
Sparse Multi-Task Reinforcement Learning

Daniele Calandriello ∗
INRIA Lille - Nord Europe

Team SequeL, France

Alessandro Lazaric∗
INRIA Lille - Nord Europe

Team SequeL, France

Marcello Restelli†
Politecnico di Milano

Milan, Italy

1 Introduction
In multi-task reinforcement learning (MTRL), the objective is to simultaneously learn multiple tasks
and exploit their similarity to improve the performance w.r.t. single-task learning. In this paper we
investigate the case when all the tasks can be accurately represented in a linear approximation space
using the same small subset of the original (large) set of features. This is equivalent to assuming
that the weight vectors of the task value functions are jointly sparse, i.e., the set of their non-zero
components is small and it is shared across tasks. Building on existing results in multi-task regres-
sion, we develop two multi-task extensions of the fitted Q-iteration algorithm [4]. While the first
algorithm assumes that the tasks are jointly sparse in the given representation, the second one learns
a transformation of the features in the attempt of finding a more sparse representation. For both
algorithms we provide numerical simulations, while an extensive theoretical analysis is reported in
the long version of this paper [3].

2 Preliminaries
A Markov decision process (MDP) is a tupleM = (X ,A, R, P, γ), where the state space X is a
bounded closed subset of the Euclidean space, the action space A is finite (i.e., |A| < ∞), R :
X ×A → [0, 1] is the reward of a state-action pair, P : X ×A → P(X) is the transition distribution
over the states achieved by taking an action in a given state, and γ ∈ (0, 1) is a discount factor. A
deterministic policy π : X → A is a mapping from states to actions. We denote by B(X × A; b)
the set of measurable state-action functions f : X ×A → [−b; b] absolutely bounded by b. Solving
an MDP corresponds to computing the optimal action–value function Q∗ ∈ B(X × A;Qmax =
1/(1 − γ)), defined as the largest expected sum of discounted rewards that can be collected in the
MDP and fixed point of the optimal Bellman operator T : B(X × A;Qmax) → B(X × A;Qmax)
defined as T Q(x, a) = R(x, a) + γ

∑
y P (y|x, a) maxa′ Q(y, a′). The optimal policy is obtained

as the greedy policy w.r.t. the optimal value function as π∗(x) = arg maxa∈AQ
∗(x, a). In this

paper we study the multi-task reinforcement learning (MTRL) setting where the objective is to solve
T tasks, defined as Mt = (X ,A, Pt, Rt, γt) with t ∈ [T] = {1, . . . , T}, with the same state-
action space, but different dynamics Pt and goals Rt. The objective of MTRL is to exploit possible
relationships between tasks to improve the performance w.r.t. running T independent instances of
single-task learning. In particular, we choose linear fitted Q-iteration as the single-task baseline and
we propose multi-task extensions tailored to exploit the sparsity in the structure of the tasks.

3 Multi-task Fitted Q-iteration
Whenever X and A are large or continuous, we need to resort to approximation schemes to learn
a near-optimal policy. One of the most popular approximation methods is the fitted-Q iteration
(FQI) algorithm [4], which extends value iteration to approximate action-value functions. While
exact value iteration proceeds by iterative applications of the Bellman operator (i.e., Qk = T Qk−1),
in FQI, each iteration approximates T Qk−1 by solving a regression problem. Among possible
instances, here we focus on a specific implementation of FQI in the fixed design setting with linear
approximation and we assume access to a generative model of the MDP. Since the action space
A only contains a finite number of A actions, we approximate a value function Q as a collection

∗{daniele.calandriello,alessandro.lazaric}@inria.fr
†marcello.restelli@polimi.it

1

of A independent functions. In particular, we introduce a dx-dimensional feature vector φ(·) =
[ϕ1(·), ϕ2(·), . . . , ϕdx(·)]T, with supx ‖φ(x)‖2 ≤ L. From φ we obtain a linear approximation
space for action-value functions as F = {fw(x, a) = φ(x)Twa, x ∈ X , a ∈ A, wa ∈ Rdx}.

input: Input sets
{
St = {xi}nx

i=1

}T
t=1

, tol, K
Initialize W 0 ← 0 , k = 0
do
k ← k + 1
for a← 1, . . . , |A| do
for t← 1, . . . , T , i← 1, . . . , nx do
Sample rki,a,t = Rt(xi,t, a) and yki,a,t ∼ Pt(·|xi,t, a)
Compute zki,a,t = rki,a,t + γmaxa′ Q̃

k
t (y

k
i,a,t, a

′)
end for
Build datasets Dk

a,t = {(xi,t, a), zki,a,t}nx
i=1

Compute Ŵ k
a by solving Eqs. 1, 2, or 3 on {Dk

a,t}
end for

while
(
max

a

∥∥W k
a −W k−1

a

∥∥
2
≥ tol

)
and k < K

Figure 1: Linear FQI with fixed design and fresh samples at
each iteration in a multi-task setting.

FQI receives as input a fixed set of
states S = {xi}nx

i=1 (fixed design set-
ting) and the space F . Starting from
w0 = 0 defining the function Q̂0,
at each iteration k, FQI first draws a
(fresh) set of samples (rki,a, y

k
i,a)nx

i=1 from
the generative model of the MDP for
each action a ∈ A on each of the
states {xi}nx

i=1 (i.e., rki,a = R(xi, a)

and yki,a ∼ P (·|xi, a)). From the sam-
ples, A independent training sets Dka =
{(xi, a), zki,a}

nx
i=1 are generated, where

zki,a = rki,a + γmaxa′ Q̂
k−1(yki,a, a

′),
and Q̂k−1(yki,a, a

′) is computed using the
weight vector learned at the previous iter-
ation as φ(yki,a)Twk−1a′ . Then FQI solves
A linear regression problems, each fitting
the training set Dka and returns vectors ŵka defining the action value function fŵk with ŵk =
[ŵk1 , . . . , ŵ

k
A]. The process is repeated until a fixed number of iterations K is reached or no sig-

nificant change in the weight vector is observed. The performance of FQI is studied in detail in [8]
and in [6, Thm. 5]. When moving to the multi-task setting, we consider different state sets {St}Tt=1

and we denote by Ŵ k
a ∈ Rdx×T the matrix with vector ŵka,t ∈ Rdx as the t–th column. The structure

of FQI in the multi-task setting is reported in Fig. 1.

High-dimensional regression. We consider a high-dimensional assumption, which guarantees that
the target action-value functions that can be encountered over iterations all belong to the space F .
We define w = [w1, . . . , wA] and ψ(x, a) = [01, . . . , 0a−1, φ(x), 0a+1, . . . , 0A].
Assumption 1. For any function fw ∈ F , the Bellman operator T can be expressed using matrix
Pπw

ψ as T fw(x, a) = R(x, a) + γ Ex′∼P (·|x,a) [fw(x′, πw(x′))] = ψ(x, a)TwR + γψ(x, a)TPπw

ψ w

This assumption implies thatF is closed w.r.t. the Bellman operator, since for any fw, its image T fw
can be computed as the linear combination of ψ(·, ·) and wR+Pπw

ψ w. As a result, the optimal value
function Q∗ itself belongs to F and it can be computed as ψ(x, a)Tw∗. This assumption encodes
the intuition that in the high–dimensional feature space F induced by ψ, the transition kernel P , and
therefore the system dynamics, can be expressed as a linear combination of the features using the
matrix Pπw

ψ , which depends on both function fw and features ψ. This condition is usually satisfied
whenever the space F is spanned by a very large set of features that allows it to approximate a wide
range of different functions, including the reward and transition kernel. Under this assumption, at
each iteration k of FQI, there exists a weight vector wk such that T Q̂k−1 = fwk .

LASSO-FQI. While the regression problem at each iteration could be solved using ordinary least-
squares (OLS) regression, in the high-dimensional case the number of features exceeds the number
of samples (d > n) and OLS would have a poor performance caused by overfitting. In this case,
we propose three different methods constructed under different assumptions of the sparsity of the
problem. First we consider the case when all the tasks are (independently) sparse and we use the `1
regularization of LASSO [5] to recover the sparsity as:

LASSO: ŵka,t = arg min
w∈Rdx

1

nx

nx∑
i=1

(
φ(xi)

Tw − zki,a
)2

+ λ||w||1. (1)

When FQI is paired with LASSO, it can be shown that the sample complexity of the algorithm (i.e.,
the difference in performance between the optimal policy and the policy returned by FQI) is greatly
improved w.r.t. OLS. In fact, whenever the target function TtQ̂k−1 of task t is sparse with st � d
non-zero features, it can be shown that while FQI with OLS would suffer from an average loss over
tasks of order Õ(d/n), LASSO-FQI would dramatically reduces it to Õ(s̄ log d/n) for LASSO

2

where s̄ = 1/T
∑
t st is the average sparsity, thus moving from a linear dependency on the number

of features to a linear dependency only on the average number of features that are actually useful in
approximating the target functions. The necessary assumptions and basic results are reported in [2]
and they are extended to the iterative process of FQI in the longer version of the paper.

GL-FQI. Although effective in reducing the sample complexity in learning each task, LASSO-
FQI does not exploit potential similarities between tasks. For this reason, we introduce the Group
LASSO (GL) algorithm [5, 7], which is based on the assumption that the relevant features (i.e., with
non-zero weights) are similar across different tasks (shared-sparsity) and thus the weight matrix
W ∈ Rd×T could have a small `2,1-norm, where the `2-norm measures the “relevance” of feature
i across tasks, while the `1-norm “counts” the total number of relevant features. The corresponding
optimization problem solved at each iteration for each action a ∈ A is

Group-LASSO: Ŵ k
a = arg min

W∈Rdx×T

T∑
t=1

nx∑
i=1

(
φ(xi,t)

Twt − zki,a,t
)2

+ λ ‖W‖2,1 . (2)

In this case, following from [7], the performance loss is of order Õ
(
s̃/n(1 + log(d)/

√
T)
)
, where

s̃ is the number of features which are active for at least one of the tasks. If the shared-sparsity
assumption holds (i.e., the features with non-zero weights are the same across the tasks), we expect
s̃ to be much smaller than d and the performance of the algorithm to improve w.r.t. running LASSO
on each task separately. In fact, although s̄ ≤ s̃, we notice that the dependency on d is further
reduced and it eventually vanishes when the number of tasks increases. This shows that GL–FQI
effectively leverages over the similarity across tasks and benefits from using all the samples from all
the tasks, to better identify the useful features.

FL-FQI. Unlike other properties such as smoothness, the sparsity of a function is intrinsically re-
lated to the specific representation used to approximate it (i.e., the function space F). As a result,
the shared-sparsity assumption of GL may not necessarily hold for a given space F . In this case, the
shared sparsity s̃ may be of order of d and GL may perform significantly worse than LASSO-FQI
itself. Thus, we finally introduce another algorithm that seeks to change the representation by apply-
ing a linear transformation of the features to achieve a high level of joint sparsity. This objective is
pursued by the multi-task feature learning (MTFL) algorithm in [1], where it is shown that learning
a suitable transformation is equivalent to solving the trace-norm regularized problem:

FL: Ŵ k
a = arg min

W∈Rdx×T

T∑
t=1

nx∑
i=1

(
φ(xi,t)

Twt − zki,a,t
)2

+ λ ‖W‖∗ . (3)

While in GL–FQI we only need to learn the weight vectors, in [1] it is shown that the previous
optimization problem is equivalent to learning the weights as well as a novel representation that
maximizes the level of shared sparsity. While this extra complexity translates in a larger dependency
on the number of features, it allows to exploit the shared sparsity of the best possible representa-
tion. Building on results from [9], we can prove that the performance loss of FL-FQI is of order
Õ
(
s∗/n(1 + d/T)

)
, where s∗ is the joint sparsity in the best representation. Whenever s∗ � d, we

can expect a significant improvement w.r.t. GL–FQI and LASSO-FQI as well. Finally, we notice
that s∗ can also be interpreted as the rank of the optimal weight matrix W k

a and it corresponds to the
number of basis tasks from which we can construct the weights of all the others.

In summary, let K be the last iteration and πKt the greedy policy w.r.t. Q̂Kt for each task t, then the
bounds on the performance loss 1/T

∑
t ||Q∗t − Qπ

K
t ||2,ρ w.r.t. any arbitrary target distribution ρ

for the three previous algorithms are

LASSO-FQI: Õ
(
s̄ log(d)

n

)
; GL–FQI: Õ

(
s̃

n

(
1 +

log(d)√
T

))
; FL-FQI: Õ

(
s∗

n

(
1 +

d

T

))
,

where s̄ = 1/T
∑
t st is the average level of sparsity, s̃ is the joint sparsity, and s∗ is the smallest

number of relevant features that can be obtained by linear transformations of the features φ. The
theoretical analysis of the three previous algorithms, reported in the long version of the paper, stems
from the single-task setting of [8], and extends it to linear approximation and multi-task regression.

4 Experiments
In this section we validate the ideas of the previous algorithms and we verify the expected theoretical
performance sketched in the previous section. We consider two variants of the blackjack domain.

3

1000.0 2000.0 3000.0 4000.0 5000.0

-0.1

-0.08

-0.06

-0.04

n

H
E

GL-FQI
FL-FQI
Lasso-FQI

(a) Full variant of blackjack.

100.0 300.0 500.0 700.0 900.0 1100.0

-0.16

-0.14

-0.12

-0.1

-0.08

n

H
E

GL-FQI
FL-FQI
Lasso-FQI

(b) Reduced variant of blackjack.

Figure 2: Comparison of FL-FQI, GL–FQI and LASSO–FQI. On the y axis we report the average house
edge (HE) across tasks.

The player can choose to hit to obtain a new card or stay to end the episode. The two settings differ
in the possibility of performing a double (doubling the bet) on the first turn. We refer to the variant
with the double option as the full variant, while the other is the reduced variant. After the player
concludes the episode, the dealer hits until a fixed threshold is reached or exceeded. Different tasks
can be defined changing several parameters of the game, such as the number of decks, the value at
which the dealer stays and whether she hits when the such value is research exactly with a soft hand.

Full variant experiment. The tasks are generated by selecting 2, 4, 6, 8 decks, by setting the stay
threshold at {16, 17} and whether the dealer hits on soft, for a total of 16 tasks. We define a very rich
description of the state space with the objective of satisfying the high-dimensional Assumption 1.
At the same time, this is likely to come with a large number of useless features, which makes it
suitable for sparsification. In particular, we include the player hand value, indicator functions for
each possible player hand value and dealer hand value, and a large description of the cards not dealt
yet (corresponding to the history of the game) under the form of indicator functions for various
ranges. In total, the representation contains d = 212 features. We notice that although none of
the features is completely useless (as requested in the definition of sparsity), the features related
with the history of the game are unlikely to be very useful for most of the tasks defined in this
experiment. We collect samples from up to 5000 episodes, although they may not be representative
enough given the large state space of all possible histories that the player can encounter and the
high stochasticity of the game. The evaluation is performed by simulating the learned policy for
2,000,000 episodes and computing the average House Edge (HE) across tasks. For each algorithm
we report the performance for the best regularization parameter λ in the range {2, 5, 10, 20, 50}.
Results are reported in Fig. 2a. Although the set of features is quite large, we notice that all the
algorithms succeed in learning a good policy even with relatively few samples, showing that all
of them can take advantage of the sparsity of the representation. In particular, GL–FQI exploits
the fact that all 16 tasks share the same useless features (although the set of useful features may
not overlap entirely) and its performance is the best. On the other hand, FL–FQI suffers from the
increased complexity of representation learning, which in this case does not lead to any benefit since
the initial representation is already sparse (s̄ ≈ s̃ ≈ s∗). Nonetheless, it is interesting to note that
the performance of FL–FQI is comparable to single-task LASSO–FQI.

Reduced variant experiment. In the second experiment we construct a representation for which
we expect the weight matrix to be dense. In particular, we only consider the value of the player’s
hand and of the dealer’s hand and we generate features as the Cartesian product of these two discrete
variables plus a feature indicating whether the hand is soft, for a total of 280 features. Similar to the
previous setting, the tasks are generated with 2, 4, 6, 8 decks, whether the dealer hits on soft, and a
larger number of stay thresholds in {15, 16, 17, 18}, for a total of 32 tasks. We used regularizers in
the range {0.1, 1, 2, 5, 10}. Since the history is not included, the different number of decks influ-
ences only the probability distribution of the totals. Moreover, limiting the actions to either hit or
stay further increases the similarity among tasks. Therefore, we expect to be able to find a dense,
low-rank solution (s∗ � s̃). The results in Fig. 2b confirms this guess, with FL–FQI performing
significantly better than the other methods. In addition, GL–FQI and LASSO–FQI perform sim-
ilarly, since the dense representation penalizes both single-task and shared sparsity. This was also
observed by the fact that both methods favor low values of λ, indicating that the sparse-inducing
penalties are not effective.

4

References

[1] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine Learning, 73(3):243–272, 2008.

[2] Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and
dantzig selector. The Annals of Statistics, pages 1705–1732, 2009.

[3] Daniele Calandriello, Alessandro Lazaric, and Marcello Restelli. Sparse Multi-task Reinforce-
ment Learning. In https://hal.inria.fr/hal-01073513, 2014.

[4] Damien Ernst, Pierre Geurts, Louis Wehenkel, and Michael L Littman. Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research, 6(4), 2005.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer, 2009.
[6] Alessandro Lazaric and Marcello Restelli. Transfer from multiple MDPs. In Proceedings of the

Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS’11), 2011.
[7] Karim Lounici, Massimiliano Pontil, Sara Van De Geer, Alexandre B Tsybakov, et al. Oracle

inequalities and optimal inference under group sparsity. The Annals of Statistics, 39(4):2164–
2204, 2011.

[8] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. The Journal
of Machine Learning Research, 9:815–857, 2008.

[9] Sahand Negahban, Martin J Wainwright, et al. Estimation of (near) low-rank matrices with
noise and high-dimensional scaling. The Annals of Statistics, 39(2):1069–1097, 2011.

5

	Introduction
	Preliminaries
	Multi-task Fitted Q-iteration
	Experiments

