmaNhere the exploration of the arms improves
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the estimate of the unknown paramederwhile the exploitation of the estimated best-arms would
supposedly maximize the sum of rewards. The performandeedgtrner is evaluated with respect
to the sum of rewards obtained by an oracle-algorithm, whittws the value of);. Denoting

T; = argmaX,cy x "0, the best arm for task, the pseudo-regresuffered by the learner is given
by the difference between the two sums of rewards. More gedgifor a taskj, we compute the
pseudo-regret at the end of tasks follows:

Ry, => a3 70, =Y xl6;=> (« —x)"0;. )
s=1 s=1 s=1

In any multi-task/transfer scenario, it is crucial to definguitable notion ofimilarity between tasks
that can be exploited by a multi-task learning algorithnmi&irly to [4], we define the similarity
between tasks with respect to the similarity between theiresponding parameters (or targets).
Thus, whenever the characterizing vectors of two taskslase ¢o each other (in &-norm sense),
we say the two tasks are similar.

Definition 1. Letd, #’ € R be the parameters characterizing the linear functions esponding to
two different tasks. Ifi¢ — ¢’||2 < e, then tasks and j are similar.

Given the assumption that all the tasks considered by tmedeare similar, the goal of this paper
is to study how the overall performance (the sum of regratalfictasks) can be improved if the
task similarity is exploited by transferring the infornaaticollected from the rewards observed in
the previous tasks. Before providing a multi-task versibthe LinUCB algorithm, we introduce
additional technical tools.

Tools. For a single-taskj, at each time step = 1,...,n; the parametef; is estimated using
the available sample-rewards obtained during faskrough the regularized least-squares solution.
Thus, the estimate @f;, after observing < n; rewards is given by:

630 = (A + D) M bje = (A7) by 3)

whereAd;, = 3! z; sz, , is the design matrix) is the regularization parametetf, is a short-
hand for the regularized de5|gn matrix), dnd = Y_'_, x; +7;.+ IS the sum of all observed rewards.
For the typical linear-bandit (single-task) setting, thgret is given byi[1, Theorem 2].

Preposition 1(Theorem 2 in[[1]) Letej + be the single-task regularized least-squares estimate, fo
anyd > 0, with probability at leasti — 6 and , for anyt > 1, it holds that:

1/2

. det (A2 det(AI)—1/2
270}, —z"0;] < HxH(M )1(R\j2log( (45.) 5 D ) )\1/25) Bj(z). (4)
J,t

3 Multi-task confidence bounds

We now extend the previous single-task result to the mattktscenario where at task + 1 the
learner uses all the rewards observed from the past {dsks ., 6,, ..., 6,,). Using the similarity

assumption between tasks, we define the multi-task estirﬂfg;eu computed as the “global” reg-
ularized least-squares solution. More precisely, suptiagave are at time stefn taskm + 1. By
denotingA4; the design matrix for taskandb; the vector of rewards observed during tgske can
compute the the multi-task estimatebb,fH as follows:

57);L+1,t ZA +Am+1t+)\]1 Zb +bm+1t

J=1
m Ny m My t
Z Z Ls QZ + Z Tm+1, s$m+1 s T )‘H Z Z TsYj,s Z xm—&-l,syv—yrz-fl,s)
j=1s=1 j=1s=1 s=1
= (Am+1,t + )\]I)_ 'bm+1,t = (,Z7/>1+17t)—1 'gm+1,t %)

where in the last step we introduce the notatﬁmﬂ,t for the global design matrix (containing all

observed rewards), its regularized versﬁmﬂ’t, andb,,+ 1+ the vector of all observations, from
all tasks.



Also, we introduce the “average” task implicitly defined :r;mputmgeerl , Characterized by the
multi-task parameter vectdr, b1

E[Oms1,t] = Opir - (6)
In the following, we discuss the construction of confidenltipsoids around the empirical multi-
task estlmateﬁﬁn+1 +» such that with high probability the true parameter vectotask m + 1 is
included in the confidence set at each time step. Intuitjvefiyle one can expect the confidence sets

to be much tighter compared to the corresponding boundféosingle-task estlmaﬁb+1 , thanks
to the much larger number of samples transferred from pakst@ne must also consider the fact
that these rewards come from tasks wighdifferent fromd,,, 1, thus potentially introducing a bias.

We proceed by bounding the error in estimating the expeaedndz ' 6,,,, of any armz. We
decompose the error of the multi-task least-squares astifgg[%) into the estimation error due to
the use of random rewards and the approximation error canstitk difference between the tasks:

‘x 9m+1 t xTQmH’ < ’ngrxnﬂtt - ngan,t’ + ’ngan,t - 33T9m+1‘ :
@ @

(@ While the following is true for any € [1,n,,+1], to simplify the notation, we suppose that we
are at the end of task + 1. Thus, we usel,,,1 instead ofA,,,;, ; andt becomesy,,, ;1.

N m+1 nj m—+1 nj
97);L+1 Ai\n+1 Z ij Sij = m+1 Z ijs xg 39 + 15, S))
j=1 s=1 j=1 s=1
_ m4+1 ny _
= (A7)1\1+1 o Z Z% 577J s)+ 9m+1 (Am+1)71 Ot
j=1 s=1

Then, following the derivation detailed in Appendix A, wetain that w.p.> 1 — ¢ it holds that:

~ 1/2 ~1/2
|2 10— @ O] <o H( ) <R 2log <det(Am+1) 5 detAl) > + )\1/25)
"L+

Thus, assuming that the R-sub-Gaussianity condition Holdhe noise in any task, we recover the
same type of bound as in the single-task setting (Iﬁjop. ¥ .onlty difference is that the single-task

matrix A} is replaced here with the multi-task matedy), , ;.
(2 We begin with a convenient rewriting 6f, . , , (Eq[8). Letd; = n; (nlJ S, a:T> =n;-C;

andN = >="" | n; +t. Then we haveimﬂ,t = N(XJL, BCj+ §Cmirs) = NCpyi1, and

= < _ ~_ " ny t

9m+1,t = Z Cm+1 tC 9 + C m+1, tCma1,t0mi1 = m}kl,t(z Njcjej + Ncm+1,t9m+1)~
j=1 j=1

Then, using the steps described in Appendix B, it follows tha

n
Hﬂmm—emﬂuq\z 2 CraaCill - 116 = b || < =
j=1
This result shows that although the arms were chosen mastlyrding to the estimations of some
parameters different from,, . 1, the current notion of similarity ensures that the totalragpmation
error is upper-bounded by Keeping the same assumptions and notation as defined abewan
now useD and®@ to define the multi-task confidence bound.

Theorem 1. Lewfn+1 , be the multi-task regularized least-squares estimate e&fimEq[5. Then,
for anyd > 0, for anyt > 1, with probability at leastl — § it holds that:

|~T 97>1\1+1,t - 9m+1)| < @)

det (A2 )% det(AD)—1/2 -
H H A’\ ) 1(R 2log< ( m+l, t)é etAl) >+)\1/25> +xT5:Bm+17t(x).
m+1,t

Relying on the multi-task confidence bound, we now introdaicealgorithm that selects arms ac-
cording toB,,+1 ¢, whenever this is tighter than the corresponding singd&-toundB,,, 1 +.
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4 Multi-task LinUCB Algorithm

Similarly to LINUCB[2, [6], MT-

LINUCB relies on confidence
bounds for the arms’ values tq
select the arms to be pulled. Thg
difference comes from the fact
that here after each arm pull
both the single-task (Prdp.1) and
the multi-task (THL) bounds are
updated and the arm selected at
the next time step will depend on
the two bounds. More precisely,
for the first taskj = 1 one can

D

Input: budgets{n,};, armsX C R?, regularizer
j=1
A=Augb=b=04A; = Ag,0; = A~ 'b
fort=1,...,n;do
Choosex = arg maxzex(m:éj + Bj+(x))
Observe rewardr; = x; 6; + 7
UpdateA, b and the estimaté; = A~'b
end for
forj=2,...,m+1do
A=A+ A=Ay, b=b+b, 0, =
A=Ay, b=04,0; = A" 'b
fort=1,...,n;do

~13

J

only construct the task-specifig
estimate and use the bound
B; in Eqg.[4 (as inLINUCB).
Stjarting \(/qvith ta(lskj = 2, aftér Observ? rewardt, =z 6; +
each observation we can updat en(LjJ?grate.A,b, 0;, Bj, Aj, b, 05, Bt
simultaneously the task-specifi¢ end for
estimated, ;, the multi-task esti-

mated; ., and their corresponding

confidence bounddss; ;(x) and B, (z)). Since both bounds are valid upper-confidence bounds on
the reward of the arm, we only retain the tightest (smallesthem, that is, the one closest to the
true value of the arm. Then, we select the arre X" with the largest retained confidence bound.
The resulting algorithm is sketched in [Fig.1.

Ty = arg maxxexmin(xTéj + Bji(z);270; + Ejt(x))

D

Figure 1:Multi-task LinUCB

Numerical simulations. We illustrate the performance of the multi-task strategg setting con-
sisting of 200 tasks, with parametets, ..., 0,00 € R?, generated at random, but bounded, with
maxy ||0]]2 = 1.1-+/2, and||¢||> = 0.2-+/2. The decision set consists of five arms with, norm
smaller than 1. The regularization parameXds set to 0.02, the noisg is distributed uniformly
on (—0.5,0.5) andd = 0.05. In Fig.[2 we report the regret for each task, averaged oved t0ns,
where the sampling budget is limited to 100 samples for easih t

We compare the per-task regret obtained by 22
MT-LINUCB with the regret ofLINUCB that 22f
only uses the samples from the current task for _ 21
the arm selection. These preliminary numerical 21p
results show that while the regret fornUCB

remains constant over time, in the case of the
multi-task algorithm the regret decreases with
every additional task. Indeed, given the strong

LinucB
MT-LinUCH

2051

1.95-

Regret for each task
~

19r

similarity between the vector& and the fact L85
that the sampling is done on only five arms, we L8y
gain valuable knowledge by exploiting the sim- 1% o % B 20 20

100
ilarity between tasks and transferring samples ) Task number
from the past, while the bias introduced does Figure 2:Per-task regret
not penalize the regret performance. In fact, we can expattthe regret oMT-LINUCB will be
reduced down to the task-similarity teenwith the increase in the number of tasks.

5 Conclusion

This preliminary work shows the potential impact that mtatk learning could have in a sequence
of decision-making tasks such as in the linear bandit gptfirthe transfer of samples strategy im-
plemented ilMT-LINUCB is relatively simple but already shows that the improvenvétit respect

to single-task learning could be significant whenever tBkgat hand are similar. In the future we
intend to provide a regret analysis fliT-LINUCB and test the similarity assumption through the
empirical evaluation on recommendation system datasegsidition, a number of interesting future
challenges arise, such as defining a less restrictive nofisimilarity between tasks or weighting
the samples from past tasks according to their relevand@éacurrent task.
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A. Derivation of results in @D

Following the same steps as in the proofidf [1, Theorem 2], btaio:

m—+1 nj

‘Jngﬁhtl,t—ITemH t‘ < !33 A$n+1 - Z szns )+ Az m+1) 1'§:n+1|
j=1 s=1
m—+1 nj
<llell 5, (H >3 ] 5,y + MBI )1) (by Cauchy-Schwarz)
7j=1 s=1 mtl
m+1 nj
<llall gy g (10 el gy g+ 3218 (by [, Th.1)
j=1 s=1
det( A) )1/2de1()\]l)—1/2
ng||(p )1(3 210g< mtl 5 )—1—)\1/25), wp. >1-46.
m+41

B. Derivation of results in @

Using the notation introduced in SEgc.3, we obtain:

§:n+1,t - QM+1 ’ ’

.~ Mo~ t
= H Z %C;w}i-l,tcj (ej - 9m+1) + Z %C’;L}‘rl,tcjem+l + Cmi-l tNCm+1,t9m+1 — O H
Jj=1 j=1

. ~ LI t
%Cm}i-l,tcj (0 = Om1) + Oy bmaa (D %Cj + Ncmﬂ,t) ~ O |
j=1

1>
Jj=1

= H Z %C’rzil,tc (ej - 6m+1) +9m+1 — 0m+1H
j=1
1>
Jj=1

NCnt 1Ol 1165 = |
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